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Lewisian Connexive Logics*

Chen Huang Xuefeng WenB

Abstract. In connexive logic, two fundamental ideas are observed: first, no proposition im-
plies or is implied by its own negation; second, if a proposition implies φ then it will not imply
the negation of φ. In classical logic, neither of the ideas holds, which makes it difficult to give
a natural semantics for connexive logic. By combining Kleene’s three valued logic and Lewis’
conditional logic, we propose a new natural semantics for connexive logic. We give four ax-
iomatic systems characterizing different classes of selection models in the new semantics. We
prove soundness and completeness of these logics and compare them with some connexive log-
ics in the literature.

1 Introduction

Unlike most nonclassical logics, which are either sublogics or extensions of clas-
sical logic, connexive logic is contra-classical. ([3]) It not only lacks some axioms of
classical logic, but also has some axioms that are new to classical logic. This makes
it difficult to propose a natural semantics for connexive logic. Based on Lewisian
semantics for conditionals, this paper aims to propose a new natural semantics for
connexive logic.

Connexive logic has two basic ideas. One is that no proposition implies or is
implied by its own negation, which is arguably attributed to Aristotle. The other
is that if a proposition implies φ then it will not imply the negation of φ, which is
attributed to the medieval logician Boethius. Aristotle’s theses are usually formulated
by ¬(φ → ¬φ) and ¬(¬φ → φ). Boethius’ theses are usually formulated by (φ →
ψ) → ¬(φ → ¬ψ) and (φ → ¬ψ) → ¬(φ → ψ). It is easily seen that neither
Aristotle’s theses nor Boethius’ theses are valid in classical logic. As classical logic is
Post-complete, a consistent connexive logic has to give up some classical tautologies.
This is why connexive logic is contra-classical.
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Both Aristotle’s theses and Boethius’ theses have several variants, which makes
it obscure what is counted as a connexive logic. We list the theses in connexive logic
to be discussed for reference in Table 1. As far as we know, wAT and wAbT in Table 1
have not been proposed before. According to Wansing ([17]), a logic is connexive if
it validates both AT and BT; logics validating only BTr are called weakly connexive.
According to Kapsner ([4]), connexive logics satisfying Unsat1 and Unsat2 are called
strongly connexive.

Table 1: Common theses in connexive logic and conditional logic

Label Theses name

AT ¬(φ→ ¬φ)1 Aristotle’s Theses
wAT (φ→ ψ) ∨ ¬(φ→ ψ) ⊨ ¬(φ→ ¬φ) Weak Aristotle’s Theses
BT (φ→ ψ) → ¬(φ→ ¬ψ) Strong Boethius’ Theses
BTr φ→ ψ ⊨ ¬(φ→ ¬ψ) Boethius’ Theses in rule form
Unsat1 φ→ ¬φ is unsatisfiable Aristotle’s Theses via satisfiability
Unsat2 (φ→ ψ) ∧ (φ→ ¬ψ) is unsatisfiable Boethius’s Theses via satisfiability
AbT ¬((φ→ ψ) ∧ (φ→ ¬ψ)) Abelard’s First Principle
wAbT (φ→ χ) ∨ ¬(φ→ χ) ⊨ Weak Abelard’s First Principle

¬((φ→ ψ) ∧ (φ→ ¬ψ))
EFQ φ,¬φ ⊨ ψ Ex Falso Quodlibet
LEM φ ∨ ¬φ Law of Excluded Middle
ID φ→ φ Identity
MP φ,φ→ ψ ⊨ ψ Modus Ponens
CEM (φ→ ψ) ∨ (φ→ ¬ψ) Conditional Excluded Middle
wCEM ¬(φ→ ψ) ⊨ φ→ ¬ψ Weak Conditional Excluded Middle

2 Lewisian Semantics for Connexivity

Our language L is formed from a given set At of atoms by the usual logical
connectives ¬,∧,∨, and →. We stipulate that ∧ and ∨ have priority of combination
over→.

We modify Lewis’ semantics for conditionals to obtain connexive logic. Among
several equivalent Lewisian semantics, we choose the framework of selectionmodels,

1The thesis AT is often listed with its variant AT′: ¬(¬φ → φ), and similarly for BT and BTr. As
most connexive logics, including ours, have the rule of replacing equivalent consequents and double
negation, we will omit these variants for simplicity.
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which is technically most convenient. In a selection model, a selection function f
selects for each world w and each formula φ a set f(w,φ) of worlds that are meant
to closest to w making φ true. In Lewisian semantics, a conditional φ→ ψ is true at
w if and only if ψ is true at all the worlds in f(w,φ). We modify Lewisian semantics
in two aspects. First, our framework is three-valued, allowing sentences to be neither
true nor false. Second, we require f(w,φ) to be nonempty for a conditionalφ→ ψ to
be true at w, whereas in standard conditional logic, it not only lacks this requirement
but also makes all conditionals φ→ ψ true at w if f(w,φ) is empty.

We will not impose additional model conditions at first, to obtain a minimal
logic. Then we impose additional model conditions to obtain stronger logics.

Definition 1 (Selection models). A (three-valued) selection model is a tuple M =

(W, f, V +, V −), where

• W ̸= ∅ consists of worlds,
• f :W × L → ℘(W ) is a selection function, and
• V + : At → ℘(W ) and V − : At → ℘(W ) are truth and falsity valuations,
respectively, such that for all p ∈ At, V +(p) ∩ V −(p) = ∅.

Let LC be the class of all selection models. The truth and falsity conditions for
L are given below. The result is a combination of Kleene’s three-valued logicK3 (cf.
[6]) and a tweak of Lewis’ conditional logic.

Definition 2 (Truth and falsity conditions). Given a selectionmodelM = (W, f, V +

, V −), the truth and falsity conditions of any formula φ at any w ∈W inM is induc-
tively defined as follows.

• M, w ⊩+ p iff w ∈ V +(p)

• M, w ⊩− p iff w ∈ V −(p)

• M, w ⊩+ ¬φ iffM, w ⊩− φ

• M, w ⊩− ¬φ iffM, w ⊩+ φ

• M, w ⊩+ φ ∧ ψ iffM, w ⊩+ φ andM, w ⊩+ ψ

• M, w ⊩− φ ∧ ψ iffM, w ⊩− φ orM, w ⊩− ψ

• M, w ⊩+ φ ∨ ψ iffM, w ⊩+ φ orM, w ⊩+ ψ

• M, w ⊩− φ ∨ ψ iffM, w ⊩− φ andM, w ⊩− ψ

• M, w ⊩+ φ→ ψ iff f(w,φ) ̸= ∅ and for all v ∈ f(w,φ),M, v ⊩+ ψ

• M, w ⊩− φ→ ψ iff ∃v ∈ f(w,φ) s.t. M, v ⊮+ ψ

We write M, w ⊩+ Γ if M, w ⊩+ γ for all γ ∈ Γ. The set of worlds making
φ true in M is denoted by JφKM, where the superscript M is often omitted if no
confusion occurs.

Definition 3 (Validity). Given a class of selection models S, an inference from Γ to
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φ is valid in S, denoted Γ ⊨S φ, iff for all M in S with w in M, if M, w ⊩+ Γ then
M, w ⊩+ φ.

According to our semantics, φ → ψ is neither true nor false at w if f(w,φ) is
empty, which is more intuitive than standard semantics for conditionals. For example,
we would take neither πo nor πe below to be true (or false).

(πo) If π were an integer then it would be odd.

(πe) If π were an integer then it would be even.

One may propose an alternative to the falsity condition for conditionals as follows.

• M, w ⊩− φ→ ψ iff ∃v ∈ f(w,φ), s.t. M, v ⊩− ψ

In a two-valued setting with the law of excluded middle, the alternative is equivalent
to what we proposed in Definition 2. In a three-valued logic, however, M, v ⊮+ ψ

does not imply M, v ⊩− ψ, as ψ can be neither true nor false at v. Intuitively, we
will deny φ→ ψ as long as ψ is not true at some closest φ-world to w. For example,
let φ be 2+2 = 4 and ψ be “π is female”. Intuitively, ψ is neither true nor false. But
we will accept that it is not the case that if 2 + 2 = 4 then π is female, which means
that φ→ ψ is false, whereas according to the alternative falsity condition, φ→ ψ is
neither true nor false.

The following lemma says that a formula cannot be both true and false at the
same world, whose proof is straightforward and omitted.

Lemma 1. For all selection models M, for all φ ∈ L, there is no w in M such that
both M, w ⊩+ φ and M, w ⊩− φ.

3 Proofs Systems and Completeness

In this section, we define four logicsLC, LC1,LC2 andLC3 by different classes
of selection models and give axiomatization of them.

3.1 LC: a weakly connexive logic

The logic LC is semantically defined by ⊨LC (see Definition 3). Recall that LC
is the class of all selection models.

Proposition 1. The theses BTr, Unsat2, wAbT and EFQ in Table 1 hold in LC.

Proof. LetM = (W, f, V +, V −) be any selection model and w any world inW .
For BTr, suppose M, w ⊩+ φ → ψ. Then f(w,φ) is not empty, and for all

v ∈ f(w,φ) we have M, v ⊩+ ψ. By Lemma 1, there exists a world v ∈ f(w,φ),
s.t. M, v ⊮+ ¬ψ, whenceM, w ⊩− φ→ ¬ψ, i.e.,M, w ⊩+ ¬(φ→ ¬ψ).
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For Unsat2, suppose both M, w ⊩+ φ → ψ and M, w ⊩+ φ → ¬ψ. Then
f(w,φ) is not empty and for all v ∈ f(w,φ) we have bothM, v ⊩+ ψ andM, v ⊩+

¬ψ, contradicting Lemma 1.
For wAbT, suppose M, w ⊩+ (φ → χ) ∨ ¬(φ → χ). Then f(w,φ) is not

empty. We just need to proveM, w ⊩− φ→ ψ orM, w ⊩− φ→ ¬ψ. If f(w,φ) ⊆JψK, then we have M, w ⊩− φ → ¬ψ. If f(w,φ) ⊈ JψK, then we have M, w ⊩−

φ → ψ. Given that we have either f(w,φ) ⊆ JψK or f(w,φ) ⊈ JψK, it follows that
M, w ⊩− φ→ ψ orM, w ⊩− φ→ ¬ψ.

The validity of EFQ is obvious, since φ and ¬φ cannot both be true. □

The logic LC is axiomatized by Table 2, in which REF, CE, CI, DI, DM1, DM2,
DN, EFQ, CC, BTr, and ECW are axioms, and MON, CUT, DIL, and RW are rules.
Among these axioms and rules, BTr is just the one that makes LC weakly connex-
ive. The axiom ECW says that if f(w,φ) is nonempty then any conditional with the
antecedent φ is either true or false. All the other axioms and rules are common in
classical logic. The reason why we use ⊢ for axiomatization is because LC does not
have any valid formulas, as in Kleene’s three-valued logic K3. Nonetheless, just like
Kleene’s logic, LC has valid inferences.

Table 2: Axiomatic System LC

REF φ ⊢ φ MON
Γ ⊢ φ

Γ,∆ ⊢ φ

CUT
Γ ⊢ φ φ,∆ ⊢ ψ

Γ,∆ ⊢ ψ
RW

α ⊢ β
φ→ α ⊢ φ→ β

CE φ ∧ ψ ⊢ φ φ ∧ ψ ⊢ ψ CI φ,ψ ⊢ φ ∧ ψ

DI φ ⊢ φ ∨ ψ ψ ⊢ φ ∨ ψ DIL
Γ, α ⊢ φ Γ, β ⊢ φ

Γ, α ∨ β ⊢ φ

DM1 ¬(φ ∧ ψ) ⊣⊢ ¬φ ∨ ¬ψ DM2 ¬(φ ∨ ψ) ⊣⊢ ¬φ ∧ ¬ψ

DN ¬¬φ ⊣⊢ φ EFQ φ,¬φ ⊢ ψ

CC (φ→ α) ∧ (φ→ β) ⊢ φ→ α ∧ β BTr φ→ ψ ⊢ ¬(φ→ ¬ψ)

ECW (φ→ ψ) ∨ ¬(φ→ ψ) ⊢ (φ→ χ) ∨ ¬(φ→ χ)

Definition 4 (Syntactic consequence of S). Given an axiomatic system S, we call
φ a syntactic consequence of Γ, denoted Γ ⊢S φ, if there exists a finite set ∆ ⊆ Γ
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such that ∆ ⊢ φ is a theorem of S, i.e., there exists a sequence σ1, . . . , σn with
σn = ∆ ⊢ φ such that for all 1 ≤ i ≤ n, either σi is an axiom of S or it can be
derived from σj1 , . . . , σjk with j1, . . . , jk < i using the rules of S.

Theorem 2 (Soundness of LC). For all Γ ∪ {φ} ⊆ L, if Γ ⊢LC φ then Γ ⊨LC φ.

Proof. It suffices to show that all the axioms are valid and the rules preserve validity.
The validity of REF, CE, CI, DI, DM1, DM2, DN, and EFQ are immediate. The proof
of BTr has been established in Proposition1. That MON, CUT and DIL preserve
validity is also obvious. For brevity, we write ⊨ for ⊨LC in the following proof. Let
M = (W, f, V +, V −) be any selection model and w any world inW .

For CC, supposeM, w ⊩+ (φ→ α)∧ (φ→ β). Then we haveM, w ⊩+ φ→
α and M, w ⊩+ φ → β. It follows that ∅ ̸= f(w,φ) ⊆ JαK and ∅ ̸= f(w,φ) ⊆JβK. Hence, ∅ ̸= f(w,φ) ⊆ JαK ∩ JβK = Jα ∧ βK, whenceM, w ⊩+ φ→ α ∧ β.

For ECW, suppose M, w ⊩+ (φ → ψ) ∨ ¬(φ → ψ). Then f(w,φ) is not
empty. Note that for any formula χ, we have f(w,φ) ⊆ JχK or f(w,φ) ⊈ JχK.
Hence,M, w ⊩+ (φ→ χ) ∨ ¬(φ→ χ), as required.

For RW, suppose α ⊨ β. We prove that φ → α ⊨ φ → β. Suppose M, w ⊩+

φ → α. Then ∅ ̸= f(w,φ) ⊆ JαK. By α ⊨ β we have JαK ⊆ JβK. It follows that
∅ ̸= f(w,φ) ⊆ JβK. Hence,M, w ⊩+ φ→ β. □

For the proof of completeness, we combine the proof techniques in three-valued
logic ([15]) and conditional logic ([7, 14]).

Definition 5 (Saturated sets in LC). A set Γ is saturated in LC, if Γ is non-trivial,
namely, Γ ̸= L, and the following conditions are satisfied. For all α, β ∈ L,

(cc) if α ∈ Γ and β ∈ Γ then α ∧ β ∈ Γ;

(dc) if α ∨ β ∈ Γ then α ∈ Γ or β ∈ Γ;

(rw) if α ⊢LC β and α ∈ Γ then β ∈ Γ.

Lemma 2. Let Γ be a saturated set in LC. Then for all α, β ∈ L,

(re) if α ⊣⊢ β then α ∈ Γ iff β ∈ Γ;

(cc1) α ∧ β ∈ Γ iff α ∈ Γ and β ∈ Γ;

(dc1) α ∨ β ∈ Γ iff α ∈ Γ or β ∈ Γ;

(cc2) ¬(α ∧ β) ∈ Γ iff ¬α ∈ Γ or ¬β ∈ Γ;

(dc2) ¬(α ∨ β) ∈ Γ iff ¬α ∈ Γ and ¬β ∈ Γ.
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Proof. It is obvious that (re) follows from (rw). And (cc1) and (dc1) follow from
(rw) together with Axioms CE and DI. Finally, (cc2) and (dc2) follow from (re) and
(cc1), together with Axioms DM1 and DM2. □

With REF, MON, CUT, CI and DIL, the following lemma can be proved in the
standard way, which is omitted here.

Lemma 3 (Lindenbaum’s lemma for LC). If Γ ⊬LC φ, then there exists a saturated
set Γ′ ⊇ Γ in LC such that φ /∈ Γ′.

Now we define the canonical model of LC. We modify the constructions in [7]
to make them function in our modified semantics.

Definition 6 (Canonical model of LC). The canonical model of LC is given by
Mc = (W c, f c, V c+, V c−), where

• W c is the set of all saturated sets in LC;

• f c(Γ, φ) =


{w ∈W c | Γφ ⊆ w} if there exists χ ∈ L

s.t. (φ→ χ) ∨ ¬(φ→ χ) ∈ Γ

∅ otherwise
• Γ ∈ V c+(p) iff p ∈ Γ

• Γ ∈ V c−(p) iff ¬p ∈ Γ

where Γφ := {ψ | φ→ ψ ∈ Γ}.

The following lemmas will be used for the proof of the truth lemma.

Lemma 4. The canonical model Mc is a selection model in LC.

Proof. It suffices to show that the valuation functions V c+ and V c− are well de-
fined, i.e., for all p ∈ At, V c+(p) ∩ V c−(p) = ∅. Suppose that there is a Γ ∈
V c+(p)∩V c−(p). Then p ∈ Γ and ¬p ∈ Γ. By EFQ and (rw), it follows that Γ = L,
contradicting that Γ is non-trivial. □

Lemma 5. If Γ ∈W c, then for all φ ∈ L, the set Γφ is closed under ⊢LC, i.e., for all
ψ ∈ L, if Γφ ⊢LC ψ then ψ ∈ Γφ.

Proof. First we show that Γφ satisfies (rw). Suppose α ⊢LC β and α ∈ Γφ. Then
φ→ α ∈ Γ. By RW and (rw) for Γ, we have φ→ β ∈ Γ, whence β ∈ Γφ.

Now supposeΓφ ⊢LC ψ. Then there existsψ1, . . . , ψn ∈ Γφ such thatψ1, . . . , ψn
⊢ ψ is a theorem of LC. By CE and CUT, ψ1 ∧ · · · ∧ ψn ⊢ ψ is also a theorem of
LC. Note that for all 1 ≤ i ≤ n, we have φ → ψi ∈ Γ. It follows by (cc), CC, RW,
and (rw) that φ → ψ1 ∧ · · · ∧ ψn ∈ Γ, whence ψ1 ∧ · · · ∧ ψn ∈ Γφ. Then by (rw)
again, we have ψ ∈ Γφ, as required. □
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Lemma 6. For any ψ ∈ L we have (φ→ ψ) ∨ ¬(φ→ ψ) ∈ Γ iff f c(Γ, φ) ̸= ∅.

Proof. Take an arbitrary ψ ∈ L.
⇒) Suppose (φ → ψ) ∨ ¬(φ → ψ) ∈ Γ. Then f c(Γ, φ) = {w ∈ W c |

Γφ ⊆ w}. It can be verified that Γφ is consistent. Then there exists χ ∈ L such that
Γφ ⊬LC χ. Then by Lemma 3, we have f c(Γ, φ) ̸= ∅.

⇐) Suppose f c(Γ, φ) ̸= ∅. Then by definition there exists χ ∈ L such that
(φ → χ) ∨ ¬(φ → χ) ∈ Γ. Then by ECW and (rw), we have (φ → ψ) ∨ ¬(φ →
ψ) ∈ Γ. □

Lemma 7. LetMc = (W c, f c, V c+, V c−) be a canonical model of LC and Γ ∈W c.
If f c(Γ, φ) ̸= ∅ then

∩
f c(Γ, φ) = Γφ.

Proof. The direction Γφ ⊆
∩
f c(Γ, φ) is immediate by the definition. For the other

direction, suppose ψ /∈ Γφ. By Lemma 5, we have Γφ ⊬LC ψ. Then by Lemma 3 and
f c(Γ, φ) ̸= ∅, there exits Λ ∈ f c(Γ, φ) such that ψ /∈ Λ. Hence, ψ /∈

∩
f c(Γ, φ). □

Lemma 8 (Truth lemma for LC). Let Mc be the canonical model of LC. Then for
all φ ∈ L and Γ ∈ Mc,

1. Mc,Γ ⊩+ φ iff φ ∈ Γ,
2. Mc,Γ ⊩− φ iff ¬φ ∈ Γ.

Proof. By induction on φ. The only interesting case is φ = α→ β. We have
M,Γ ⊩+ α→ β

iff f c(Γ, α) ̸= ∅ andMc,∆ ⊩+ β for all ∆ ∈ f c(Γ, α)

iff f c(Γ, α) ̸= ∅ and β ∈ ∆ for all∆ ∈ f c(Γ, α) (by induction hypothesis)
iff f c(Γ, α) ̸= ∅ and β ∈

∩
f c(Γ, α)

iff f c(Γ, α) ̸= ∅ and β ∈ Γα (by Lemma 7)
iff α→ β ∈ Γ.
The direction from left to right of the last ‘iff’ is by the definition of Γα. For the

other direction, suppose α → β ∈ Γ. By DI and (rw), we have (α → β) ∨ ¬(α →
β) ∈ Γ. Then by Lemma 6, we have f c(Γ, α) ̸= ∅, as required.

Similarly, we have
M,Γ ⊩− α→ β

iff there exists ∆ ∈ f c(Γ, α) such thatMc,∆ ⊮+ β

iff there exists ∆ ∈ f c(Γ, α) such that β /∈ ∆ (by induction hypothesis)
iff f c(Γ, α) ̸= ∅ and β /∈

∩
f c(Γ, α)

iff f c(Γ, α) ̸= ∅ and β /∈ Γα (by Lemma 3)
iff f c(Γ, α) ̸= ∅ and α→ β /∈ Γ (by Def. of Γα)
iff ¬(α→ β) ∈ Γ

The direction from left to right of the last ‘iff’ is verified as follows. Suppose
f c(Γ, α) ̸= ∅ and α → β /∈ Γ. By the former and Lemma 6, we have (α →
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β) ∨ ¬(α → β) ∈ Γ. Then by α → β /∈ Γ and (dc), it follows that ¬(α →
β) ∈ Γ. For the other direction, suppose ¬(α → β) ∈ Γ. Then by DI and (rw),
(α→ β) ∨ ¬(α→ β) ∈ Γ. It follows by Lemma 6 that f c(Γ, α) ̸= ∅. By EFQ and
Γ ̸= L, we have α→ β /∈ Γ. □

Theorem 3 (Completeness of LC). For all Γ ∪ {φ} ⊆ L, if Γ ⊨LC φ then Γ ⊢LC φ.

Proof. We prove by contrapositive. Suppose Γ ⊬LC φ. By Lemma 3, there is a
saturated set Γ′ ⊇ Γ in LC such that φ /∈ Γ′. By the truth lemma, Mc,Γ′ ⊩+ ψ for
all ψ ∈ Γ, butMc,Γ′ ⊮+ φ. Hence, Γ ⊭LC φ. □

3.2 LC1: a proper extension with more connexivity

Now we consider more natural models, in which f(w,φ) are required to be φ-
worlds.

Definition 7 (Models for LC1). The class LC1 of proper selection models are those
M = (W, f, V +, V −) in LC constrained by the following condition.

(id) f(w,φ) ⊆ JφK.
The logic LC1 is semantically defined by ⊨LC1 (see Definition 3).

Proposition 4. The theseswAT, BTr,Unsat1,Unsat2,wAbt and EFQ in Table 1 hold
in LC1.

Proof. By Proposition 1, it suffices to show that wAT and Unstat1 hold in LC1.
For wAT, letM = (W, f, V +, V −) be in LC1 with w ∈W such thatM, w ⊩+

(φ→ ψ)∨¬(φ→ ψ). Then f c(w,φ) ̸= ∅. By (id) we have f(w,φ) ⊆ [φ]. Hence,
M, w ⊩+ φ→ φ.

For Unsat1, suppose there is a modelM = (W, f, V +, V −) in LC1withw ∈W

such thatM, w ⊩+ φ→ ¬φ. Then f(w,φ) ̸= ∅ and f(w,φ) ⊆ J¬φK, contradicting
(id) by Lemma 1. □

The axiomatic system of LC1 is given by Table 3.

Table 3: Axiomatic System LC1

All the axioms and rules in LC

wID (φ→ ψ) ∨ ¬(φ→ ψ) ⊢ φ→ φ

As we have argued, the reason why φ → φ is not valid is that f(w,φ) may be
empty. But if φ → ψ or ¬(φ → ψ) is already true at w then f(w,φ) is not empty.
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Thus φ→ φ is true atw, thanks to the model condition (id). This completes the proof
of the soundness of LC1.

Theorem 5 (Soundness of LC1). For all Γ ∪ {φ} ⊆ L, if Γ ⊢LC1 φ then Γ ⊨LC1 φ.

The canonical model of LC1 is the same as that of LC, except thatW c is the set
of all saturated sets in LC1 instead of LC. Note that we can also define the selection
function in the canonical model of LC1 as follows, thanks to the axiom wID. We
leave the verification to the reader.

f c(Γ, φ) =

{
{w ∈W c | Γφ ⊆ w} if φ→ φ ∈ Γ

∅ otherwise

It is easily seen that Lemma 7 and Lemma 8 still holds for LC1. Now the com-
pleteness of LC1 follows immediately from the following lemma.

Lemma 9. The canonical model Mc of LC1 is in LC1, i.e., Mc satisfies (id).

Proof. Obviously when f c(Γ, φ) = ∅, (id) is satisfied. Suppose f c(Γ, φ) ̸= ∅.
Then φ→ φ ∈ Γ, i.e., φ ∈ Γφ. It follows that for all ∆ ∈ f c(Γ, φ) we have φ ∈ ∆.
By the truth lemma for LC1, for all ∆ ∈ f c(Γ, φ) we have Mc,∆ ⊩+ φ. Hence,
f c(Γ, φ) ⊆ JφK. □

Theorem6 (Completeness ofLC1). For allΓ∪{φ} ⊆ L, ifΓ ⊨LC1 φ thenΓ ⊢LC1 φ.

3.3 LC2: a semi-Lewisian extension without DAE and CS

In this subsection, we add two more model conditions proposed by Lewis.

Definition 8 (Models for LC2). The class LC2 of Semi-Lewisian selection models
are thoseM = (W, f, V +, V −) in LC constrained by the following conditions.

(id) f(w,φ) ⊆ [φ];

(wwt) if f(w,φ) ̸= ∅, f(w,ψ) ̸= ∅, f(w,φ) ⊆ JψK and f(w,ψ) ⊆ JφK, then
f(w,φ) = f(w,ψ);

(cmp) if w ∈ JφK then w ∈ f(w,φ).

Proposition 7. The theses wAT, BTr, Unsat1, Unsat2, wAbT, EFQ andMP in Table
1 hold in LC2.

Proof. By Proposition 2, it suffices to show that MP is valid. Suppose M, w ⊩+

φ → ψ and M, w ⊩+ φ. Then we have f(w,φ) ̸= ∅, f(w,φ) ⊆ JψK and w ∈ JφK.
By (cmp), we have w ∈ f(w,φ). It follows from f(w,φ) ⊆ JψK that w ∈ JψK,
whenceM, w ⊩+ ψ. □
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Table 4: Axiomatic System LC2

All the axioms and rules in LC

wID (φ→ ψ) ∨ ¬(φ→ ψ) ⊢ φ→ φ

tID φ ⊢ φ→ φ

WT φ→ ψ,ψ → φ,φ→ χ ⊢ ψ → χ

MP φ,φ→ ψ ⊢ ψ

The axiomatic system of LC2 is given by Table 4.

Theorem 8 (Soundness of LC2). For all Γ ∪ {φ} ⊆ L, if Γ ⊢LC2 φ then Γ ⊨LC2 φ.

Proof. The validity of wID and MP have already been proved in Theorem 5 and
Proposition 7, respectively. Let M = (W, f, V +, V −) be a model in LC2 and w in
W .

For tID, supposeM, w ⊩+ φ. By (cmp), we have f(w,φ) ̸= ∅. It follows from
(id) that f(w,φ) ⊆ JφK, whenceM, w ⊩+ φ→ φ.

For WT, suppose M, w ⊩+ φ → ψ, M, w ⊩+ ψ → φ and M, w ⊩+ φ → χ.
Then we have f(w,φ) ≠ ∅, f(w,ψ) ̸= ∅, f(w,φ) ⊆ JψK, and f(w,ψ) ⊆ JφK.
By (wwt), we have f(w,φ) = f(w,ψ). It follows that f(w,ψ) ⊆ JχK, whence
M, w ⊩+ ψ → χ. □

The canonical model Mc = (W c, f c, V c+, V c−) of LC2 is the same as that of
LC, except thatW c is the set of all saturated sets in LC2 instead of LC. The proof of
the truth lemma for LC2 is the same as that for LC. Now the completeness of LC2
follows immediately from the following lemma.

Lemma 10. The canonical model Mc of LC2 is in LC2.

Proof. It suffices to verity that (id), (wwt), and (cmp) for Mc are satisfied. The
verification of (id) is the same as that for Lemma 9.

For (wwt), suppose f c(Γ, φ) ̸= ∅ , f c(Γ, ψ) ̸= ∅, f c(Γ, φ) ⊆ JψK and
f c(Γ, ψ) ⊆ JφK. We prove by contrapositive. Suppose f c(Γ, φ) ̸= f c(Γ, ψ). W.l.o.g.
suppose∆ /∈ f c(Γ, φ) but∆ ∈ f c(Γ, ψ). It follows from the former that there exists
χ ∈ Γφ such that χ /∈ ∆. Then Mc,∆ ⊮+ χ, whence Mc,Γ ⊮+ ψ → χ. It follows
from the truth lemma for LC2 that φ → ψ,ψ → φ,φ → χ ∈ Γ. By WT and (rw),
we have ψ → χ ∈ Γ, contradictingMc,Γ ⊮+ ψ → χ.
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For (cmp), suppose Γ ∈ JφK. Then Mc,Γ ⊩+ φ. By tID, we have Mc,Γ ⊩+

φ→ φ. It follows that f c(Γ, φ) ̸= ∅. For all ψ ∈ Γφ, we have φ→ ψ ∈ Γ. By MP
and (rw), we have ψ ∈ Γ for all ψ ∈ Γφ. Then we have Γφ ⊆ Γ. It follows from the
definition of f c(Γ, φ) that Γ ∈ f c(Γ, φ) . □

Theorem9 (Completeness ofLC2). For allΓ∪{φ} ⊆ L, ifΓ ⊨LC2 φ thenΓ ⊢LC2 φ.

3.4 LC3: an attempt to add DAE

In contrast to (wt) and (cmp), we are unable to add Leswis’ model condition
(dae) directly. This disparity arises from the difference in handling f(w,φ) when it
is empty in our logic compared to Lewis’ conditional logic. As a resolution, we can
add (em) and (ar) for the proof of completeness.

Definition 9 (Models for LC3). The class LC3 of selection models are thoseM =

(W, f, V +, V −) in LC constrained by the following condition.

(id) f(w,φ) ⊆ JφK;
(wwt) if f(w,φ) ̸= ∅, f(w,ψ) ̸= ∅, f(w,φ) ⊆ JψK, and f(w,ψ) ⊆ JφK,

then f(w,φ) = f(w,ψ);

(cmp) if w ∈ JφK then w ∈ f(w,φ);

(dae) f(w,φ ∨ ψ) ⊆ JφK or f(w,φ ∨ ψ) ⊆ JψK or f(w,φ ∨ ψ) = f(w,φ) ∪
f(w,ψ);

(em) f(w,φ) = f(w,ψ) = ∅ iff f(w,φ ∨ ψ) = ∅;

(ar) if f(w,φ) = ∅ then f(w,φ ∨ ψ) = f(w,ψ).

Note that by (em) and (wwt), we have f(w,φ ∨ ψ) = f(w,ψ ∨ φ). Hence, an
variant of (ar) also holds, i.e., if f(w,ψ) = ∅ then f(w,φ ∨ ψ) = f(w,φ). Lewis’
conditional logic does not require the conditions (em) and (ar), as they can be derived
by the other conditions together with the limit assumption, i.e., if f(w,φ) = ∅ thenJφK = ∅. Our canonical model, however, does not satisfy the limit assumption. We
have to add (em) and (ar) to incorporate (dae).

The axiomatic system of LC3 is given by Table 5.
The connective ≡ above is defined as in Kleene’s three-valued logic, i.e., φ ≡

ψ =df (φ∧ψ)∨(¬φ∧¬ψ). The original DAE axiom in Lewis’ conditional logic does
not hold in LC3, as f(w,φ ∨ ψ) can be empty. We replace DAE with its weakened
form wDAE, which says that if f(w,φ ∨ ψ) is not empty then DAE holds.

Theorem 10 (Soundness of LC3). For all Γ∪{φ} ⊆ L, if Γ ⊢LC3 φ then Γ ⊨LC3 φ.
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Table 5: Axiomatic System LC3

All the axioms and rules in LC

wID (φ→ ψ) ∨ ¬(φ→ ψ) ⊢ φ→ φ

tID φ ⊢ φ→ φ

WT φ→ ψ,ψ → φ,φ→ χ ⊢ ψ → χ

MP φ,φ→ ψ ⊢ ψ

EM (φ ∨ ψ) → (φ ∨ ψ) ⊣⊢ (φ→ φ) ∨ (ψ → ψ)

AR1 φ ∨ ψ → χ,¬(ψ → χ) ⊢ φ→ φ

AR2 ¬(φ ∨ ψ → χ), ψ → χ ⊢ φ→ φ

wDAE φ ∨ ψ → φ ∨ ψ ⊢

(φ ∨ ψ → φ) ∨ (φ ∨ ψ → ψ) ∨ ((φ ∨ ψ → χ) ≡ ((φ→ χ) ∧ (ψ → χ)))

Proof. The validity of wID, tID, WT, andMP have already been proved in Theorem
8. LetM = (W, f, V +, V −) be a model in LC3 and w inW .

For EM, we haveM, w ⊩+ φ ∨ ψ → φ ∨ ψ
iff f(w,φ ∨ ψ) ̸= ∅ (by (id))
iff f(w,φ) ̸= ∅ or f(w,ψ) ̸= ∅ (by (em))
iffM, w ⊩+ (φ→ φ) ∨ (ψ → ψ) (by (id))
Hence, (φ ∨ ψ → χ) ⊨ ((φ → χ) ∧ (ψ → χ)) and ((φ → χ) ∧ (ψ → χ)) ⊨

(φ ∨ ψ → χ), as required.
For AR1, suppose M, w ⊩+ φ ∨ ψ → χ and M, w ⊩+ ¬(ψ → χ). Then we

have f(w,φ∨ψ) ̸= ∅, f(w,ψ) ̸= ∅, and f(w,φ∨ψ) ̸= f(w,ψ). By (ar), we have
f(w,φ) ̸= ∅. It follows from (id) that M, w ⊩+ φ → φ. The same reasoning can
be applied to AR2.

For wDAE, suppose M, w ⊩+ φ ∨ ψ → φ ∨ ψ, M, w ⊮+ φ ∨ ψ → φ and
M, w ⊮+ φ ∨ ψ → ψ. By the former two, there exists v ∈ f(w,φ ∨ ψ) such that
v /∈ JφK, whence f(w,φ ∨ ψ) ⊈ JφK. Moreover, we have f(w,φ ∨ ψ) ̸= f(φ)

(Otherwise, we would have M, w ⊩+ φ ∨ ψ → φ by (id)). Then by (ar), we have
f(w,ψ) ̸= ∅. Similarly, we have f(w,φ ∨ ψ) ⊈ JψK and f(w,φ) ̸= ∅. By (dae),
we have f(w,φ ∨ ψ) = f(w,φ) ∪ f(w,ψ).

Then for any formula χ, we haveM, w ⊩+ φ ∨ ψ → χ

iff f(w,φ ∨ ψ) ⊆ JχK (as f(w,φ ∨ ψ) ̸= ∅)
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iff f(w,φ) ⊆ JχK and f(w,ψ) ⊆ JχK (by f(w,φ ∨ ψ) = f(w,φ) ∪ f(w,ψ))
iffM, w ⊩+ (φ→ χ) ∧ (ψ → χ).
For any formula χ, we also haveM, w ⊩+ ¬(φ ∨ ψ → χ)

iffM, w ⊩− φ ∨ ψ → χ

iff f(w,φ ∨ ψ) ⊈ JχK (as f(w,φ ∨ ψ) ̸= ∅)
iff f(w,φ) ⊈ JχK or f(w,ψ) ⊈ JχK (by f(w,φ ∨ ψ) = f(w,φ) ∪ f(w,ψ))
iffM, w ⊩+ ¬(φ→ χ) orM, w ⊩+ ¬(ψ → χ). □

The canonical model Mc = (W c, f c, V c+, V c−) of LC3 is the same as that of
LC, except thatW c is the set of all saturated sets in LC3 instead of LC. The proof
the truth lemma for LC3 is the same as that for LC. Now the completeness of LC3
follows immediately from the following lemma.

Lemma 11. The canonical model Mc of LC3 is in LC3.

Proof. It suffices to verity that (id), (wwt), (cmp), (em), (ar), and (dae) for Mc are
satisfied. The verification of (id), (wwt), and (cmp) is the same as that for Lemma 10.

For (em), we have f c(Γ, φ ∨ ψ) ̸= ∅
iff φ ∨ ψ → φ ∨ ψ ∈ Γ

iff (φ→ φ) ∨ (ψ → ψ) ∈ Γ (by EM and (rw))
iff φ→ φ ∈ Γ or ψ → ψ ∈ Γ (by (dc1))
iff f c(Γ, φ) ̸= ∅ or f c(Γ, ψ) ̸= ∅.
For (ar), suppose f c(Γ, φ ∨ ψ) ̸= f c(Γ, ψ), we prove f c(Γ, φ) ̸= ∅. By (em)

we have f c(Γ, φ ∨ ψ) ̸= ∅. If f c(Γ, ψ) = ∅, by (em) we have f c(Γ, φ) ̸= ∅. If
f c(Γ, ψ) ̸= ∅, by f c(Γ, φ ∨ ψ) ̸= f c(Γ, ψ) we have Γφ∨ψ ̸= Γψ. Suppose there
exists χ ∈ Γφ∨ψ but χ /∈ Γψ. It follows that φ ∨ ψ → γ ∈ Γ and ψ → γ /∈ Γ. By
f c(Γ, ψ) ̸= ∅, we have (ψ → γ) ∨ ¬(ψ → γ) ∈ Γ. By (dc) and ψ → γ /∈ Γ, we
have ¬(ψ → γ) ∈ Γ. It follows from AR1 that φ → φ ∈ Γ. Hence, f c(Γ, φ) ̸= ∅.
The case for χ ∈ Γψ and χ /∈ Γφ∨ψ can be obtained by AR2 in the same way.

For (dae), if f c(Γ, φ ∨ ψ) = ∅, then obviously f c(Γ, φ ∨ ψ) ⊆ JφK. Suppose
f c(Γ, φ ∨ ψ) ̸= ∅, f c(Γ, φ ∨ ψ) ⊈ JφK, and f c(Γ, φ ∨ ψ) ⊈ JψK, then we have
φ ∨ ψ → φ /∈ Γ and φ ∨ ψ → ψ /∈ Γ. It follows from wDAE and (rw) that
(φ∨ψ → χ) ≡ ((φ→ χ)∧(ψ → χ)) ∈ Γ for any formulaχ. If f c(Γ, φ)were empty,
we would have f c(Γ, φ∨ψ) = f c(Γ, ψ) by (ar). Then we have f c(Γ, φ∨ψ) ⊆ JψK,
contrary to our claim. Hence, both f c(Γ, φ) and f c(Γ, ψ) are not empty.

To prove f c(Γ, φ∨ψ) = f c(Γ, φ)∪f c(Γ, ψ), suppose∆ ∈ f c(Γ, φ)∪f c(Γ, ψ).
Then Γφ ⊆ ∆ or Γψ ⊆ ∆. Hence, for all χ ∈ L, if φ → χ ∈ Γ then χ ∈ ∆, or if
ψ → χ ∈ Γ then χ ∈ ∆ (using the inference from ∀xα ∨ ∀xβ to ∀x(α ∨ β)). Then
for all χ ∈ L, if φ → χ ∈ Γ and ψ → χ ∈ Γ then χ ∈ ∆ (using the equivalence
between α ∧ β ⊃ γ and (α ⊃ γ) ∨ (β ⊃ γ), where ⊃ is material implication). Since
(φ ∨ ψ → χ) ≡ ((φ → χ) ∧ (ψ → χ)) ∈ Γ, it follows that for all χ ∈ L, if
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φ∨ψ → χ ∈ Γ then χ ∈ ∆, i.e., for all χ ∈ Γφ∨ψ we have χ ∈ ∆. Then Γφ∨ψ ⊆ ∆

and thus∆ ∈ f c(Γ, φ ∨ ψ).
For the other direction, suppose ∆ /∈ f c(Γ, φ) ∪ f c(Γ, ψ). Then Γφ ⊈ ∆ and

Γψ ⊈ ∆, i.e., there exist α ∈ Γφ and β ∈ Γψ such that, α /∈ ∆ and β /∈ ∆. Then we
have φ → α ∈ Γ, ψ → β ∈ Γ, α /∈ ∆, and β /∈ ∆. Note that ∆ is a saturated set.
Then we have φ→ α ∨ β ∈ Γ, ψ → α ∨ β ∈ Γ, and α ∨ β /∈ ∆, using the rule RW.
Since (φ∨ψ → χ) ≡ ((φ→ χ)∧ (ψ → χ)) ∈ Γ, it follows that φ∨ψ → α∨β ∈ Γ

and α ∨ β /∈ ∆. Thus Γφ∨ψ ⊈ ∆, i.e., ∆ /∈ f c(Γ, φ ∨ ψ), as required. □

Theorem 11 (Completeness of LC3). For all Γ ∪ {φ} ⊆ L, if Γ ⊨LC3 φ then
Γ ⊢LC3 φ.

4 Related Works

There have been a lot of connexive logics in the literature. Before [16], connex-
ive logics are usually obtained by adding more constraints on the truth condition of
standard implications, including material implication, strict implication, and relevant
implication (e.g., [1, 11, 12]), which makes the semantics rather cumbersome and
unbalanced between truth and falsity conditions. Wansing’s logic C ([16]), based on
strict implication, tweaks instead the falsity condition of conditionals. In C, a condi-
tionalφ→ ψ is false iff all accessibleφ-worlds falsifyψ, whereas the standard falsity
condition is that some accessible φ-worlds falsify ψ. The connexive logics proposed
in [9], [5], and [18] are based on this falsity tweaking strategy. Apart from these two
strategies, Wen ([19]) proposed a semantics for connexive logic based on Stalnaker’s
semantics using partial selection functions, which does not change the truth or fal-
sity condition of conditionals but only puts some preconditions for conditionals. Our
logic mainly follows the truth tweaking strategy and in some sense generalizes the
semantics in [19].

4.1 Lewis’ doctored counterfactuals

Apart from the standard semantics for conditionals, Lewis ([8, p. 438]) had con-
sidered defining a counterfactual φ → ψ by 3φ ∧ (φ > ψ), where > is standard
Lewisian conditional implication. The semantics was later discussed in [10] and re-
discovered in [2]. For convenience, we denote by DC this new logic for condition-
als. It is easily seen that DC belongs to the truth tweaking strategy. As 3φ in basic
conditional logics can be defined by ¬(φ > ¬φ), it follows that φ → ψ is just
¬(φ > ¬φ) ∧ (φ > ψ). So Aristotle’s thesis is already “written” in DC. More
precisely, in DC φ → ψ is true at w iff all the closest φ-worlds are ψ-worlds and φ
is possible at w. The latter requirement in the framework of selection models means
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that f(w,φ) is not empty. So the truth condition of conditionals in our logics is es-
sentially the same as that in DC. The falsity condition of conditionals in our logics,
however, is different fromDC. When f(w,φ) is empty, our semantics does not make
φ→ ψ for any ψ to be false at w, whereas in DC all such conditionals are false, as it
is a two-valued logic. As a result, even φ → φ could be false in DC, whereas in our
logics, though φ → φ is not valid, it cannot be false as long as the model condition
(id) is imposed. This makes our semantics more intuitive than DC.

4.2 Wansing and Unterhuber’s connexive conditional logics

Following the falsity tweaking strategy, Wansing and Unterhuber ([18]) con-
structed several connexive logics by combing FDE with Chellas-Segerberg semantics
for conditionals. In their semantics, a conditional is true if its consequent is true at
all accessible worlds, and false if its consequent is false at all accessible worlds. To
obtain connexivity, the falsity condition of conditionals was modified from an exis-
tential condition in standard conditional logics to a universal one. Our logics are quite
different from their logics, which validate AT and BT, whereas our logics only val-
idate weakened forms of AT and BT. On the other hand, their logics do not validate
Unsat1, Unsat 2, and (w)AbT, whereas our logics except LC validate both Unsat1
and Unsat2, and a weakened form of AbT. The difference may be expected, as our
logics follow the truth tweaking strategy, whereas theirs follow the falsity tweaking
strategy. Another difference is that their logics are both paracomplete (invalidating
LEM) and paraconsistent (invalidating EFQ), whereas ours are only paracomplete.
This is also expected, as their logics are based on four-valued setting, whereas ours
are based on three-valued setting.

4.3 Stalnakerian connexive logics

CombingKleene’s three-valued logic and Stalnaker’s semantics for conditionals,
Wen ([19]) proposed a natural semantics for connexive logic. In the new semantics,
the selection function for selecting the closest world for evaluating conditionals can
be undefined. Truth and falsity conditions for conditionals are then supplemented
with a precondition that the selection function is defined. This partial function plus
precondition strategy not only balances truth and falsity conditions but also renders the
change of semantics of standard implication as minimal as possible. The prominent
difference between Wen’s logics and ours is that the former validate both BTr and
its converse wCEM, whereas our logics does not validate wCEM. Though wCEM
has been supported recently (see, e.g., [20] and [13]), it is not without controversy.
On the other hand, Wen’s logics lack ECW, as it requires the consequent to be false
in the closest world for a conditional to be false. If we take the alternative falsity
condition for conditionals discussed above, then our new semantics can be regarded
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as a generalization of Wen’s semantics.

5 Conclusion

We propose a new natural semantics for connexive logic by combing Kleene’s
three-valued logic and Lewis’ semantics for conditionals. In the new semantics for a
conditionalφ→ ψ to be true, we require not only the closestφ-worlds to beψ-worlds
but also the closest φ-worlds to exist. We give four axiomatic systems for difference
classes of models in the semantics and prove soundness and completeness of them.
Two axioms for weakened forms of AT and AbT we proposed are supposed to be new
in the literature. Our semantics mainly follows the truth tweaking strategy but is more
intuitive and in some sense generalizes the semantics in [19].
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Lewisian连接逻辑

黄晨 文学锋 B

摘 要

在连接逻辑中，有两个核心观点：第一，任何命题既不蕴涵其否定，也不被其

否定所蕴涵；第二，如果一个命题蕴涵 φ，则它不会蕴涵 φ的否定。而在经典逻辑

中，这两个观点均不成立，这使得为连接逻辑提供一种自然的语义面临困难。通

过结合 Kleene的三值逻辑与 Lewis的条件句逻辑，我们提出了一种自然的连接逻
辑语义。我们给出了四个公理系统，用于刻画新语义中不同类别的选择模型。我

们证明了这些逻辑的可靠性与完全性，并与一些常见的连接逻辑进行了比较。
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