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On Modal Logics of Subset Spaces*

Shengyang Zhong

Abstract. In modal logic, topological semantics is an intuitive and natural special case of
neighbourhood semantics. This paper stems from the observation that the satisfaction relation of
topological semantics applies to subset spaces which are more general than topological spaces.
The minimal modal logic which is strongly sound and complete with respect to the class of
subset spaces is found. Soundness and completeness results of some famous modal logics (e.g.
S4, S5 and Tr) with respect to various important classes of subset spaces (e.g. intersection
structures and complete fields of sets) are also proved. In the meantime, some known results,
e.g. the soundness and completeness of Tr with respect to the class of discrete topological
spaces, are proved directly using some modifications of the method of canonical model, without
a detour via neighbourhood semantics or relational semantics.

1 Introduction

Neighbourhood semantics is a general semantics of modal logic. ([4, 10]) In a
neighbourhood structure, to each possible world1 a set of neighbourhoods is assigned,
where a neighbourhood of the world is a set of possible worlds. And the only modal
law in the minimal modal logic of neighbourhood semantics is replacement of logical
equivalence. Neighbourhood semantics is a fine-grained tool in studyingmodal logic;
however, arguably it is also too abstract. There are two famous natural and intuitive
special cases of neighbourhood semantics. One is relational semantics. ([8]) In a
relational structure, to each possible world a singleton consisting of a set of possible
worlds is assigned. Hence a neighbourhood assignment boils down to a binary relation
between possible worlds which admits many intuitive interpretations from alethic,
epistemic, deontic and many other perspectives. The other is topological semantics.
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([9]) In a topological structure, to each possible world the set of its neighbourhoods
has to satisfy some constraints, one of which is that a possible world must be in each
one of its neighbourhoods. (For the details, please refer to Definition 1.28 in [10].)
These constraints make a neighbourhood assignment correspond to a topology on the
set of possible worlds. While relational semantics is widely used in philosophical
logic and computer science, topological semantics is mainly used in spatial logic and
epistemic logic. ([2])

In topological semantics, a formula 2φ is satisfied at a possible world, if and
only if there is a neighbourhood of the possible world such that φ is satisfied at each
possible world in the neighbourhood. We observe that this definition of the satisfac-
tion relation has nothing to do with the constraints on neighbourhood assignments
except for the one explicitly mentioned above.2 Hence it works for mathematical
structures more general than topological spaces, which turn out to be subset spaces.
A subset space consists of a non-empty set and a set of subsets of the set which here
I call open sets borrowing the terminology from topology. A topological space is a
subset space where the set of open sets includes the non-empty set itself and is closed
under finite intersection and arbitrary union. A subset space can also be considered as
a neighbourhood structure where the neighbourhoods of a possible world are the open
sets containing the world. Therefore, using the definition of the satisfaction relation
in topological semantics, modal language can in fact describe subset spaces; and the
resulting semantics is more general than topological semantics but is still a special
case of neighbourhood semantics.

In this paper, starting from the above observation, we investigate two basic ques-
tions about modal logics of subset spaces. First, we determine the minimal logic that
is strongly sound and complete with respect to the class of subset spaces. Without sur-
prise, this logic is stronger than the minimal logic of neighbourhood semantics and
weaker than that of topological semantics, and it is incomparable with that of rela-
tional semantics. Second, we establish soundness and completeness results between
some important classes of subset spaces (e.g. topological spaces, complete fields of
sets and power set algebra) and some famous modal logics (e.g. S4, S5 andTr). Some
of these results are already known. However, here we adapt the method of canonical
model in topological semantics and devise some modifications of it which are natural
and tailored to our semantics to directly prove the results in detail, instead of taking
detours to neighbourhood semantics or relational semantics. As a result, this paper
can be considered as a technical remark on topological semantics of modal logic.

To be more precise, first, based on the notion of (subset space) models, the se-
mantics notions of the satisfaction relation, semantics consequence and (subset space)
bisimulations are literally the same as those in topological semantics. What is impor-

2Arguably, this constraint should be satisfied, because a possible world should be “closed to” itself
and thus in any “neighbourhood” of it.
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tant here is that, after the notion of models behind is generalized, these semantics
notions still make sense. Second, the frame correspondence results in this paper are
in principle but not straightforward consequences of those in neighbourhood seman-
tics. Their specializations in topological semantics are also mentioned in the litera-
ture. ([2]) Here we prove them from scratch for the convenience of the readers to
get a feeling of how the semantics describes subset spaces. Third, the definition of
the canonical model is adapted from that in the topological semantics in such a way
that, for S4, the canonical model in the literature (e.g. [1]) is the union closure of the
canonical model here. Here is a point worth mentioning: from our abstract frame-
work, we see that union closure, which is the operation that generates a topology
from a basis of it, preserves the satisfaction relation. This point is bypassed in topo-
logical semantics because topological spaces are defined to be closed under arbitrary
union. Moreover, we find two modal logics and prove that they are strongly sound
and complete with respect to the class of subset spaces and that of intersection struc-
tures, respectively, which are both stronger than the minimal logic of neighbourhood
semantics and weaker than S4, the modal logic of topological spaces. Finally, the
method of using intersection-closed canonical model in proving completeness is not
widely mentioned and discussed in the literature. Here it is used to prove the com-
pleteness results for some important classes of mathematical structures like intersec-
tion structures, complete lattices of sets and complete fields of sets. In a word, we
think that the satisfaction relation in topological semantics is apt to describe subset
spaces, i.e. sets each equipped with a collection of its subsets, and we study this per
se in this paper. In contrast, neighbourhood semantics is too general to see exactly
how this satisfaction relation describes subset spaces, while topological semantics is
too specialized and thus bypasses some subtleties.

Recently modal logics of hypergraphs have been investigated by Ding, Liu and
Wang in their conference paper ([6]) and its extended journal version ([7]). A hy-
pergraph is just a subset space where the empty subset is always excluded, and the
satisfaction relation for the unary modal operator in their paper is the same as that in
this paper. Hence their work is closely related to ours. However, there are also some
differences between the two works. The first difference is about motivation. Their
motivation is from weak aggregative modal logic and epistemic logic concerning lo-
cal reasoning, evidence or “someone knows”. Thus they use the modal language to
describe some combinatorial properties of hypergraphs such as n-boundedness and
being non-n-colorable. In this paper, what we hope to describe is some important
subset spaces such as intersection structures and complete fields of sets. The second
difference is about formal language. The language in this paper is not strong enough
to express the combinatorial properties in their paper. Thus the formal language in
their paper has in addition the universal modality. The third difference is about the
definition of canonical models. Due to the strong expressive power of their language
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and the combinatorial properties under study, canonical models in their paper are de-
fined in amuchmore subtle way. Roughly speaking, in their completeness proofs they
hope that canonical models do not contain too many subsets of the underlying sets.
In contrast, in this paper the subset spaces under consideration satisfy many closure
conditions, so what we do here is to add enough subsets to canonical models while
preserving the satisfaction relation. In particular, in their papers they prove that the
logic MT4 is strongly sound and complete with respect to the class of hypergraphs,
but the language has the universal modality, the logic has axioms characterizing the
universal modality and the canonical model contains much less subsets than that in
this paper.

The rest of this paper is organized as follows. In Section 2 we set up the formal
language, modal logics and formal semantics used in this paper. Section 3 introduces
the notion of subset space bisimulations by adapting the notion of topological bisim-
ulations, which is a useful tool in proving completeness. In Section 4 we prove four
correspondence results to exemplify the expressive power of our semantics and to fa-
cilitate the proofs in the following section. Section 5 proves some soundness theorems
using the results in the previous section. In Section 6 we prove some completeness
theorems using the canonical models and some simple transformations of them. Sec-
tion 7 introduces intersection-closed canonical models and use them to prove some
completeness theorems of modal logics containing the axiom 2p ∧ 2q → 2(p ∧ q).
Section 8 summarizes the results proved in this paper.

2 Basic Definitions

2.1 Syntax

In this paper, we fix a countable set P = {pi | i ∈ ω} as the set of proposi-
tional letters. We will consider only one formal language, that is, the standard modal
language with exactly one unary modal operator 2.

Definition 1 (Formula). The notion of formulas is defined in the Backus-Naur form
as follows:

φ ::= pi | ¬φ | (φ ∧ φ) | 2φ, i ∈ ω

Denote the set of formulas by Form.

The propositional connectives ⊥, ∨, → and ↔ and the modal operator 3 are
defined as usual. We use p, q, etc. as metavariables of propositional letters. Moreover,
we may omit the parentheses according to the usual conventions.

The following are the modal formulas studied in this paper; they and their names
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are common in the literature:

(M) 2(p ∧ q) → 2p ∧2q (C) 2p ∧2q → 2(p ∧ q)
(T ) 2p→ p (Tr) p→ 2p

(4) 2p→ 22p (5) 3p→ 23p

The following are the rules studied in this paper; they and their names are com-
mon in the literature:

(MP) given φ and φ→ ψ, prove ψ;
(US) given φ, prove φσ, where φσ is the (uniform) substitution instance of φ under

the substitution σ : P → Form;
(RM) given φ→ ψ, prove 2φ→ 2ψ;
(RN) given φ, prove 2φ.

Definition 2 (Modal Logic). Amodal logic is a subset of Form containing all propo-
sitional tautologies and closed under (MP) and (US).

We will focus on the following five modal logics, where the latter three are com-
mon in the literature while the former two may not:

1. S is the smallest modal logic containing the modal formulas (M), (T ) and (4)
and closed under (RM);

2. S+ is the smallest modal logic containing the modal formulas (M), (T ) and
(4), as well as (C), and closed under (RM);

3. S4 is the smallest modal logic containing the modal formulas (M), (T ) and
(4), as well as (C), and closed under (RM), as well as (RN);

4. S5 is the smallest modal logic containing the modal formulas (M), (T ) and
(4), as well as (C) and (5), and closed under (RM), as well as (RN);

5. Tr is the smallest modal logic containing the modal formulas (M), (T ) and
(4), as well as (C), (5) and (Tr), and closed under (RM), as well as (RN).

Since any (set-theoretic) intersection ofmodal logics is amodal logic, theword “small-
est” above means the same as “intersection of”.

Our definitions of S4, S5 and Tr are different but equivalent to the usual defini-
tions in the literature. An analysis can be found in Sections 1.2 and 1.3 in [11].

Definition 3 (Extensions ofModal Logics). LetΛ andΛ′ be twomodal logics defined
by characteristic formulas and rules. Λ′ is an extension of Λ, denoted by Λ ⊑ Λ′, if
every characteristic formula in Λ is in Λ′ and Λ′ is closed under every characteristic
rule under which Λ is closed.

Remark 4. Λ ⊑ Λ′ implies Λ ⊆ Λ′, but not vice versa.

Definition 5. Let Λ be a modal logic and Γ ∪ {φ} ⊆ Form.
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1. φ is a syntactic consequence of Γ in Λ, denoted by Γ ⊢Λ φ, if there is a finite
set Γ′ ⊆ Γ such that

∧
Γ′ → φ ∈ Λ.

We write ⊢Λ φ for ∅ ⊢Λ φ.
2. Γ is Λ-consistent, if Γ ̸⊢Λ ⊥.
3. Γ is a maximal Λ-consistent set (Λ-MCS), if Γ is Λ-consistent and any proper

superset of Γ is not Λ-consistent.

For a modal logicΛ, the notions of syntactic consequence inΛ, Λ-consistent and
maximal Λ-consistent set are the same as usual, e.g. Definitions 4.4 and 4.15 in [3].
Hence Proposition 4.16 and Lemma 4.17 in [3] can be applied in this paper, since they
do not involve modal reasoning at all.

2.2 Semantics

We use subset spaces to interpret our formal language.

Definition 6 (Subset Space). A subset space is an ordered pairH = (W,µ), where

1. W is a non-empty set;
2. µ ⊆ ℘(W ), where ℘ is the power set operator.

Then we can define the notion of a (subset space) model.

Definition 7 ((Subset Space)Model). A (subset space) model is an ordered pairM =

(H, V ), where

1. H = (W,µ) is a subset space;
2. V is a function from P to ℘(W ).

Next we define the relation of satisfaction.

Definition 8 (Satisfaction). Let M = (H, V ) be a model, where H = (W,µ), w ∈
W and φ ∈ Form, we define the satisfaction relation, denoted by M, w ⊩ φ, by
recursion as follows:

• M, w ⊩ pi, if and only if w ∈ V (pi), for each i ∈ ω;
• M, w ⊩ ¬φ, if and only ifM, w ̸⊩ φ;
• M, w ⊩ φ ∧ ψ, if and only ifM, w ⊩ φ andM, w ⊩ ψ;
• M, w ⊩ 2φ, if and only if there is a U ∈ µ such that w ∈ U and, for each
u ∈ U ,M, u ⊩ φ.

For Γ ⊆ Form, we writeM, w ⊩ Γ, ifM, w ⊩ φ is true for each φ ∈ Γ.
Moreover, we denote by ∥φ∥M the set {w ∈ W | M, w ⊩ φ}. When M is

clear from the context, we may omit the subscript. Then M, w ⊩ 2φ, if and only if
there is a U ∈ µ such that w ∈ U and U ⊆ ∥φ∥.
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Remark 9. The satisfaction relation defined above is the same as that in the topolog-
ical semantics of modal logic. Behind this coincidence lies the observation that the
definition of this relation still make sense even if the mathematical structures involved
are not topological spaces.

Remark 10. By definition M, w ⊩ 3φ, if and only if, for each U ∈ µ, if w ∈ U ,
then there is a u ∈ U such that M, u ⊩ φ; in other words, if and only if, for each
U ∈ µ, if w ∈ U , then U ∩ ∥φ∥ ̸= ∅.

Now the notions of validity and logical consequence can be defined in the usual
pattern.

Definition 11 (Validity). LetH = (W,µ) be a subset space,H a class of subset spaces
and φ ∈ Form.

1. φ is valid on H, denoted as H ⊩ φ, if (H, V ), w ⊩ φ is true for any w ∈ W

and function V from P to ℘(W ).
2. φ is valid on H, ifH ⊩ φ is true for eachH ∈ H.

Definition 12 (Logical Consequence). LetH be a class of subset spaces andΓ∪{φ} ⊆
Form. φ is a logical consequence of Γ with respect to H, denoted by Γ ⊩H φ, if,
for any model M = ((W,µ), V ) with (W,µ) ∈ H and w ∈ W , M, w ⊩ Γ implies
M, w ⊩ φ.

Classes of subset spaces are usually specified by properties of subset spaces. We
mainly focus on the following properties of a subset spaceH = (W,µ):

(Bound) ∅ ∈ µ andW ∈ µ

(2
⋃

) for any U, V ∈ µ,U ∪ V ∈ µ

(ω
⋃

) for any {Ui | i ∈ ω} ⊆ µ,
⋃
i∈ω

Ui ∈ µ

(
⋃

) for any set I and {Ui | i ∈ I} ⊆ µ,
⋃
i∈I

Ui ∈ µ

(2
⋂

) for any U, V ∈ µ,U ∩ V ∈ µ

(ω
⋂

) for any {Ui | i ∈ ω} ⊆ µ,
⋂
i∈ω

Ui ∈ µ

(
⋂

) for any non-empty set I and {Ui | i ∈ I} ⊆ µ,
⋂
i∈I

Ui ∈ µ

(Com) for any U ∈ µ,W \ U ∈ µ

(Up) for any U, V ∈ µ, if U ∈ µ and U ⊆ V ⊆W , then V ∈ µ

(Down) for any U, V ∈ µ, if U ∈ µ and V ⊆ U ⊆W , thenV ∈ µ



8 Studies in Logic, Vol. 18, No. 3 (2025)

(Pow) µ = ℘(W )

Some classes of subset spaces are well-known in the literature ([5]):

Definition 13. LetH = (W,µ) be a subset space.

1. H is an intersection structure, if µ satisfies (
⋂
).

2. H is a topped intersection structure, if µ containsW and satisfies (
⋂
).

3. H is a topological space, if µ satisfies (Bound), (2
⋂
) and (

⋃
).

4. H is a discrete topological space, if µ = ℘(W ).

Moreover, here we abuse the terminologies a bit; we call a subset space H =

(W,µ) a kind of algebraic structure, if µ is the underlying set of an algebraic structure
of this kind.

1. H is a lattice of sets, if µ satisfies (Bound), (2
⋂
) and (2

⋃
).

2. H is a σ-lattice of sets, if µ satisfies (Bound), (ω
⋂
) and (ω

⋃
).

3. H is a complete lattice of sets/Alexandroff topological space, if µ satisfies
(Bound), (

⋂
) and (

⋃
).

4. H is a field of sets, if µ satisfies (Bound), (2
⋂
), (2

⋃
) and (Com).

5. H is a σ-field of sets, if µ satisfies (Bound), (ω
⋂
), (ω

⋃
) and (Com).

6. H is a complete field of sets, if µ satisfies (Bound), (
⋂
), (

⋃
) and (Com).

7. H is a power set algebra, if µ = ℘(W ).

3 Subset Space Bisimulation

Similar to the satisfaction relation, the notion of bisimulation in topological se-
mantics of modal logic also makes sense even if the mathematical structures involved
are not topological spaces. Hence we have the following definition of (subset space)
bisimulation:

Definition 14 ((Subset Space) Bisimulation). LetM = (W,µ, V ) andM′ = (W ′, µ′,

V ′) be twomodels. A (subset space) bisimulation betweenM andM′ is a non-empty
relation Z ⊆W ×W ′ such that all of the following are true:

(Atom) for any i ∈ ω, w ∈W and w′ ∈W ′ such that wZw′ , w ∈ V (pi) if
and only if w′ ∈ V (pi);

(Forth) for any w ∈ W and w′ ∈ W ′ such that wZw′, for each U ∈ µ,
if w ∈ U , then there is a U ′ ∈ µ′ such that w′ ∈ U ′ and, for each
u′ ∈ U ′, there is a u ∈ U such that uZu′;

(Back) for any w ∈ W and w′ ∈ W ′ such that wZw′, for each U ′ ∈ µ′,
if w′ ∈ U ′, then there is a U ∈ µ such that w ∈ U and, for each
u ∈ U , there is a u′ ∈ U ′ such that uZu′.

Two models are bisimular, if there is a bisimulation between them.
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A significance of bisimulation is that it preserves the satisfaction relation.

Theorem 15. Let M = (W,µ, V ) and M′ = (W ′, µ′, V ′) be two models and Z ⊆
W ×W ′ a bisimulation. For any w ∈ W and w′ ∈ W ′ such that wZw′, for each
φ ∈ Form, M, w ⊩ φ⇔ M′, w′ ⊩ φ.

Proof. We use induction on the structure of formulas. In the base step, we consider
propositional letters, and the result in this case follows directly from (Atom) in the
definition. In the induction step, we consider three cases. The cases for negation and
conjunction follow from the induction hypothesis easily. Hence we only consider
the case when φ is 2ψ and the induction hypothesis is true for ψ. Let w ∈ W and
w′ ∈W ′ satisfy wZw′.

First assume that M, w ⊩ 2ψ. Then there is a U ∈ µ such that w ∈ U and
M, u ⊩ ψ is true for each u ∈ U . By (Forth) there is a U ′ ∈ µ′ such that w′ ∈ U ′

and, for each u′ ∈ U ′, there is a u ∈ U such that uZu′. Hence, for each u′ ∈ U ′,
there is a u ∈ U such that uZu′, thenM, u ⊩ ψ and thus by the induction hypothesis
M′, u′ ⊩ ψ. WhenceU ′ is such thatw′ ∈ U ′ andM′, u′ ⊩ ψ is true for each u′ ∈ U ′.
Therefore,M′, u′ ⊩ 2ψ.

Second assume that M′, w′ ⊩ 2ψ. Symmetrical to the above reasoning, using
(Back) instead of (Forth), we can show thatM, w ⊩ 2ψ. □

The following is a useful construction on subset spaces which results in a model
bisimular to the original one.

Definition 16. LetH = (W,µ) be a subset space andM = (H, V ) a model.

1. µ∗ def
= {

⋃
U | U ⊆ µ} is called the union closure of µ.

2. H∗ def
= (H,µ∗) is called the union closure ofH.

3. M∗ def
= (H∗, V ) = (H,µ∗, V ) is called the union closure ofM.

Remark 17. For each subset spaceH = (W,µ),H∗ satisfies (
⋃
) and µ ⊆ µ∗.

Proposition 18. Let M = (W,µ, V ) be a model and M∗ = (W,µ∗, V ) its union
closure. idW is a bisimulation between M and M∗.

Proof. For (Atom), it is obviously true.
For (Forth), assume that w ∈W and U ∈ µ such that w ∈ U . Consider U itself.

First, obviously w ∈ U . Second, since U ∈ µ, U =
⋃
{U} ∈ µ∗. Third, for each

u ∈ U , u ∈ U and (u, u) ∈ idW .
For (Back), assume that w ∈ W and U ′ ∈ µ∗ such that w ∈ U ′. By definition

there is a ρ ⊆ µ such that U ′ =
⋃
ρ. Sincew ∈ U ′, there is a U ∈ ρ such thatw ∈ U .

Consider this U . First, obviously w ∈ U . Second, since ρ ⊆ µ, U ∈ µ. Third, for
each u ∈ U , u ∈ U ⊆

⋃
ρ = U ′ and (u, u) ∈ idW . □
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4 Four Correspondence Results

In this section, we prove four correspondence results to exemplify the expressive
power of our semantics and to facilitate the proofs of soundness theorems afterwards.

Proposition 19. Let H = (W,µ) be a subset space. H ⊩ 2p ∧ 2q → 2(p ∧ q), if
and only if the following is true:

(Cap) for any U, V ∈ µ, U ∩ V =
⋃
{T ∈ µ | T ⊆ U ∩ V }

Proof. The “if” part: Assume that (Cap) is true in H. Let V : P → ℘(W ) be a
function and w ∈ W be such that (H, V ), w ⊩ 2p ∧ 2q. Then there are Up, Uq ∈ µ

such that w ∈ Up, Up ⊆ V (p), w ∈ Uq and Uq ⊆ V (q). Since w ∈ Up ∩ Uq, By
(Cap) w ∈

⋃
{T ∈ µ | T ⊆ Up ∩ Uq}, so there is a V ∈ µ such that w ∈ V and

V ⊆ Up ∩ Uq ⊆ V (p) ∩ V (q) = ∥p ∧ q∥. Therefore, (H, V ), w ⊩ 2(p ∧ q).
The “only if” part: Assume that H ⊩ 2p ∧ 2q → 2(p ∧ q). Let S, T ∈ µ

be arbitrary. The aim is to show that S ∩ T =
⋃
{U ∈ µ | U ⊆ S ∩ T}. The “⊇”

part is obvious. For the “⊆” part, let w ∈ S ∩ T be arbitrary. Let V : P → Form

be a function such that V (p) = S and V (q) = T . Then (H, V ), w ⊩ 2p ∧ 2q. By
the assumption (H, V ), w ⊩ 2(p ∧ q). Hence there is a U ∈ µ such that w ∈ U and
U ⊆ ∥p ∧ q∥ = V (p) ∩ V (q) = S ∩ T , so w ∈

⋃
{U ∈ µ | U ⊆ S ∩ T}. Therefore,

S ∩ T ⊆
⋃
{U ∈ µ | U ⊆ S ∩ T}. □

Proposition 20. Let H = (W,µ) be a subset space. H ⊩ p → 2p, if and only if the
following is true:

(TR) for each w ∈W , {w} ∈ µ

Proof. The “if” part: Assume that (TR) is true in H. Let V : P → ℘(W ) be a
function and w ∈ W be such that (H, V ), w ⊩ p. Then by (TR) {w} is such that
w ∈ {w}, {w} ∈ µ and {w} ⊆ V (p). Therefore, (H, V ), w ⊩ 2p.

The “only if” part: Assume that H ⊩ p → 2p. Let w ∈ W be arbitrary. Also
let V : P → Form be a function such that V (p) = {w}. Then (H, V ), w ⊩ p.
By the assumption (H, V ), w ⊩ 2p. Hence there is a U ∈ µ such that w ∈ U and
U ⊆ V (p) = {w}. It follows that {w} = U ∈ µ. □

Proposition 21. Let H = (W,µ) be a subset space. H ⊩ 3p→ 23p, if and only if
the following is true:

(UCom) for each π ⊆ µ,W \
⋃
π =

⋃
{U ∈ µ | U ⊆W \

⋃
π}

Proof. The “if” part: Assume that (UCom) is true inH. Let V : P → ℘(W ) be a
function and w ∈ W be such that (H, V ), w ⊩ 3p. By Remark 10, for each U ∈ µ,
w ∈ U implies thatU∩V (p) ̸= ∅. Sincew ∈

⋂
{W \U | U ∈ µ and w ̸∈ U} =W \
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{U ∈ µ | w ̸∈ U}, by (UCom) w ∈

⋃{
T ∈ µ | T ⊆ W \

⋃
{U ∈ µ | w ̸∈ U}

}
.

Hence there is a T ∈ µ such that w ∈ T and T ⊆ W \
⋃
{U ∈ µ | w ̸∈ U} =⋂

{W \ U | U ∈ µ and w ̸∈ U}.
We finish the proof by showing that, for each t ∈ T , (H, V ), t ⊩ 3p. Let

t ∈ T and S ∈ µ such that t ∈ S. Then t ∈
⋂
{W \ U | U ∈ µ and w ̸∈ U}.

Hence w ∈ S; otherwise, we would have t ∈ W \ S, contradicting that t ∈ S.
Since (H, V ), w ⊩ 3p, by Remark 10 S ∩ V (p) ̸= ∅. Therefore, for each t ∈ T ,
(H, V ), t ⊩ 3p.

The “only if” part: Let π ⊆ µ be arbitrary. Assume thatW \
⋃
π ̸=

⋃
{U ∈

µ | U ⊆ W \
⋃
π}. ThenW \

⋃
π ̸⊆

⋃
{U ∈ µ | U ⊆ W \

⋃
π}. Hence there is

a w ∈ W \
⋃
π such that w ̸∈

⋃
{U ∈ µ | U ⊆ W \

⋃
π}. Let V : P → ℘(W ) be

a function such that V (p) = W \
⋃
π. On the one hand, for each U ∈ µ, if w ∈ U ,

w ∈ U ∩ V (p), so U ∩ V (p) ̸= ∅. By Remark 10 (H, V ), w ⊩ 3p.
On the other hand, let S ∈ µ be arbitrary. Assume that w ∈ S. Since w ̸∈⋃

{U ∈ µ | U ⊆W \
⋃
π}, S ̸⊆W \

⋃
π, so S ∩

⋃
π ̸= ∅. Hence there is a T ∈ π

and u ∈W such that u ∈ S ∩T . By the definition of V T ∩V (p) = ∅. Since u ∈ T

and T ∈ µ, by Remark 10 (H, V ), u ̸⊩ 3p. Since u ∈ S, S ̸⊆ ∥3p∥. Since S is
arbitrary, (H, V ), w ̸⊩ 23p.

Therefore,H ̸⊩ 3p→ 23p. □

Proposition 22. Let H = (W,µ) be a subset space. The following are equivalent:

(i) for each φ ∈ Form, H ⊩ φ implies H ⊩ 2φ;
(ii) the following is true:

(Full) W =
⋃
µ

Proof. From (i) to (ii): By definition H ⊩ p ∨ ¬p. By (i) H ⊩ 2(p ∨ ¬p). Then,
for any w ∈ W and function V : P → ℘(W ), (H, V ), w ⊩ 2(p ∨ ¬p), so there is a
U ∈ µ such that w ∈ U and U ⊆ ∥p ∨ ¬p∥ and thus w ∈

⋃
µ. Hence W ⊆

⋃
µ.⋃

µ ⊆W is obvious, so (Full) is true.
From (ii) to (i): Assume that H ⊩ φ. Let V : P → Form be a function and

w ∈W . By (ii) there is aU ∈ µ such thatw ∈ U . For each u ∈ U , by the assumption
(H, V ), u ⊩ φ. By definition (H, V ), w ⊩ 2φ. Since both V and w are arbitrary, by
definitionH ⊩ 2φ. □

5 Soundness Theorems

In this section, we prove soundness theorems for some modal logics.

Definition 23 (Soundness). Let Λ be a modal logic and H a class of subset spaces.

1. Λ is weakly sound with respect to H, if H ⊩ φ is true for each φ ∈ Λ.
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2. Λ is strongly sound with respect to H, if, for any Γ ∪ {φ} ⊆ Form, Γ ⊢Λ φ

implies that Γ ⊩H φ.

Remark 24.

1. According to the definition of syntactic consequence, weak soundness and strong
soundness are equivalent. In the following, we only discuss weak soundness,
whose definition is simpler.

2. By the definition of the satisfaction relation each propositional tautology is
valid on all subset spaces, and both (MP) and (US) can be proved using the
usual method to preserve validity on subset spaces. Therefore, to prove sound-
ness, we only need to show that the modal axioms are valid and the modal rules
preserve validity on the subset spaces under concern.

3. Let Λ be a modal logic and H and H′ two classes of subset spaces. If H ⊆ H′

and Λ is sound with respect to H′, then Λ is sound with respect to H.

Theorem 25. S is sound with respect to the class of subset spaces.

Proof. By Remark 24 it suffices to show that (M), (T ) and (4) are valid and that
(RM) preserves validity. Arbitrarily we take a subset space H = (W,µ), a function
V : P → Form and w ∈W .

• For (M), assume that (H, V ), w ⊩ 2(p ∧ q). Then there is a U ∈ µ such
that w ∈ U and U ⊆ ∥p ∧ q∥ = V (p) ∩ V (q). Hence U ∈ µ is such that
w ∈ U , U ⊆ V (p) and U ⊆ V (q). It follows that (H, V ), w ⊩ 2p and
(H, V ), w ⊩ 2q, so (H, V ), w ⊩ 2p ∧2q.

• For (T ), assume that (H, V ), w ⊩ 2p. Then there is a U ∈ µ such that w ∈ U

and U ⊆ V (p). Hence w ∈ V (p), so (H, V ), w ⊩ p.
• For (4), assume that (H, V ), w ⊩ 2p. Then there is a U ∈ µ such that w ∈ U

and U ⊆ V (p). Note that U ⊆ ∥2p∥: for each u ∈ U , U ∈ µ is such that
u ∈ U and U ⊆ V (p), so (H, V ), u ⊩ 2p. Hence (H, V ), w ⊩ 22p.

• For (RM), assume that H ⊩ φ → ψ and (H, V ), w ⊩ 2φ. Then there is a
U ∈ µ such thatw ∈ U and U ⊆ ∥φ∥. SinceH ⊩ φ→ ψ, ∥φ∥ ⊆ ∥ψ∥. Hence
U ∈ µ is such that w ∈ U and U ⊆ ∥ψ∥. Therefore, (H, V ), w ⊩ 2ψ. Since
V and w are arbitrary,H ⊩ 2φ→ 2ψ.

□

Theorem 26.

1. S+ is sound with respect to the class of subset spaces satisfying (Cap).
2. S+ is sound with respect to the class of intersection structures.

Proof. For Item 1, by Remark 24 and the proof of Theorem 25 it suffices to show
that (C) is valid, which follows from Proposition 19.
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Item 2 follows from Remark 24 and Item 1, just noting that (Cap) follows from
(
⋂
): for any S, T ∈ µ, S ∩ T ∈ µ by (

⋂
), so S ∩ T =

⋃
{U ∈ µ | U ⊆ S ∩ T}. □

Theorem 27.

1. S4 is sound with respect to the class of subset spaces satisfying (Cap) and
(Full).

2. S4 is sound with respect to the class of topped intersection structures.
3. S4 is sound with respect to the class of lattices of sets.
4. S4 is sound with respect to the class of σ-lattices of sets.
5. S4 is sound with respect to the class of topological spaces.
6. S4 is sound with respect to the class of complete lattices of sets.

Proof. For Item 1, by Remark 24 and the proof of Theorem 26 it suffices to show
that (RN) preserves validity in subset spaces satisfying (Full), which follows from
Proposition 22.

Both Item 2 and Item 3 follows from Remark 24 and Item 1 just noting that each
topped intersection structure and each lattice of sets satisfy (Cap) and (Full). The
other items follow from Remark 24, Item 2 and Item 3. □

Theorem 28.

1. S5 is sound with respect to the class of subset spaces satisfying (Cap), (Full)
and (UCom).

2. S5 is sound with respect to the class of complete fields of sets.

Proof. For Item 1, byRemark 24 and the proof of Theorem 27 it suffices to show that
(5) is validity in subset spaces satisfying (UCom), which follows from Proposition
21.

Item 2 follows from Item 1, just noting that (UCom) holds in complete fields
of sets: Let (W,µ) be a complete field of sets. For each π ⊆ µ, by completeness⋃
π ∈ µ, then by (Com)W\

⋃
π ∈ µ and thusW\

⋃
π =

⋃
{U ∈ µ | U ⊆W\

⋃
π}.

□

Theorem 29.

1. Tr is sound with respect to the class of subset spaces satisfying (TR).
2. Tr is sound with respect to the class of discrete topological spaces/power set

algebras.

Proof. For Item 1, by Remark 24 and the proof of Theorem 28 it suffices to show
that (Tr) is validity in subset spaces satisfying (TR), which follows from Proposition
20.

Item 2 follows from Remark 24 and Item 1, just noting that every power set
algebra satisfies (TR). □
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We end this section with a negative result about S5. While by Theorem 27 S4
is sound with respect to the class of lattices of sets, that of σ-lattices of sets and that
of complete lattices of sets, S5 is no longer sound when the class of complete fields
of sets is extended a bit to that of σ-fields of sets. The problem is that 3p → 23p

is no longer valid. By Proposition 21 this formula corresponds to (UCom). Roughly
speaking, (UCom) requires that complements of arbitrary unions of elements of µ, not
just complements of elements of µ, are in µ; and this fails when µ is not closed under
arbitrary union. The proof of the following proposition gives a concrete counter-
model.

Proposition 30. (5), i.e.3p→ 23p, is not valid in a σ-field of sets. Thus, S5 is not
sound with respect to the class of σ-fields of sets.

Proof. ConsiderH = (R, µ), where

1. R is the set of real numbers;
2. µ = {U ⊆ R | U ∈ CPR or R \ U ∈ CPR}, where CPR = {U ⊆ R+ | |U | ≤

ℵ0} and |U | denotes the cardinality of U .

First, we verify that H is a σ-algebra. Since {1} ∈ CPR, {1} ∈ µ and thus
µ ̸= ∅. By definition µ is closed under complement. It remains to show that µ is
closed under countable intersection.

Let {Ui | i ∈ ω} ⊆ µ. We consider two cases.

• Case 1: There is an i∗ ∈ ω such that Ui∗ ∈ CPR.
Then

⋂
i∈ω Ui ⊆ Ui∗ and thus

⋂
i∈ω Ui ∈ CPR. Hence

⋂
i∈ω Ui ∈ µ.

• Case 2: For each i ∈ ω, R \ Ui ∈ CPR.
Then

⋂
i∈ω Ui = R \ (R \

⋂
i∈ω Ui) = R \

⋃
i∈ω(R \Ui). Since R \Ui ∈ CPR

is true for each i ∈ ω,
⋃

i∈ω(R \ Ui) ∈ CPR, so
⋂

i∈ω Ui ∈ µ.

In both cases,
⋂

i∈ω Ui ∈ µ.
Second we show that (5), i.e.3p→ 23p, is not valid inH. Let V : P → Form

be a function such that V (p) = {r ∈ R | r ≤ 0}. Consider 0. Note that (H, V ), 0 ⊩ p

by definition.
Observe that (H, V ), 0 ⊩ 3p: LetU ∈ µ be such that 0 ∈ U . Then 0 ∈ U∩V (p)

and thus U ∩ V (p) ̸= ∅. Hence (H, V ), 0 ⊩ 3p.
Observe that (H, V ), 0 ̸⊩ 23p: Let U ∈ µ be such that 0 ∈ U . Then U ̸∈ CPR,

so R \ U ∈ CPR by the definition of µ. Since |R+| > ℵ0, there is an r ∈ R+ such
that r ∈ U . Since r ∈ R+, (H, V ), r ̸⊩ p. By definition {r} ∈ CPR ⊆ µ, r ∈ {r}
and {r} ∩ V (p) = ∅. Hence (H, V ), r ̸⊩ 3p. Since r ∈ U and U is arbitrary,
(H, V ), 0 ̸⊩ 23p.

Therefore,H ̸⊩ 3p→ 23p. □
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6 Completeness via Canonical Models

In this section, we prove completeness theorems for some modal logics.

Definition 31 (Completeness). LetΛ be a modal logic andH a class of subset spaces.
Λ is strongly completewith respect toH, if, for anyΓ∪{φ} ⊆ Form, Γ ⊩H φ implies
that Γ ⊢Λ φ.

Remark 32. Let Λ be a modal logic and H and H′ two classes of subset spaces. If
H ⊆ H′ and Λ is strongly complete with respect to H, then Λ is strongly complete
with respect to H′.

By the usual reasoning, to show that Λ is strongly complete with respect to H,
it suffices to show that every Λ-MCS is satisfied at a point in a model based on an
element ofH. The most important technique is the so-called canonical model, which
is adapted from topological semantics ([1]) and introduced as follows:

Definition 33. Let Λ be a modal logic. Its canonical subset space HΛ is an ordered
pair (WΛ, µΛ), where

1. WΛ is the set of Λ-MCSs;
2. µΛ = {

︷︸︸︷
2φ | φ ∈ Form}, where

︷︸︸︷
φ = {Γ ∈ WΛ | φ ∈ Γ} for each

φ ∈ Form.

Its canonical model MΛ is an ordered pair (HΛ, V Λ), where

1. HΛ is the canonical subset space of Λ;
2. V Λ(pi) =

︷︸︸︷
pi , for each i ∈ ω.

One key feature of the canonical model is manifested as the Truth Lemma. To
prove the Truth Lemma, we need the Existence Lemma.

Lemma 34 (Existence Lemma). Let Λ be a modal logic such that S ⊑ Λ. For any
Λ-MCS Γ and φ ∈ Form, the following are equivalent:

(i) 2φ ∈ Γ;
(ii) there is a θ ∈ Form such that2θ ∈ Γ and, for anyΛ-MCS∆,2θ ∈ ∆ implies

φ ∈ ∆.

In our notation, (ii) can also be written as: there is a θ ∈ Form such that Γ ∈
︷︸︸︷
2θ

and, for each ∆ ∈
︷︸︸︷
2θ , φ ∈ ∆.

Proof. From (i) to (ii): Assume that2φ ∈ Γ. Thenφ ∈ Form is such that2φ ∈ Γ

and, for any Λ-MCS ∆, if 2φ ∈ ∆, then φ ∈ ∆ by the properties of Λ-MCSs and
the fact that 2φ→ φ ∈ S ⊆ Λ ⊆ ∆.

From (ii) to (i): Assume that (ii) is true.
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Note that ⊢Λ ¬(2θ ∧ ¬φ): Suppose (towards a contradiction) that ̸⊢Λ ¬(2θ ∧
¬φ). Then 2θ ∧ ¬φ is Λ-consistent. By Lindenbaum’s Lemma (Lemma 4.17 in
[3]) there is a Λ-MCS ∆ such that 2θ ∧ ¬φ ∈ ∆. Hence 2θ ∈ ∆ and φ ̸∈ ∆,
contradicting (ii).

Then ⊢Λ 2θ → φ. Since S ⊑ Λ, by (RM) ⊢Λ 22θ → 2φ. Moreover,
⊢Λ 2θ → 22θ, so ⊢Λ 2θ → 2φ. Since 2θ ∈ Γ, 2φ ∈ Γ. □

Now we prove the Truth Lemma.

Lemma 35 (Truth Lemma). Let Λ be a modal logic such that S ⊑ Λ. For any
Γ ∈WΛ and φ ∈ Form, MΛ,Γ ⊩ φ⇔ φ ∈ Γ.

Proof. We use induction on the structure of formulas. In the base step, we consider
propositional letters, and the result in this case follows directly from the definition. In
the induction step, we consider three cases. The cases for negation and conjunction
follow from the induction hypothesis easily. Hence we only consider the case when
φ is 2ψ and the induction hypothesis is true for ψ.

First assume that MΛ,Γ ⊩ 2ψ. Then there is a U ∈ µΛ such that Γ ∈ U and,
for each∆ ∈ U ,MΛ,∆ ⊩ ψ. By definition there is a θ ∈ Form such thatU =

︷︸︸︷
2θ .

Then by the induction hypothesis, for each ∆ ∈
︷︸︸︷
2θ , ψ ∈ ∆. By Existence Lemma

2ψ ∈ Γ.
Second assume that 2ψ ∈ Γ. By Existence Lemma there is a θ ∈ Form such

that Γ ∈
︷︸︸︷
2θ and, for each∆ ∈

︷︸︸︷
2θ , ψ ∈ ∆. By definition

︷︸︸︷
2θ ∈ µΛ. Then by the

induction hypothesis, for each∆ ∈
︷︸︸︷
2θ ,MΛ,∆ ⊩ ψ. HenceMΛ,Γ ⊩ 2ψ. □

Now we are ready to prove some completeness results.

Theorem 36. S is strongly complete with respect to the class of subset spaces.

Proof. Let Γ be an S-consistent set. By Lindenbaum’s Lemma there is an S-MCS
Γ+ such that Γ ⊆ Γ+. By the Truth Lemma MS,Γ+ ⊩ Γ. By definition HS is a
subset space. □

Theorem 37. S+ is strongly complete with respect to the class of subset spaces sat-
isfying (2

⋂
).

Proof. For Item 1, given the proof of Theorem 36 the crucial step is to show that
HS+ satisfies (2

⋂
). Let S, T ∈ µS

+ be arbitrary. By definition there are θ, η ∈

Form such that S =
︷︸︸︷
2θ and T =

︷︸︸︷
2η . We show that

︷ ︸︸ ︷
2(θ ∧ η) =

︷︸︸︷
2θ ∩

︷︸︸︷
2η =

S ∩ T , and thus S ∩ T ∈ µS
+ . Let Γ ∈W S+ be arbitrary.
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First assume that Γ ∈
︷ ︸︸ ︷
2(θ ∧ η). Then 2(θ ∧ η) ∈ Γ. Since ⊢S+ 2(θ ∧ η) →

2θ∧2η,2θ∧2η ∈ Γ. Hence2θ ∈ Γ and2η ∈ Γ, and thus Γ ∈
︷︸︸︷
2θ and Γ ∈

︷︸︸︷
2η .

Therefore, Γ ∈
︷︸︸︷
2θ ∩

︷︸︸︷
2η .

Second assume that Γ ∈
︷︸︸︷
2θ ∩

︷︸︸︷
2η . Then Γ ∈

︷︸︸︷
2θ and Γ ∈

︷︸︸︷
2η , and thus

2θ ∈ Γ and 2η ∈ Γ. Hence 2θ ∧ 2η ∈ Γ. Since ⊢S+ 2θ ∧ 2η → 2(θ ∧ η),

2(θ ∧ η) ∈ Γ, and thus Γ ∈
︷ ︸︸ ︷
2(θ ∧ η). □

Theorem 38. S4 is strongly complete with respect to the class of subset spaces sat-
isfying (Bound) and (2

⋂
).

Proof. For Item 1, given the proof of Theorem 37 the crucial step is to show that
HS4 satisfies (Bound).

We show that
︷ ︸︸ ︷
2(p ∨ ¬p) =W S4, and thusW S4 ∈ µS4. The “⊆” part is obvious.

For the “⊇” part, for each Γ ∈ W S4, since ⊢S4 2(p ∨ ¬p) and Γ is an S4-MCS,

2(p ∨ ¬p) ∈ Γ and thus Γ ∈
︷ ︸︸ ︷
2(p ∨ ¬p).

We show that
︷ ︸︸ ︷
2(p ∧ ¬p) = ∅, and thus ∅ ∈ µS4. The “⊇” part is obvious. For

the “⊆” part, since ⊢S4 ¬2(p ∧ ¬p), no S4-MCS includes 2(p ∧ ¬p). □

Finally we use the technique of union closure to prove an important result in
topological semantics of modal logic. This proof is essentially the one in [1].

Theorem 39. S4 is strongly complete with respect to the class of topological spaces.

Proof. Let Γ be an S4-consistent set. By Lindenbaum’s Lemma there is an S4-MCS
Γ+ such that Γ ⊆ Γ+. By the Truth LemmaMS4,Γ+ ⊩ Γ, i.e. (HS4, V S4),Γ+ ⊩ Γ.
By Proposition 18 (HS4∗, V S4),Γ+ ⊩ Γ.

We show that HS4∗ is a topological space. By the proof of Theorem 38 and
Remark 17 ∅,W S4 ∈ µS4 ⊆ µS4∗ and HS4∗ satisfies (

⋃
). It remains to show that

HS4∗ satisfies (2
⋂
). Let S, T ∈ µS4∗ be arbitrary. Then there are ρ, π ∈ ℘(µS4)

such that S =
⋃
ρ and T =

⋃
π. A proof similar to the one for Theorem 37 shows

that HS4 satisfies (2
⋂
), so {U ∩ V | U ∈ ρ and V ∈ π} ⊆ µS4 and thus S ∩ T =⋃

ρ ∩
⋃
π =

⋃
{U ∩ V | U ∈ ρ and V ∈ π} ∈ µS4∗. □

7 Completeness via Intersection-closed Canonical Models

Some extensions of S+ are strongly complete with respect to interesting classes
of subset spaces. However, the canonical model does not work, and we need the
notion of intersection-closed canonical model.

Definition 40 (Intersection-closed Canonical Model). Let Λ be a modal logic. Its
intersection-closed canonical subset space HΛ is an ordered pair (WΛ, µΛ), where
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1. WΛ is the set of Λ-MCSs;
2. µΛ = {

︷︸︸︷
2Γ | Γ ⊆ Form and Γ ̸= ∅}, where 2Γ = {2φ | φ ∈ Γ} and︷︸︸︷

2Γ = {w ∈WΛ | 2Γ ⊆ w}.

Its intersection-closed canonical model MΛ is the ordered pair (HΛ, V Λ).

Basic properties of intersection-closed canonical models are collected in the fol-
lowing lemma.

Lemma 41. Let Λ be a modal logic.

1. µΛ ⊆ µΛ.
2. HΛ satisfies (

⋂
).

Proof. For Item 1, for each U ∈ µΛ, there is a φ ∈ Form such that U =
︷︸︸︷
2φ , so

U =
︷ ︸︸ ︷
2{φ} ∈ µΛ.
For Item 2, let I be a non-empty set and {Ui | i ∈ I} ⊆ µΛ. For each i ∈ I , there

is a non-empty set Γi ⊆ Form such that Ui =
︷︸︸︷
2Γi . Then

⋃
i∈I Γi is a non-empty

subset of Form and ⋂
i∈I

Ui =
⋂
i∈I

︷︸︸︷
2Γi =

︷ ︸︸ ︷
2
⋃
i∈I

Γi ∈ µΛ

□

For intersection-closed canonical models, Truth Lemma is also true, but only for
extensions of S+. To prove this, we first need to prove a new version of Existence
Lemma.

Lemma 42 (Existence Lemma for Extensions of S+). Let Λ be a modal logic such
that S+ ⊑ Λ. For any Λ-MCS Γ and φ ∈ Form, the following are equivalent:

(i) 2φ ∈ Γ;
(ii) there is a non-empty set ∆ ∈ Form such that 2∆ ⊆ Γ and, for any Λ-MCS

Γ′, 2∆ ⊆ Γ′ implies φ ∈ Γ′.

Proof. From (i) to (ii): Assume that 2φ ∈ Γ. Then {φ} ⊆ Form is such that
2{φ} ⊆ Γ and, for any Λ-MCS Γ′, if 2{φ} ⊆ Γ′, then 2φ ∈ Γ′ and thus φ ∈ Γ′ by
the properties of Λ-MCSs and the fact that 2φ→ φ ∈ S+ ⊆ Λ ⊆ Γ′.

From (ii) to (i): Assume that (ii) is true. Suppose (towards a contradiction) that
2φ ̸∈ Γ.

Note that2∆∪{¬φ} isΛ-consistent: Suppose (towards a contradiction) that it is
notΛ-consistent. It follows that there is ann ∈ ω andψ1, . . . , ψn ∈ 2∆3 such that⊢Λ

3We adopt the convention that, when n = 0, ψ1, . . . , ψn is the empty sequence.
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¬(ψ1∧· · ·∧ψn∧¬φ) and thus⊢Λ ψ1∧· · ·∧ψn → φ. By (RM)⊢Λ 2(ψ1∧· · ·∧ψn) →
2φ. Since S+ ⊑ Λ, it can be proved that ⊢Λ 2ψ1 ∧ · · · ∧2ψn → 2(ψ1 ∧ · · · ∧ψn).
Hence⊢Λ 2ψ1∧· · ·∧2ψn → 2φ. Sinceψ1, . . . , ψn ∈ 2∆, there are θ1, . . . , θn ∈ ∆

such that ψi = 2θi for each i ∈ {1, . . . , n}. Hence ⊢Λ 22θ1 ∧ · · · ∧ 22θn → 2φ.
Since S+ ⊑ Λ, it can be proved that⊢Λ 2θ1∧· · ·∧2θn → 22θ1∧· · ·∧22θn. Hence
⊢Λ 2θ1 ∧ · · · ∧2θn → 2φ, i.e. ⊢Λ ψ1 ∧ · · · ∧ ψn → 2φ. Since ψ1, . . . , ψn ∈ 2∆,
2∆ ⊆ Γ andΓ is anΛ-MCS,2φ ∈ Γ, contradicting the supposition at the beginning.

By Lindenbaum’s Lemma there is a Λ-MCS Γ′ such that 2∆ ∪ {¬φ} ⊆ Γ′, so
2∆ ⊆ Γ′ but φ ̸∈ Γ′, contradicting (ii). □

Now we can prove the new Truth Lemma.

Lemma 43 (Truth Lemma for Intersection-closed Canonical Model). Let Λ be a
modal logic such that S+ ⊑ Λ. For any w ∈ WΛ and φ ∈ Form, MΛ, w ⊩
φ⇔ φ ∈ w.

Proof. We use induction on the structure of formulas. In the base step, we consider
propositional letters, and the result in this case follows directly from the definition. In
the induction step, we consider three cases. The cases for negation and conjunction
follow from the induction hypothesis easily. Hence we only consider the case when
φ is 2ψ and the induction hypothesis is true for ψ.

First assume that MΛ, w ⊩ 2ψ. Then there is a U ∈ µΛ such that w ∈ U and,
for each u ∈ U ,MΛ, u ⊩ ψ. By definition there is a non-empty set Γ ⊆ Form such
that U =

︷︸︸︷
2Γ . Then by the induction hypothesis, for each u ∈

︷︸︸︷
2Γ , ψ ∈ u. By

Lemma 42 2ψ ∈ w.
Second assume that 2ψ ∈ w. By Lemma 42 there is a non-empty Γ ⊆ Form

such that w ∈
︷︸︸︷
2Γ and, for each u ∈

︷︸︸︷
2Γ , ψ ∈ u. By definition

︷︸︸︷
2Γ ∈ µΛ. By the

induction hypothesis, for each u ∈
︷︸︸︷
2Γ ,MΛ, u ⊩ ψ. HenceMΛ, w ⊩ 2ψ. □

Now we use intersection-closed canonical models to prove some completeness
results.

Theorem 44. S+ is strongly complete with respect to the class of intersection struc-
tures, i.e. subset spaces satisfying (

⋂
).

Proof. The proof of Item 1 is the same as that of Theorem 37, except that we use
HS+ which satisfies (

⋂
) and Lemma 43. □

Theorem 45.

1. S4 is strongly complete with respect to the class of complete lattices of sets.
2. S4 is strongly complete with respect to the class of σ-lattices of sets.
3. S4 is strongly complete with respect to the class of lattices of sets.
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4. S4 is strongly complete with respect to the class of topped intersection struc-
tures.

Proof. Let Γ be an S4-consistent set. By Lindenbaum’s Lemma there is an S4-MCS
Γ+ such that Γ ⊆ Γ+. By Lemma 43 MS4,Γ+ ⊩ Γ, i.e. (HS4, V S4),Γ+ ⊩ Γ. By
Proposition 18 (HS4∗, V S4),Γ+ ⊩ Γ. It remains to show that HS4∗ is a complete
lattice of sets.

First note thatW S4 ∈ µS4
∗
: W S4 =

︷ ︸︸ ︷
2{p ∨ ¬p} ∈ µS4 ⊆ µS4

∗
.

Second by Remark 17HS4∗ satisfies (
⋃
) and ∅ ∈ µS4

∗
.

Finally we show that HS4∗ satisfies (
⋂
). Let I be a non-empty set and {Ui |

i ∈ I} ⊆ HS4∗. Since we have proved that ∅ ∈ HS4∗, without loss of generality we
assume that Ui ̸= ∅ for each i ∈ I . By definition, for each i ∈ I , there is a ρi ⊆ HS4

such that Ui =
⋃
ρi, then there is a non-empty set Ji and a set of non-empty sets

{Γji | ji ∈ Ji} ⊆ ℘(Form) such that ρi = {
︷︸︸︷
2Γji | ji ∈ Ji}. Then⋂

i∈I
Ui =

⋂
i∈I

⋃
ρi

=
⋂
i∈I

⋃
ji∈Ji

︷︸︸︷
2Γji

=
⋃{⋂

i∈I

︷ ︸︸ ︷
2Γk(i) | k ∈

∏
i∈I

Ji

}

=
⋃{︷ ︸︸ ︷

2
⋃
i∈I

Γk(i) | k ∈
∏
i∈I

Ji

}
,

where
∏

i∈I Ji denotes the Cartesian product of {Ji | i ∈ I}. Since for each i ∈ I

and k ∈
∏

i∈I Ji, Γk(i) is a non-empty set of formulas, so, for each k ∈
∏

i∈I Ji,︷ ︸︸ ︷
2
⋃
i∈I

Γk(i) ∈ µS4. Hence
⋂

i∈I Ui =
⋃{︷ ︸︸ ︷

2
⋃
i∈I

Γk(i) | k ∈
∏

i∈I Ji

}
is in µS4

∗
.

Items 2 to 4 follows from Item 1 and Remark 32. □

Theorem 46. S5 is strongly complete with respect to the class of complete fields of
sets.

Proof. Let Γ be an S5-consistent set. By Lindenbaum’s Lemma there is an S5-MCS
Γ+ such that Γ ⊆ Γ+. By Lemma 43 MS5,Γ+ ⊩ Γ, i.e. (HS5, V S5),Γ+ ⊩ Γ. By
Proposition 18 (HS5∗, V S5),Γ+ ⊩ Γ. It remains to show thatHS5∗ is a complete alge-
bra of sets. Using reasoning similar to that in the proof of Theorem 45, we can show
that HS5∗ satisfies (Bound), (

⋃
) and (

⋂
). It remains to show that HS5∗ satisfies

(Com).
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LetU ∈ µS5
∗
. Then there is a ρ ⊆ µS5 such thatU =

⋃
ρ. If ρ = ∅,W S5\U =

W S5 ∈ µS5
∗
. In the following, we only need to focus on the case when ρ ̸= ∅.

By definition there is a non-empty set I and a set of non-empty sets of formulas
{Γi | i ∈ I} such that ρ = {

︷︸︸︷
2Γi | i ∈ I}. Note that, for each i ∈ I , for each

w ∈W S5,

w ∈W S5 \
︷︸︸︷
2Γi

⇔ w ̸∈
︷︸︸︷
2Γi

⇔ 2Γi ̸⊆ w

⇔ there is a φ ∈ Γi such that 2φ ̸∈ w

⇔ there is a φ ∈ Γi such that ¬2φ ∈ w

⇔ there is a φ ∈ Γi such that 2¬2φ ∈ w (by ⊢S5 ¬2φ↔ 2¬2φ)

⇔ there is a φ ∈ Γi such that w ∈
︷ ︸︸ ︷
2{¬2φ}

⇔ w ∈
⋃
φ∈Γi

︷ ︸︸ ︷
2{¬2φ}

Hence, for each i ∈ I ,W S5 \
︷︸︸︷
2Γi =

⋃
φ∈Γi

︷ ︸︸ ︷
2{¬2φ}. Then

W S5 \ U =W S5 \
⋃
ρ

=W S5 \
⋃
i∈I

︷︸︸︷
2Γi

=
⋂
i∈I

W S5 \
︷︸︸︷
2Γi

=
⋂
i∈I

⋃
φ∈Γi

︷ ︸︸ ︷
2{¬2φ}

For any i ∈ I and φ ∈ Γi,
︷ ︸︸ ︷
2{¬2φ} ∈ µS5, so, for each i ∈ I ,

⋃
φ∈Γi

︷ ︸︸ ︷
2{¬2φ} ∈

µS5
∗
. Since we have known that µS5

∗
satisfies (

⋂
),W S5 \ U ∈ µS5

∗
. □

Theorem 47. Tr is strongly complete with respect to the class of discrete topological
spaces/power set algebras.

Proof. Let Γ be a Tr-consistent set. By Lindenbaum’s Lemma there is a Tr-MCS
Γ+ such that Γ ⊆ Γ+. By Lemma 43 MTr,Γ+ ⊩ Γ, i.e. (HTr, V Tr),Γ+ ⊩ Γ. By
Proposition 18 (HTr∗, V Tr),Γ+ ⊩ Γ. It remains to show that, for each U ⊆ WTr,
U ∈ µTr

∗
.

Let U ∈ WTr. For each u ∈ U , since ⊢Tr φ ↔ 2φ, {u} =
︷ ︸︸ ︷
2{φ | 2φ ∈ u} ∈

µTr. Hence U =
⋃

u∈U{u} ∈ µTr
∗
. □
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8 Conclusion

In this paper, we generalize topological semantics of modal logic to describe
subset spaces. We find the minimal modal logic of subset spaces, and prove sound-
ness and completeness theorems between some important classes of subset spaces
(e.g. intersection structures, topological spaces and complete fields of sets) and some
famous modal logics (e.g. S4, S5 and Tr).

The main results are as follows, among which Items 3 and 6 are known results
in topological semantics of modal logic and Items 4 to 6 are first proved directly, in
detail and without a devour via neighbourhood semantics or relational semantics:

1. S is strongly sound and complete with respect to the class of subset spaces.
2. S+ is strongly sound and complete with respect to the class of intersection struc-

tures.
3. S4 is strongly sound and completewith respect to the class of topological spaces.
4. S4 is strongly sound and complete with respect to the class of complete lattices

of sets/Alexandroff topological space, the class of σ-lattices of sets, the class
of lattices of sets and the class of topped intersection structures.

5. S5 is strongly sound and complete with respect to the class of complete fields
of sets, but no longer sound with respect to the class of σ-fields of sets.

6. Tr is strongly sound and complete with respect to the class of discrete topolog-
ical spaces/power set algebra.
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关于子集空间的模态逻辑

钟盛阳

摘 要

在模态逻辑中，拓扑语义是邻域语义的一个直观而自然的特例。本文基于一

个观察：拓扑语义的满足关系适用于比拓扑空间更一般的子集空间。本文给出了

相对于子集空间所组成的类强可靠和强完全的最小模态逻辑，还证明了一些著名

的模态逻辑（例如 S4、S5和 Tr）相对于多个重要的子集空间类（例如交结构和
完备集域）的可靠性和完全性。其中本文不借助邻域语义或关系语义而是直接使

用典范模型方法的一些变种来证明一些已知结果，例如 Tr 相对于离散拓扑空间
类的可靠性和完全性。
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