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Saturated Models and Ultrafilter Extension for
Weakly Aggregative Modal Logics*

Yifeng Ding Jixin Liu

Abstract. Weakly aggregative modal logics (WAML) are a series of natural weakenings of
the minimal modal logic K. The natural semantics for them are based on Kripke frames with
an N + 1-ary relation, where 2φ is true at a world iff all of its successor N -tuples has at least
one world making φ true. We study the notion of saturated models and ultrafilter extension for
this relational semantics of WAML. The Goldblatt-Thomason theorem for WAML is proved
as an application.

1 Introduction

Let us call a modality 2N -weakly aggregative, withN being a positive natural
number, if 2 is monotonic and validates 2⊤ and the following principle:

(2p0 ∧2p2 ∧ · · · ∧ 2pN ) → 2((p0 ∧ p1) ∨ (p0 ∧ p2) ∨ · · · ∨ (pN−1 ∧ pN )).

Modalities of this kind arise naturally whenever we quantify over tuples or sets of
size at mostN in a ∀∃manner. For example, let2φmean that: “in every pair of twin
primes, one of them satisfies property φ”. Then, assuming 2p0 and 2p1 and 2p2,
for every pair of twin primes (a, b), there is a function f : {p0, p1, p2} → {a, b} such
that f(pi) satisfies pi. By the pigeonhole principle, f is not injective, and either a or
b satisfies two of the properties in {p0, p1, p2}. This means2((p0∧ p1)∨ (p0∧ p2)∨
(p1 ∧ p2)) is true.

Over Kripke models with anN +1-ary relation, this ∀∃-style quantification is a
natural way to talk about them using a unary modality. More formally, 2φ is true at
w iff for any v1, . . . , vN such that R(w, v1, . . . , vN ), there is v ∈ {v1, . . . , vN} such
that φ is true at v. It is easy to see using the pigeonhole principle that 2 thus defined
is an N -weakly aggregative modality.

This relational semantics based on standard Kripke models with an N + 1-ary
relation is first defined in [13], and the authors there also introduce the name “Weakly
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aggregative modal logic (WAML)”. One can quickly observe that 2φ as understood
above is equivalent to∇(ϕ, . . . , ϕ) where∇ is the standard polyadic modal operator.
In a later paper ([2]), it is proved that the modal logic on all N + 1-ary frames is
exactly the smallest logic in which 2 is N -weakly aggregative. WAML have strong
connections to different areas, like paraconsistent reasoning ([13]), epistemic logic of
knowing value ([10]), neighborhood semantics ([1]) and group knowledge ([4]). This
paper will focus on the model theory on relational semantics of WAML; one may see
[11] for further literature on other aspects of WAML.

The aim of this paper is to find the right notion of saturation and ultrafilter ex-
tension (canonical extension) for WAML. This continues the study of model theory
for WAML in [12] and the canonical model construction used in [8]. There are some
related works on these topics, such as [3] and [6, 7]. But the first one mainly considers
the special case of N = 1 and the other two concern neighborhood models. Though
they all work with the same language with a single unary modality as in this paper,
our work concerns the general N + 1-ary relational semantics.

The remaining parts of this paper are structured as follows. In Section 2 we re-
call the model theoretical set up of WAML and define the complex algebra of frames.
In Section 3, we study the saturation condition for models. In Section 4, we study
the ultrafilter (canonical) extension for any Boolean algebra expanded with a weakly
aggregative modality. When applied to the complex algebra of the frame of a model
while keeping the valuation information, we obtain the ultrafilter extension of the said
model and show that it is saturated. In Section 5, to further justify the definition of ul-
trafilter extension, we show the Goldblatt-Thomason theorem for weakly aggregative
modal logic. In Section 6, we conclude with some unaddressed questions.

2 Relational Semantics and the Algebraic Perspective

Throughout the paper, letN be a fixed positive natural number denoting the arity
parameter of the weakly aggregative modal logic we consider.

Definition 1. Let L be the language of basic modal logic defined by the following
grammar:

φ ::= p | ¬φ | (φ ∧ φ) | 2φ

where p is in a countably infinite set Prop of propositional atoms. We employ the
usual abbreviations, including 3φ := ¬2¬φ.

Definition 2. An N -Kripke frame is a pair (W,R) where W is a non-empty set
and R is an N + 1-ary relation. An N -Kripke model is a triple (W,R, V ) where
(W,R) is an N -Kripke frame and V : Prop → ℘(W ). Given any N -Kripke model



78 Studies in Logic, Vol. 17, No. 6 (2024)

M = (W,R, V ), we define the weakly aggregative semantics for L as follows:

M, w |= p ⇐⇒ w ∈ V (p)

M, w |= ¬φ ⇐⇒ M, w ̸|= φ

M, w |= φ ∧ ψ ⇐⇒ M, w |= φ andM, w |= ψ

M, w |= 2φ ⇐⇒ ∀u1, u2, . . . , uN ∈W : R(w, u1, . . . , uN ) =⇒
M, u1 |= φ orM, u2 |= φ or · · · orM, uN |= φ.

From the above clause for 2ϕ, one can directly verify the semantics for 3ϕ:

M, w |=3φ⇐⇒ ∃u1, u2, . . . , uN ∈W : R(w, u1, . . . , uN ) and
M, u1 |= φ andM, u2 |= φ and · · · andM, uN |= φ.

We introduce some notations to help shorten the above semantic clause for 2. Let
[1, N ] be the set of natural numbers from 1 to N inclusive, and letWN be the set of
all N -tuples using elements inW . Then for any u⃗ ∈ WN and any i ∈ [1, N ], u⃗[i] is
the ith element of u⃗ (u⃗ = (u⃗[1], . . . , u⃗[n])). Finally, when b⃗ ∈WN , we write R(a, b⃗)
for R(a, b⃗[1], . . . , b⃗[N ]). Thus, the above semantic clause for 2 can be written as
∀u⃗ ∈WN (R(w, u⃗) ⇒ ∃i ∈ [1, N ]M, u⃗[i] |= φ).

To better understand the above semantics for 2, note that for the interpretation
of weakly aggregative modal logic, N -Kripke frames contain redundant informa-
tion. For example, say N = 2 and consider ({1, 2, 3}, {(1, 2, 3)}) and ({1, 2, 3},
{(1, 3, 2)}). Our language can never pick up the difference between these two N -
Kripke frames since they only differ in the ordering of the second and the third ar-
gument of their respective ternary relations. For any tuple u⃗, let set(u⃗) be the set of
elements used in u⃗. Then it is clear from the semantic clause for2 that whenR(w, u⃗),
only set(u⃗) matters in a monotonic way. If we want to remove the redundant infor-
mation, we can consider the following condition on N -Kripke frames.

Definition 3. An N -weakly aggregative frame (N -WA frame for short) is a pair
(W,R) such that

• W is a non-empty set, R is an N + 1-ary relation onW ;
• for any w ∈ W and any u⃗, v⃗ ∈ WN , if R(w, u⃗) and set(u⃗) ⊆ set(v⃗), then
R(w, v⃗).

Note that the second condition is a first-order condition expressible by the formula:

∀x∀y1 . . . ∀yN∀z1 . . . ∀zN ((R(x, y1, . . . , yN ) ∧
∧

i∈[1,N ]

∨
j∈[i,N ]

yi = zj)

→ R(x, z1, . . . , zN )).
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But to exactly capture the semantic content of an N -Kripke frame, it is best to
consider the algebra they generate.

Definition 4. AnN -weakly aggregative algebra (N -WA algebra for short) is a pair
B = (B,2) where B is a Boolean algebra and 2 is a monotonic function from B to
B such that 2⊤ = ⊤ and the axiom KN for the weakly aggregative modal logic is
valid:

• for any a0, a1, . . . , aN ∈ B,
∧N

i=02ai ≤ 2(
∨

i<j≤(ai ∧ aj)).

Here ≤ is the order in the Boolean algebra B.
For any N -Kripke frame F = (W,R), define its complex algebra cmp(F ) =

(℘(W ),2R) where we endow ℘(W ) with its standard Boolean structure by inter-
section and complementation and 2R is defined according to the semantics of 2:
2R(X) = {w ∈ W | ∀u⃗ ∈ WN , if R(w, u⃗) then X ∩ set(u⃗) ̸= ∅}. In the follow-
ing, the dual 3R will be used much more often, so we note its definition explicitly:
3R(X) = {w ∈ W | ∃u⃗ ∈ WN , R(w, u⃗) and set(u⃗) ⊆ X}. We often write 3RX

for 3R(X), and further just write 3 for 3R when the context is clear. Observe that
cmp(F ) must be an N -WA algebra.

Given anN -Kripke frame (W,R), considerR+ ⊆WN+1 defined byR+(w, u⃗)

iff there is v⃗ ∈ WN such that R(w, v⃗) and set(v⃗) ⊆ set(u⃗). Then it is easy to
observe that (W,R+) is an N -WA frame and cmp(W,R+) = cmp(W,R). In other
words, every N -Kripke frame can be equivalently transformed into an N -WA frame
in a canonical way. Conversely, it can be checked that in all our later methods of
constructing a N -Kripke frame from an N -WA algebra, the resulting frame will in
fact be an N -WA frame.

3 Saturation

Saturation is an important concept in model theory. In the context of modal
logic, saturation is the most natural condition under which we can derive structural
equivalence, usually a version of bisimulation, from syntactical equivalence, usually
defined by satisfying the same formulas.

The right kind of bisimulation is already defined in [12]. We recall it here:

Definition 5. LetM1 = (W1, R1, V1) andM2 = (W2, R2, V2) beN -Kripke mod-
els. A bisimulation E betweenM1 andM2 is a binary relation fromW1 toW2 such
that for any (w1, w2) ∈ E:

• for any p ∈ Prop, w1 ∈ V (p) iff w2 ∈ V (p);
• for any v⃗1 ∈WN

1 such thatR1(w1, v⃗1) there is v⃗2 ∈WN
2 such thatR2(w2, v⃗2)

and for any i ∈ [1, N ] there is j ∈ [1, N ] such that v⃗1[j]Ev⃗2[i];
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• for any v⃗2 ∈WN
2 such thatR2(w2, v⃗2) there is v⃗1 ∈WN

1 such thatR1(w1, v⃗1)

and for any i ∈ [1, N ] there is j ∈ [1, N ] such that v⃗1[i]Ev⃗2[j].

The condition that for any i ∈ [1, N ] there is j ∈ [1, N ] such that v⃗1[j]Ev⃗2[i] can also
be understood as that E restricted to set(v⃗1)× set(v⃗2) is total on the set(v⃗2) side.

Two pointed models M1, w1 and M2, w2 are bisimilar, written M1, w1 ↔
M2, w2 if there is a bisimulation E betweenM1 andM2 such that w1Ew2.

Let us also introduce a notation of syntactic equivalence:

Definition 6. LetM1 = (W1, R1, V1) andM2 = (W2, R2, V2) beN -Kripke mod-
els and w1 ∈ W1 and w2 ∈ W2. We say that the two pointed models M1, w1 and
M2, w2 are modally equivalent in language L, written M1, w1 ≡L M2, when for
any φ ∈ L,M1, w1 |= φ iffM2, w2 |= φ.

Now we consider the saturation condition for WAML. Since we are working
with polyadic Kripke frames, it would be instructive to recall the standard saturation
condition for polyadic modal logic in [5].

Definition 7. Let PL be the language for a single N -ary polyadic modal operator
∇ built from Prop. Then, the semantics of∇ is given by the following clause:

(W,R, V ), w |= ∇(φ1, . . . , φN )

⇔ ∀u⃗ ∈Wn(R(w, u⃗) → ∃i ∈ [1, n](W,R, V ), u⃗[i] |= φi).

We note that the semantics of the dual∆ := ¬∇¬ is

(W,R, V ), w |= ∆(φ1, . . . , φN )

⇔ ∃u⃗ ∈Wn(R(w, u⃗) ∧ ∀i ∈ [1, n](W,R, V ), u⃗[i] |= φi).

Now, for any N -Kripke model M = (W,R, V ), we say that it is polyadic saturated
(P-saturated for short) just in case for every w ∈W and every sequence Σ1, . . . ,ΣN

of subsets of PL:

• if for every finite∆1 ⊆ Σ1, . . . ,∆N ⊆ ΣN there is u⃗ ∈WN such thatR(w, u⃗)
and ∀i ∈ [1, N ],M, u⃗[i] |= ∆i,

• then there is u⃗ ∈WN such that R(w, u⃗) and ∀i ∈ [1, N ],M, u⃗[i] |= Σi.

By observing the difference between the semantics of ∇ and 2 and the bisimu-
lation condition for 2, we may come to the following definition:

Definition 8. For any N -Kripke model M = (W,R, V ), we say that it is WA-
saturated just in case for every w ∈W and every sequence Σ1, . . . ,ΣN of subsets of
L:
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• if for every finite∆1 ⊆ Σ1, . . . ,∆N ⊆ ΣN there is u⃗ ∈WN such thatR(w, u⃗)
and ∀i ∈ [1, N ]∃j ∈ [1, N ]M, u⃗[i] |= ∆j ,

• then there is u⃗ ∈WN such thatR(w, u⃗) and∀i ∈ [1, N ]∃j ∈ [1, N ],M, u⃗[i] |=
Σj .

Indeed, it is quite easy to show that twomodally equivalentWA-saturated pointed
models are bisimilar.

Proposition 1. Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be WA-saturated
N -Kripke models and w1 ∈ W1 and w2 ∈ W2. Then if M1, w1 ≡L M2, w2, then
M1, w1 ↔ M2, w2.

Proof. It suffices to prove that the relation ≡L betweenM1 andM2 is a bisimula-
tion between them.

We focus on the forth condition, since the case for propositional letters is triv-
ially satisfied, and the back condition is completely analogous to the case we prove.
Assume that M1, w1 ≡L M2, w2, v⃗1 ∈ WN , and R1(w1, v⃗1). Let Σi be the set of
formulas true at v⃗1[i] for each i ∈ [1, N ].

Obviously, for every sequence of finite subset ∆1 ⊆ Σ1, . . . ,∆n ⊆ Σn, we
have ∀i ∈ [1, N ]∃j ∈ [1, N ] (which is just i itself) M1, v⃗1[i] |=

∧
∆j . Hence

M1, w1 |= 3
∨

j∈[1,N ]

∧
∆j . It follows that M2, w2 |= 3

∨
j∈[1,N ]

∧
∆j since

M1, w1 ≡L M2, w2, which means there is u⃗ ∈ WN
2 such that ∀i ∈ [1, N ], M2,

u⃗[i] |=
∨

j∈[1,N ]

∧
∆j . This means ∀i ∈ [1, N ]∃j ∈ [1, N ], M2, u⃗[i] |= ∆j . Since

these ∆j’s are arbitrarily chosen and M2 is WA-saturated, there is v⃗2 ∈ WN
2 such

that R2(w2, v⃗2) and ∀i ∈ [1, N ]∃j ∈ [1, N ]M2, v⃗2[i] |= Σj , which means for each i
there is a j such that v⃗1[j] ≡L v⃗2[i]. □

However, there is another version of the above saturation condition that is much
easier to handle.

Proposition 2. For any N -Kripke model M = (W,R, V ), it is WA-saturated iff for
every w ∈W and every Σ ⊆ L: if for every finite∆ ⊆ Σ there is u⃗ ∈WN such that
R(w, u⃗) and ∀i ∈ [1, N ]M, u⃗[i] |= ∆, then there is u⃗ ∈ WN such that R(w, u⃗) and
∀i ∈ [1, N ]M, u⃗[i] |= Σ.

To better formulate the proof of this proposition, we writeX ⊆f Y forX being
a finite subset of Y and then temporarily expand the language L to L∞ to allow for
infinite conjunction, with the grammar:

φ ::= p | ¬φ | (φ ∧ φ) |
∧

Γ | 2φ

where p ∈ Prop and Γ ⊆ L. It is clear that an N -Kripke model M = (W,R, V )

is WA-saturated iff for every w ∈ W and every sequence Σ1, · · · ,ΣN of sets of
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formulas in L, if for every ∆1 ⊆f Σ1, · · ·∆N ⊆f ΣN , M, w |= 3
∨N

i=1

∧
∆i, then

M, w |= 3
∨N

i=1

∧
Σi. What we want to show is that M is WA-saturated iff for

every w ∈ W and every set Σ ⊆ L, if M, w |= 3
∧
∆ for every finite subset ∆ of

Σ, thenM, w |= 3
∧
Γ. For this, we use two lemmas.

Lemma 1. For every sequence Σ1, · · · ,ΣN of sets of formulas in L,
∨N

i=1

∧
Σi and∧

{
∨N

i=1

∧
∆i | ∆1 ⊆f Σ1, · · ·∆N ⊆f ΣN} are semantically equivalent.

Proof. For the left-to-right direction, note that
∧
Σi |=

∧N
i=1∆i whenever ∆i ⊆

Σi. For the right-to-left direction, suppose that
∨N

i=1

∧
Σi is false. So there is a

sequence φ1, φ2, · · · , φN of formulas such that φi ∈ Σi and each φi is false. Then∨N
i=1 φi is false. But this formula is a conjunct of

∧
{
∨N

i=1

∧
∆i | ∆1 ⊆f Σ1, · · ·

∆N ⊆f ΣN}. □

Lemma 2. For every sequence Σ1, · · · ,ΣN of sets of formulas in L, Γ = {
∨n

i=1

∧
∆i | ∆1 ⊆f Σ1, · · ·∆N ⊆f ΣN} is directed: for any α, β ∈ Γ, there is a γ ∈ Γ

s.t. γ |= α ∧ β. By a simple induction, then, for every ∆ ⊆f Γ, there is γ ∈ Γ s.t.
γ |=

∧
∆.

Proof. Let α =
∨N

i=1

∧
Ai and β =

∨N
i=1

∧
Bi be two arbitrary formula in Γ.

ThenAi, Bi ⊆f Σi for all i ∈ [1, N ]. Now let γ =
∨N

i=1

∧
(Ai∪Bi). Clearly γ ∈ Γ.

To see that γ |= α ∧ β, suppose that γ is true. Then there is i ∈ [1, N ] such that∧
(Ai ∪ Bi) is true, which means that

∧
Ai and

∧
Bi are both true. But

∧
Ai is a

disjunct of α and
∧
Bi is a disjunct of β, so both α and β are true. □

Proof. (of Proposition 2) Let us temporarily call the new condition in Proposition 2
WA’-saturation. SupposeM is WA-saturated. To show that it is WA’-saturated, pick
any w ∈ W and any Σ ⊆ L and suppose that for any ∆ ⊆f Σ, M, w |= 3

∧
∆.

Now, to use the assumption that M is WA-saturated, let Σ1 = Σ2 = · · · = Σn =

Σ. We can then show the antecedent of the definition of WA-saturation. Pick any
∆i ⊆f Σi for all i, let ∆ =

⋃N
i=1∆i. Since Σi’s are just Σ, ∆ ⊆f Σ. So by

supposition, M, w |= 3∆. But ∆ |=
∧N

i=1∆i since ∆i ⊆ ∆ for all i. Hence
M, w |= 3

∨N
i=1

∧
∆, and this shows the antecedent of WA-saturation. Thus, by

WA-saturation, M, w |= 3
∨N

i=1

∧
Σi. But

∨N
i=1

∧
Σi is equivalent to just

∧
Σ

since each Σi is just Σ. SoM, w |= 3
∧

Σ and hence WA’-saturation is shown.
Now suppose that M is WA’-saturated. To show that it is WA-saturated, pick

any w ∈ W and any Σi ⊆ L for all i and assume that whenever ∆i ⊆f Σi for all i,
M, w |= 3

∨N
i=1

∧
∆i. Now let Γ = {

∨N
i=1

∧
∆i | ∆i ⊆f Σi, i ∈ [1, N ]}. Then

the assumption shows that for every γ ∈ Γ, M, w |= 3γ. But by Lemma 2, for any
∆ ⊆f Γ, there is γ ∈ Γ such that γ |= ∆. HenceM, w |= 3∆ for every∆ ⊆f Γ, and
this fulfils the antecedent of WA’-saturation on Γ. So it follows thatM, w |= 3

∧
Γ.

But by Lemma 1,
∧
Γ is equivalent to

∨N
i=1

∧
Σi. So M, w |=

∨N
i=1

∧
Σi, and this

completes the proof of WA-saturation. □
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Given the above proposition, our official notion of saturation for weakly ag-
gregative modal logic is simply that whenever every finite subset of Σ is “diamond-
satisfiable”, then Σ is itself “diamond-satisfiable”. Note that syntactically this is ex-
actly the same for normal modal logics.

To see that this is the correct saturation condition, we should also verify that
first-order saturation implies modal saturation. Recall that we can always treat any
N -Kripke model as a first-order structure with oneN +1-ary relation and one unary
predicate P for each p ∈ Prop. Then, each φ ∈ L can be translated to a first-order
formula STx(φ) with one free variable x (for any choice of variable x) as in [12].

Proposition 3. If an N -Kripke model M = (W,R, V ) is countably saturated in the
first-order sense, then it is also WA-saturated.

Proof. Suppose that M = (W,R, V ) is a countably saturated model. Let w ∈ W

and Σ ⊆ L. Consider the following set of first-order formula where w is taken as a
constant denoting itself and x1, . . . , xN are variables:

Γ = {R(w, x1, . . . , xn)} ∪ {STxi(φ) | i ∈ [1, N ], φ ∈ Σ}.

To show that M is WA-saturated, assume that for any ∆ ⊆f Σ, M, w |= 3
∧
∆,

and we only need to show thatM, w |= 3
∧
Σ. The assumption immediately entails

that Γ is a finitely satisfiable N -type with one parameter. By countable saturation, Γ
is realized by some v⃗ ∈WN . But this precisely means thatM, w |= 3

∧
Σ. □

4 Canonical Extension and Ultrafilter Extension

In this section, we consider the modal way to obtain saturated models: ultrafil-
ter extension and its algebraic generalization, canonical extension. This is a general
method of constructing anN -WA frame from anyN -WA algebra. But for complete-
ness, we first consider a special class of N -WA algebras that directly correspond to
N -WA frames without using ultrafilters. For the definition of standard algebraic no-
tions, see [5] and [9] for example.

Given anN -Kripke frameF , we can easily construct its complex algebra cmp(F ).
To obtain a duality between theN -Kripke frames and the corresponding complex al-
gebras, we characterize the complex algebras intrinsically.

Definition 9. Let B = (B,2) be an N -WA algebra, and we will always use 3 for
the dual operator of 2. We say that B is perfect if

• B is atomic and lattice-complete;
• for any filter Q ⊆ B,

∧
{2a | a ∈ Q} ≤ 2

∧
Q.

Note that the second condition is equivalent to that
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• for any ideal I ⊆ B, 3
∨
I ≤

∨
{3a | a ∈ I}.

We call this condition the complete primeness of 3.
For any perfect N -WA algebra B = (B,2), define AF(B) = (W,R) whereW

is the set of atoms of B and R is defined as follows:

• for any w ∈W and v⃗ ∈WN , R(w, v⃗) iff w ≤ 3
∨
set(v⃗).

Proposition 4. For any N -Kripke frame F = (W,R), cmp(F ) is a perfect N -WA
algebra, and if F is further an N -WA frame, then AF(cmp(F )) is isomorphic to F .

Proof. To see that cmp(F ) is perfect, the only non-trivial item to show is that for any
ideal I ⊆ ℘(W ), 3

⋃
I ⊆

⋃
{3X | X ∈ I}. So suppose x ∈ 3

⋃
I . This means

there is y⃗ ∈WN such that R(x, y⃗) and for any i ∈ [1, N ], v⃗[i] ∈
⋃
I . Thus we have

{Xi}i∈[1,N ] ⊆ I such that v⃗[i] ∈ Xi. But since I is an ideal, X :=
⋃

i∈[1,N ]Xi is an
element of the ideal I , and clearly set(y⃗) ⊆ X . So indeed there is X ∈ I such that
x ∈ 3X . So x ∈

⋃
{3X | X ∈ I}. This finishes the proof that cmp(F ) is perfect.

Now let (W ′, R′) be AF(cmp(F )). Obviously W ′ = {{x} | x ∈ W}, so the
natural isomorphism should be f : W → W ′ :: f(x) = {x}. Now we only need to
show that, given that F is N -WA: for any x ∈W and y⃗ ∈WN ,

• R(x, y⃗) iff x ∈ 3set(y⃗).

The left-to-right direction is trivial given how 3 is defined as a function from ℘(W )

to ℘(W ). For the other direction, note that if x ∈ 3set(y⃗), then there is z⃗ ∈WN such
thatR(x, z⃗) and set(z⃗) ⊆ set(y⃗). But the requirement forN -WA frame precisely says
that this implies that R(x, y⃗). □

Proposition 5. For any perfect N -WA algebra B = (B,2), AF(B) is an N -WA
frame, and cmpAF(B) is isomorphic to B.

Proof. That AF(B) is an N -WA frame is easy to verify from the definition of R
and the monotonicity of 3. It is also a standard result in Boolean algebra that there
is a Boolean isomorphism f from cmp(AF(B)) to B where f(X) =

∨
X . Now we

show that f(3RX) = 3f(X). It is enough to show that for any atom w ∈ W , the
set of atoms of B, w ≤ f(3RX) iff w ≤ 3f(X).

If w ≤ f(3RX), then w ∈ 3RX . So there is v⃗ ∈ WN such that R(w, v⃗)
and set(v⃗) ⊆ X . R(w, v⃗) means that w ≤ 3

∨
set(v⃗), and set(v⃗) ⊆ X means that∨

set(v⃗) ≤
∨
X = f(X). Since 3 is monotone, w ≤ 3f(X).

If w ≤ 3f(X), then w ≤ 3
∨
X . Let I = {

∨
X0 | X0 ⊆f X} where ⊆f

means “is a finite subset of”. Then I is an ideal inB and
∨
I =

∨
X . By the complete

primeness of3,w ≤
∨
{3

∨
X0 | X0 ⊆f X}. Sincew is an atom, there isX0 ⊆f X

such that w ≤ 3
∨
X0. Now let Y be an element in the non-empty set {Y ∈ ℘(X0) |

w ≤ 3
∨
Y } that has the smallest cardinality. First, |Y | is non-empty as 3⊥ = ⊥.

Now we claim that |Y | ≤ N . Suppose not, then let {y0, . . . , yN} be a subset of Y
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withN +1 elements. Then note that Y =
∧

i<j(
∨
(Y \ {yi})∨

∨
(Y \ {yj})). If we

write theKN axiom for N -WA algebra in terms of 3, we see that

3(
∧
i<j

(
∨

(Y \ {yi}) ∨
∨

(Y \ {yj}))) ≤
∨
i

3
∨

(Y \ {yi}).

So there is i ∈ [0, N ] such that w ≤ 3
∨
(Y \ {yi}), contradicting that Y is one of

the smallest subset of X0 such that w ≤ 3
∨
Y . So |Y | ≤ N , and we can easily

pick a v⃗ as an surjection from [1, N ] to Y so that set(v⃗) = y, and w ≤ 3
∨
set(v⃗).

Then R(w, v⃗). Recall that Y ⊆ X0 ⊆ X . So w ∈ 3RX , and thus w ≤
∨
3RX =

f(3RX). □

One can extend the above duality into a full categorical duality, noting that the
right morphism betweenN -Kripke frames that would correspond to homomorphisms
between N -WA algebras is the following p-morphism:

Definition 10. Let F1 = (W1, R1) and F2 = (W2, R2) be N -Kripke frames. A
function f :W1 →W2 is a p-morphism (for WAML) just in case:

• for any x ∈ W1 and y⃗ ∈ WN
1 , if R1(x, y⃗), then there is z⃗ ∈ WN

2 such that
R2(f(x), z⃗) and set(z⃗) ⊆ f [set(y⃗)];

• for any x ∈ W1 and z⃗ ∈ WN
2 , if R2(f(x), z⃗), then there is y⃗ ∈ WN

1 such that
R1(x, y⃗) and set(y⃗) ⊆ f−1[set(z⃗)];

Given the above definition, the following is easy to verify.

Proposition 6. Let F1 = (W1, R1) and F2 = (W2, R2) be N -Kripke frames. Then,
for any function f :W1 →W2, its dual f−1 : ℘(W2) → ℘(W1) is a homomorphism
from cmp(F2) to cmp(F1) iff f is a p-morphism. Thus, p-morphisms from F1 to F2

and homomorphisms from cmp(F2) to cmp(F1) are in 1-to-1 correspondence.

Now we consider the ultrafilter way of defining an N -WA frame from an N -
WA algebra, which, if applied to cmp(F ), produces the ultrafilter extension ofF . For
generality and later application, we work with general frames carrying a distinguished
field of sets.

Definition 11. An N -general frame is a triple (W,R,A) where (W,R) is an N -
Kripke frame and A is a field of sets (with intersection and complementation as its
Boolean operation) on W that is also closed under 2R (or equivalently, 3R). For
any N -general frame F = (W,R,A), we write F+ for its internal N -WA algebra
(A,2R), and write F− for its N -Kripke frame base (W,R).

Definition 12. Let B = (B,2) be an N -WA algebra. We define the ultrafilter
N -general frame UF(B) = (Ult(B), RUlt

2 , B̂) as follows:
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• Ult(B) is the set of ultrafilters of B;
• ∀u ∈ Ult(B) and v⃗ ∈ Ult(B)N , RUlt

2 (u, v⃗) iff for any a ∈
⋂

i∈[1,N ] v⃗[i],
u ∋ 3a;

• B̂ = {b̂ | b ∈ B} where b̂ = {u ∈ Ult(B) | u ∋ b}.

Now we have to make sure that UF(B) is indeed an N -WA algebra. As usual,
we can show that B, in fact, is isomorphic to the internal algebra UF(B)+.

Proposition 7. Let B = (B,2) be an N -WA algebra. Then UF(B) is an N -general
frame and B is isomorphic to UF(B) by the operation ·̂.

Proof. The only non-routine item to show is that for any b ∈ B, 3̂b = 3b̂, where
the 3 on the left-hand side is given by the algebra B = (B,2), and the 3 on the
right-hand side is defined by RUlt

2 in the frame UF(B).
Pick any u ∈ 3̂b. We want to show that there are v⃗ ∈ Ult(B)N such that

RUlt
2 (u, v⃗) and set(v⃗) ⊆ b̂. Let 3−1u = {a ∈ B | 3a ∈ u}. Unpacking some

definitions, we want to show that

∃v⃗ ∈ Ult(B)N , (
⋂
i

v⃗[i] ⊆ 3−1u and b ∈
⋂
i

v⃗[i]).

Since u ∈ 3̂b, b ∈ 3−1u, and by the algebraic properties of (B,2) and in particular
the monotonicity of 3, 3−1u is an upward-closed set (upset). Consider all filters of
B that are subsets of 3−1u. The principal filter ↑ b generated by b is clearly one of
them. The precondition for Zorn’s lemma is also satisfied. So let Q be a filter of B
that is maximal among those contained in 3−1u and also contains b. Q must be a
proper filter since 3⊥ = ⊥ and ⊥ ̸∈ 3−1u. This means Q has at least 1 ultrafilter
extension. Now we show that Q has at most N ultrafilter extensions.

Suppose not, and let v0, v1, v2, . . . , vN be distinct ultrafilters in Ult(B) that ex-
tend Q. It is routine to see that there are a0, . . . , aN ∈ B such that ai ∈ vi and
ai ∧ aj = ⊥ whenever i ̸= j. Now, for any q ∈ Q, note that q =

∧
i<j∈[0,N ]((q ∧

¬ai) ∨ (q ∧ ¬aj)). This means 3
∧

i<j∈[0,N ]((q ∧ ¬ai) ∨ (q ∧ ¬aj)) is in u. If we
write the special axiom of N -WA algebras in terms of 3, we see that

3
∧

i<j∈[0,N ]

((q ∧ ¬ai) ∨ (q ∧ ¬aj)) ≤
∨

i∈[0,N ]

3(q ∧ ¬ai).

So
∨

i∈[0,N ]3(q ∧ ¬ai) ∈ u. Since u is an ultrafilter, there is an g(q) ∈ [0, N ] such
that (q ∧¬ag(q)) ∈ 3−1(u). Since this q is chosen arbitrarily from Q, essentially we
found a function g : Q → [0, N ] such that (q ∧ ¬ag(q)) ∈ 3−1(u). But this shows
that we can extend Q non-trivially inside 3−1u. Since Q is a filter and the range
of g is a finite set, there is l ∈ [0, N ] such that g−1(l) is a dense subset of Q in the
sense that for any a ∈ Q, there is b ∈ Q such that b ≤ a and g(b) = l. But then
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{q ∧ ¬al | q ∈ Q} is a subset of 3−1u and can be extended to a filter Q′ ⊆ 3−1u

by merely taking its upset closure since itself is downward directed. Clearly, ¬al is
in Q′ but not in Q, since otherwise vl cannot be an ultrafilter extending Q. So we
contradicted the maximality of Q.

Given the preceding argument, there is n ∈ [1, N ] such that all the ultrafilters
extendingQ can be listed as v1, . . . , vn. Since these are all the possible extensions,Q
must be equal to

⋂
{v1, . . . , vn}. Thus, let v⃗ ∈ Ult(W )N enumerate these vi’s with

possible repetition, and we have that
⋂

i v⃗[i] = Q ⊆ 3−1u and b ∈ Q =
⋂

i v⃗[i].
Now pick any u ∈ 3b̂. This means there is v⃗ ∈ Ult(B)N such that

⋂
i v⃗[i] ⊆

3−1u and b ∈
⋂

i v⃗[i]. Connecting these two claims, b ∈ 3−1u and thus u ∈ 3̂b. □

Now we observe that UF(B) is saturated in the right way.

Proposition 8. For anyN -WA algebra B = (B,2), UF(B) = (Ult(B), RUlt
2 , B̂) is

such that for any u ∈ Ult(B) and any filter S of B̂, if u ∈ 3X for any X ∈ S, then
u ∈ 3

⋂
S. Thus, if a model M = (Ult(B), RUlt

2 , V ) is a model such that for any
p ∈ Prop, V (p) ∈ B̂, then M is WA-saturated.

Proof. Let Q = {b ∈ B | b̂ ∈ S}. Since for any X ∈ S, u ∈ 3X , by reversing
the isomorphism ·̂, for any b ∈ Q, b ∈ 3−1u. Observe also that Q is a filter in B. So
Q is a filter contained in3−1u. By repeating the proof for Proposition 7, we see that
we can extendQ to a maximal filterQ′ among those contained in3−1u and find v⃗ ∈
Ult(B)N such that (1) v⃗ enumerates with possible repetition all ultrafilters extending
Q′ and (2)RUlt

2 (u, v⃗). Then for any i ∈ [1, N ], v⃗[i] is an ultrafilter extendingQ. This
means for any q ∈ Q, any i ∈ [1, N ], v⃗[i] ∈ q̂. In other words, set(v⃗) ∈

⋂
S as S is

just {q̂ | q ∈ Q}. Thus, u ∈ 3
⋂
S. □

Thus, we arrive at the right definition of ultrafilter extension:

Definition 13. Let F = (W,R) be an N -Kripke frame. Then define ue(F ) to
be UF(cmp(F ))− = (Ult(℘(W )), RUlt

2R
). Let M = (W,R, V ) be an N -Kripke

model. Then define ue(M) = (Ult(℘(W )), RUlt
2R
, V̂ ) where for any p ∈ Prop,

V̂ (p) = V̂ (p).

5 A Goldblatt-Thomason Theorem for WAML

In this section, we apply our ultrafilter/canonical extension construction to show
the analogue of Goldblatt-Thomason theorem for weakly aggregative modal logic.
As is well known, the most efficient way to prove this is the algebraic method. Hence
we assume a basic understanding of the algebraic treatment of modal logic, including
the following immediate consequence of the classic Birkhoff theorem.



88 Studies in Logic, Vol. 17, No. 6 (2024)

Proposition 9 (Birkhoff). Let K be a class of N -WA algebras and L the set of for-
mulas valid on every element of K. Then, an N -WA algebra B validates L iff B is a
homomorphic image of a subalgebra of a product of some algebras in K.

The following two facts on the duality functor UF are needed.

Proposition 10. Let B1 = (B1,21) and B2 = (B2,22) be N -WA algebras, and
f an homomorphism from B1 to B2. Then f̂ : Ult(B2) → Ult(B1) defined by
f̂(u2) = {b ∈ B1 | f(b) ∈ u2} is a continuous p-morphism from UF(B2) =

(Ult(B2), R
Ult
2 , B̂2) to UF(B1) = (Ult(B1), R

Ult
1 , B̂1) in the sense that

• f̂ is a p-morphism fromUF(B2)− = (Ult(B2), R
Ult
2 ) toUF(B1)− = (Ult(B1),

RUlt
1 );

• for any S ∈ B̂1, f̂−1[S] ∈ B̂2.

Proof. It is routine to check that, with · denoting the inverse of ·̂, f̂−1[S] = f̂(S),
or equivalently, for any b ∈ B1, f̂−1 [̂b] = f̂(b). So the second point is verified.

To check that f̂ is a p-morphism, first take any u ∈ Ult(B2) and v⃗ ∈ Ult(B2)
N

such that RUlt
2 (u, v⃗). This means that

⋂
i v⃗[i] ⊆ 3−1

2 u. Let f̂ v⃗ be the N -tuple where
f̂ v⃗[i] = f̂(v⃗[i]). Now we note that

⋂
i f̂ v⃗[i] ⊆ 3−1

1 f̂(u). This is because for any
b ∈ B1 such that b ∈ f̂ v⃗[i] for all i, f(b) ∈ v⃗[i] for all i, meaning that f(b) ∈

⋂
i v⃗[i].

So f(b) ∈ 3−1
2 u and thus 32f(b) ∈ u. Since f is a homomorphism, f(31b) ∈ u

and thus b ∈ 3−1
1 f̂(u). By definition of RUlt

1 , we have RUlt
1 (f̂(u), f̂ v⃗), and this is

enough for the forward direction requirement of p-morphism.
Now suppose there is w⃗ ∈ Ult(B1)

N such thatRUlt
1 (f̂(u), w⃗). LetP =

⋂
i w⃗[i],

which is an intersection of N ultrafilters and thus a filter in B1. Then let Q = f [P ],
the f image ofP . It is a standard exercise to show that, since f is a homomorphism,Q
is a filter inB2, and an ultrafilter v inB2 extendsQ iff f̂(v) is an ultrafilter extending
P iff f̂(v) ∈ set(w⃗). Thus, all we need to show is that there is v⃗ ∈ Ult(B2) such that
RUlt

2 (u, v⃗) and Q ⊆
⋂

i v⃗[i]. By saturation, it is enough to see that Q ⊆ 3−1
2 u. But

clearly P ⊆ 3−1
1 f̂(u). So for any b ∈ P , 31b ∈ f̂(u), f(31b) ∈ u, 32f(b) ∈ u,

f(b) ∈ 3−1
2 u. So indeed Q ⊆ 3−1

2 u. □

Fact 11. Let K be a set of N -WA frames. Then the complex algebra of the disjoint
union of all frames in K is isomorphic to the product of the complex algebras of the
individual elements of K.

Finally, the following connection between saturated ultrapower and ultrafilter
extension is needed.

Proposition 12. LetF = (W,R) be anN -WA frame. Then ue(F ) = UF(cmp(F ))− =

(Ult(℘(W )), RUlt) is a p-morphic image of an ultrapower of F .
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Proof. We extend the natural first-order language for F = (W,R) with new unary
predicates {PX | X ∈ ℘(W )} where PX ’s interpretation is precisely X . Then, with
a suitably chosen ultrafilter, by ultrapower we obtain a countably saturated first-order
structure F = (W,R, ⟨X⟩X∈℘(W )) (here X is the interpretation of PX ).

Define function g onW by g(s) = {X ∈ ℘(W ) | s ∈ X}. By Łoś’s theorem,
· is a Boolean homomorphism from ℘(W ) to ℘(W ), and thus g(s) ∈ Ult(℘(W )).
Conversely, for any u ∈ Ult(℘(W )), by countable saturation, {PX(x) | X ∈ u} is a
consistent 1-type realized in F . Thus g is a surjection fromW to Ult(℘(W )).

Now we show that g is a p-morphism from (W,R) to (Ult(℘(W )), RUlt). Pick
any s ∈ W . If R(s, t⃗). Let Q =

⋂
i g(⃗t[i]). By Łoś’s theorem, for any X ∈ g(s)

and Y ∈ Q,X ∩3RY must be non-empty in (W,R), since s in (W,R, ⟨X⟩X∈℘(X))

satisfies

PX(x) ∧ ∃y1 . . . ∃yn(R(x, y1, . . . , yN ) ∧ PY (y1) ∧ · · · ∧ PY (yN ))

and some w in (W,R, ⟨X⟩X∈℘(W )) must satisfies it as well. But since g(s) is an
ultrafilter, this means for any Y ∈ Q, 3RY is in fact in g(s). In other words,
Q ⊆ 3−1

R g(s). By saturation of (Ult(℘(W )), RUlt), there is v⃗ ∈ Ult(B)N such that
RUlt(g(s), v⃗) and Q ⊆

⋂
i v⃗[i]. Since Q is the intersection of the ultrafilters g(⃗t[i])

for i ∈ [1, N ], each v⃗[i] must equal one of the g(⃗t[j]). That is, set(v⃗[i]) ⊆ g[set(⃗t)].
This checks the forward direction for g being a p-morphism.

For the other direction, suppose RUlt(g(s), v⃗). Let Q =
⋂

i v⃗[i]. Then by the
definition of RUlt, 3RY ∈ g(s) for any Y ∈ Q. Consider the N -type with s as a
parameter:

τ = {R(s, y1, . . . , yn)} ∪
N⋃
i=1

{PY (yi) | Y ∈ Q}.

We claim that every finite subset δ of τ is satisfiable in F . Since Q is a filter, it is
enough to focus on δ of the form, with some Y ∈ Q,

{R(s, y1, . . . , yn), PY (y1), PY (y2), . . . , PY (yN )}.

This is satisfiable in F iff ∃y1 . . . yN (R(s, y1, . . . , yN )∧
∧

i PY (yi)) is true in F . But
note that in F , the following sentence is true merely by the interpretation of P3RY

and PY :

∀x(P3RY (x) ↔ ∃y1 . . . yN (R(x, y1, . . . , yN ) ∧
∧
i

PY (yi))).

By Łoś’s theorem, the same is true in F . Since3RY ∈ g(s) by assumption, P3RY (s)

is true in F , and hence δ is satisfiable. So τ is finitely satisfiable, and by saturation
satisfiable, say by t⃗[1], . . . , t⃗[N ]. Then R(s, t⃗) and for each i ∈ [1, N ], g(⃗t[i]) is an
ultrafilter extendingQ, which means g(⃗t[i])must be one of the v⃗[i]’s. In other words,
set(⃗t) ⊆ g−1[set(v⃗)]. This concludes the proof that g is a p-morphism. □
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Now we are ready for the Goldblatt-Thomason theorem.

Theorem 13. Let K be a class of N -WA frames that is closed under ultrapower,
disjoint union, generated subframes, and p-morphic image, and reflects ultrafilter
extension in the sense that if ue(F ) ∈ K then F ∈ K. Then K is modally definable:
let L be the set of formulas valid on each frame in K, then any N -WA frame F that
validates L is already in K.

Proof. Let cmp(K) be the {cmp(tF ) | F ∈ K}. Then by Birkhoff’s theorem,
for any N -WA frame F , if F validates L, then cmp(F ) is a homomorphic image
of a subalgebra of a product of some algebras in cmp(K). Since K is closed under
disjoint union, cmp(F ) is a homomorphic image of a subalgebra of some element
in cmp(K). More precisely, there is an N -WA algebra B and a H ∈ K and f, g
such that f is a surjective homomorphism from B to cmp(F ) and g is an injective
homomorphism from B to cmp(H). Dualizing everything by UF, we see that f̂
is an injective p-morphism from ue(F ) = UF(cmp(F ))− to UF(B)− and ĝ is a
surjective p-morphism from ue(H) = UF(cmp(H))− to UF(B)−. In other words,
ue(F ) is (isomorphic) to a generated subframe of a p-morphic image of ue(H). Now
ue(H) ∈ K since it is a p-morphic image of an ultrapower of H and K is closed in
these operations. So ue(F ) is also in K. Then F ∈ K. □

6 Conclusion

We conclude with several prominent unaddressed questions. First, we believe
the analogue of Fine’s canonicity can be proved without much difficulty. But more
interesting would be finding a large fragment of formulas for which automated first-
order correspondence and canonicity can be proven. Let D(∧) be the fragment of L
that is generated by 3 and ∧ from Prop. It seems clear that any formula of the form
φ → ψ where φ ∈ D(∧) and ψ is a positive formula is amenable to minimal valua-
tion technique of computing a first-order correspondence. Then, a general canonicity
theorem can be proven. But we further conjecture that the fragment D(∧) can be
replaced by D(∧,∨) where we can also use ∨ in addition to 3 and ∧.
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弱聚合模态逻辑的饱和模型与超滤展开

丁一峰 刘佶鑫

摘 要

弱聚合模态逻辑（WAML）是一类弱于正规模态逻辑系统 K的逻辑。这类逻
辑在基于多元关系的克里普克框架上的语义定义如下：2φ在一个可能世界上为

真当且仅当该世界的后继序组中有某个世界使得 φ为真。本文研究了 WAML相
对于这类语义学的饱和模型和超滤展开，并应用两者证明了WAML的 Goldblatt-
Thomason定理。
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