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Stable Domination and Generic Stability of Linear
Algebraic Groups over C|[t]]*

Chen Ling Ningyuan Yao

Abstract. C((t)) is the formal Laurent series over the field C of complex numbers. It is a
henselian valued field, and its valuation ring, denoted by C[[t]], is the formal power series over
C. Let K be any model of Th(C((¢))) with Ok its valuation ring and k its residue field. Then
k is algebraically closed and Ok is elemenatry equivalent to C[[¢]].

We first describe the definable subsets of Ok, showing that every definable subset X of Ok
is either res-finite or res-cofinite, i.e., the residue res(X) of X, is either finite or cofinite in
k. Moreover, X is res-finite iff Ox\ X is res-cofinite. Applying this result, we show that
GL(n, Ok), the group of invertible n by n matrices over the valuation ring, is stably dominated
via the residue map. As a consequence, we conclude that GL(n, Ok) is generically stable,
generalizing Y. Halevi’s result, where K is an algebraically closed valued field.

1 Introduction

The notion of generically stable types was introduced by Hrushovski and Pillay
to describe the “stable-like” behavior in NIP environment. ([11]) Briefly, a type overa
monster model M, called a global type, is generically stable over a small submodel M
if it is finitely satisfiable in and definable over M. A global type is generically stable
if it is finitely satisfiable in and definable over some small submodel. The theory of
algebraically closed valued fields, denoted by ACVF, is considered a typical “stable-
like” NIP theory, since the non-trivial generically stable types exist. As a contrast,
for the “purely unstable” NIP theories, say p-adically closed fields (pCF), there is no
non-trivial generically stable type.

In this paper, we study the structures which are elementarily equivalent to C((¢)),
the field of formal Laurent series over the complex numbers. It is natural to consider
Th(C((t))) as a mixture of the “stable-like” theory ACVF and the “purely unstable”
theory pCF. To see this, let K = Th(C((¢))), K1 =ACVF and K = pCF, with
residue fields k, k; and ko; value groups I', I'; and I', respectively. Then k = k;
and I' = T'. On the other side, according to Ax-Kochen-Ershov ([1, 7]), the theory of
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a henselian valued field is completely determined by the theories of its residue field
and its value group if its residue field has characteristic 0. Let K = C((¢)). We study
the definable subsets of O, where O is the valuation ring of K. Our first result is:

Theorem 1. Letres : O — k be the residue map, X C Ok a definable set. Then
there exists a finite Z C k such that either X C res'(Z) orres 1 (k\Z) C X.

Let T be an NIP theory, Ml = 7" a monster model. Recall from [9] that a defin-
able set D C MF is stably embedded if for any formula ¢(z, ), there is a formula
Y(z, Z) such that for all tuple a there is tuple d from D such that

{re D'|M=¢(z,a)} = {T € D'|M|=¢(z,d)}

Recall from [14] that a definable D C MF is stable if there is no formula ¢(z, ) and

a sequence of tuples (a;, b; )i, With a; € D" for some r, such that
M E ¢(a;, bj) <= i<j

Let A C Mandp € S, (M) an A-definable global type. Let ¢ be another A-definable
type and f an A-definable function. The type p is dominated by q via f ifall A C B,

afEp|B < alplAand f(a) = q|B,

We say p is stably dominated if there exists a stable, stably embedded definable set
D such that ¢ is concentrated on D and p is dominated by ¢ via f.

Let G € M" be a definable group, and S (M) the space of all complete types
over M which concentrate on G. A global type p € Sg(M) is called G-generic if
p has a bounded orbit under the action of G, namely, G - p = {g - p| g € G} has
cardinality < |M].

Let K be a monster model of a valued field, with Ok its valuation ring and ki its
residue field. We now consider K as a two sorted structure (K, kg ), then the residue
map res : Ox — kg is a @-definable function. Now we assume that K = C((¢)),
then the residue sort ki is stable and stably embedded since it is an algebraically
closed field. Let GL(n, Ok) be the group of invertible n by n matrices over Ok.
Then we get stable domination of these groups:

Theorem 2. Let G be Ok or GL(n, Ok), then

(i) G has a unique global G-generic type p , € Sc(K).
(ii) pg y is dominated by q = res(p, ) via the residue map, where res(p ) is the
image of p, , under the residue map. In fact, we have

0k poy > res(a) Fa.

Remark 1. Since p,, , is the unique global G-generic type, it is G-invariant. As a
consequence, G = GO,
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Recall from [11] that a definable group G is generically stable if there is a gener-
ically stable type p € Si(M) which is G-generic.

Let K be a monster model of ACVF, Y. Halevi showed that GL(n, Ok) is gener-
ically stable. ([8], Example 5.1.1) Applying the stable domination, we generalize Y.
Halevi’s result to the case where K is a monster model of Th(C((t))):

Theorem 3. Let G be Ok or GL(n, Ok), then G is generically stable, witnessed by
pG,lK'
Applying the following Fact:

Fact4 ([12], Corollary 4.5). Let G be an algebraic group, IV an algebraic subgroup.
Let H be a definable subgroup of GG in an algebraically closed valued field, with H
generically stable. Then H N N is generically stable.

Y. Halevi was able to show that:

Fact 5 ([8], Corollary 5.1.2). Let K be a monster model of ACVFE. If N is an alge-
braic subgroup of GL(n, K), then N N GL(n, Ok) is generically stable.

It is reasonable to arise a question that whether or not Fact 5 holds in the case
where K = Th(C(())).

The paper is organized as follows. For the rest of this section, we recall some
basic facts around valued fields and C((¢)) and introduce notations we use. In section
2, we prove that every definable subset of the valuation ring O is either res-finite or
res-cofinite. In section 3, we give a generically stable type pirans k, Which witnesses
the generic stability of Ok and U. From this onwards, in section 4, we show that for
every n, GL(n, Ok ) has a unique GL(n, Ok )-generic and generically stable type that
is dominated by its image under the residue map.

1.1 Preliminaries

Let K be a field, (I', >) an ordered abelian group, and v : K — I' U {o0},
where co > I'. We say (K, v) or K is a valued field, if v is an onto map satisfying
the following for all z,y € K:

(i) v(z) = 0 iffz = 0.

(i) v(z +y) > min(v(z),v(y)).

(i) v(zy) = v(z) + v(y).
We call v its valuation map and I its value group. We denote O := {z € K| v(z) >
0} the valuation ring of K, mg := {x € K| v(x) > 0} the unique maximal ideal
of Ok, and k = Ok /my the residue field of K. The residue map is the natural
projection

res: Ox — k, ©+— z/mg.
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For each x € K we call v(x) the valuation of z. For each z € Ok we call res(z) the
residue of z. If f(z) = apz™ + -+ + a1x + ag € O], then by res(f) we mean
the polynomial

res(ap)z"™ + - - - +res(ar)x + res(ag) € k[z].
We call O henselian, if for any f € Ok|z] and o € Ok satisfying

fla) € mg and f'(a) ¢ my,

there exists a € Ok such that f(a) = 0 and a = o mod mg, where f'(z) is the
derivative of f(x). We say K is a henselian valued field if O is henselian.

For any a € Ok and f(z) € Ok|z], res(f(a)) = res(f)(res(a)). For any
subset X of Ok, by res(X) we mean the set {res(a)| a € X}. It is easy to see that
res(AUB) = res(A)Ures(B) andres(ANB) C res(A)Nres(B) forany A, B C O.

Let K* = K\{0} be the multiplicative group. Then the set of n-th powers
P,(K*) = {a"| a € K*} is a subgroup of K*, which is definable in the language of
rings.

From now on, K will denote a henselian valued field with an algebraically closed
residue field of characteristic 0, i.e. k is algebraically closed of characteristic 0.

Lemma 1. Forany c € K, ifv(c) = 0, then ¢ € P,(K*) for any n € N>,

Proof. We consider the polynomial f(z) = 2™ — ¢ where ¢ € K and v(c) = 0. As
k is algebraically closed, and res(c) is nonzero, ™ — res(c) has a nonzero root in k.
So there is b € K such that v(b) = 0 and res(f(b)) = (res(b))" — res(c) = 0.

Thus f(b) = b" — ¢ € my. Since char(k) = 0, the derivative f/(b) = nb" ! ¢
my. Now K is henselian, so f(x) has a root in b + mg, and thus ¢ € P, (K™). This
completes the proof. (I

Corollary 1. Foranyb € K*, b € P,(K*) iffv(b) € nI' = {ny| v € T'}.

Proof. Suppose that b € P, (K™), then there is a € K™ such that b = a™. So
v(b) = v(a™) = nv(a) € nl.

Conversely, suppose that b € K* such that v(b) = nwv(a) for some a € K*.
Then v(ba™) = v(b) — nv(a) = 0. By Lemma 1, we see that ba™ € P, (K™).
Since a™" € P,(K*), we have b € P,,(K™) as required. O

Fact 6. ([6], Theorem 2.9) The residue field k can be lifted. Namely, there is a
subfield £ of Ok such thatres : ¥ — k is an isomorphism. So we can consider k as
a subfield of O

Remark 2. Note that the lift £ of k in Fact 6 is not unique. According to the
discussion before Theorem 2.9 of [6], Fact 6 has a stronger variant: Let £y C Ok be
a lift of a subfield kg of k, then E can be extended to a lift of k.
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1.2 Model Theory of C((t))

Let C((t)) be the field of formal Laurent series over the field C of complex
numbers. Elements of C((t)) are of the form Y2 a;t?, where ¢ is a variable, n € Z,
each a; € C. C((t)) is a henselian valued field with the valuation map:

v:C((t) = ZU{oo}, Y ait' > min{i| i > nand a; # 0}.
The valuation ring of C((¢)) is C[[t]] = {>_52,, a;t’| n € N}, and the residue field of
C((t)) is C (see [6] for details).
Let Lying = {0,1, 4+, x } be the language of rings and

Lvg = Lying U{ | ,N}U{P,| n € N>}

an expansion of Ly, for the valuation ring, where the new predicate x|y is interpreted

as v(z) < v(y), N(z) is interpreted as v(x) = 1, and P, (z) is interpreted as the set

of n-th powers. Note that any atomic Ly p-formula ¢)(Z) in Th(C((¢))) is equivalent

to one of the following four types:

Type (i) f(z) = 0, where f is a polynomial over Z.

Type (i) f(Z)|g(Z), where f, g are polynomials over Z. (For convenience, we will
write “v(f (7)) < v(g(9))” for “f(z)lg(x)")

Type (iii) P,(f(z)), where f is a polynomial over Z.

Type (iv) N(f(z)), where f is a polynomial over Z.

The theory Th(C((¢))) has NIP and quantifier elimination in the language Ly r
([5]). So any Ly r-formula is equivalent to a Boolean combination of the formulas of

Type (1)-(iv).

Remark 3. Let K = C((¢)). Since C((t)) E Vz(N(z) + (v(x) = v(t))), we
have K | JyVa(N(x) <> (v(z) = v(y))), which means that there is a € K such
that K = Vz(N(x) <> (v(z) = v(a))). So any Ly r-formula ¢(Z) with parameters
from K is equivalent to a Boolean combination of the formulas {¢;(Z,b;)| i < n},
where ¢;(Z, 7;)’s are formulas of Type (i)-(iii) and b;’s are tuples from K.

Remark 4. Let K = C((t)). Then the relation “res(z) = res(y)” on O is defin-
able in the language Ly g, in fact, res(z) = res(y) is defined by the formula

v(z) > 0Av(y) >0Av(x—1y)>0.
Lemma 2. Let K = C((t)) and f(z) € k[z], where T = (z1, ..., Tyn), then the set
{a € Ok| f(res(a)) = 0}

is definable in the language Ly g with parameters from Of.
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Proof. Let! : k — Og be a lift of the residue field. Then res(l(b)) = b for all
b€ k. Letl(f) € Ok[z] be the lift of f under . Then

{a € Ok| f(res(a)) = 0} = {a € Ok[ v(i(f)(a)) > 0},
which is clearly definable. U

According to Lemma 2, for each f € k[z], itis reasonable to consider “f(res(z)) =
0 as a formula in the language Ly g with parameters from O

1.3 Notations

We use T to denote the complete theory of C((¢)) in the language of Ly r. Let &
be an arbitrarily large cardinal, and K a x-saturated, strongly x-homogeneous model
of T, with valuation ring Ok, residue field kx, and value group I'x. We call an object
“small” or “bounded” if it is of cardinality < k.

For A a subset of K, an Ly r(A)-formula is a formula with parameters from
A. If ¢(z) is an Ly r(K)-formula and A C K, then ¢(A) is the collection of the
realizations of () from A, namely, $(A) = {a € Al| K = 4(a)}.

From now on, K will denote an elementary small submodel of K. When we
speak of a set X definable subset of K, we mean that X C K" is defined by some
Ly r(K)-formula. If X C K™ is a definable subset of K, we use X (x) to denote the
formula which defines X, and Sx (K) to denote the space of complete types over K
concentrating on X.

When we speak of a K-definable set X, we mean a definable subset of K defined
by an Ly r(K)-formula. In general, when we speak of a definable object (set, or
group) we mean a definable object in K.

Let R be a local ring (or just an integral domain), then GL(n, R) will denote the
group of n2-tuples Z from R such that det(7) is invertible in R. Clearly, GL(n, R) is
a group definable in R, defined in the language of rings.

GL(n,K) C K™ " is the general linear algebraic group over K, consisting of
all n x n invertible matrices over K, defined by the formula “det(z) # 0”. It is
easy to see that GL(n, Ok) is a subgroup of GL(n,K). Note that GL(n, Og) #
GL(n,K) N O™" since the latter is NOT a group. Let U = {a € K| v(a) = 0} be
the set of units in Ok, it is easy to see that U = GL(1, Ok).

If X C K", then by res(X'), we mean the set {res(a)| a € X N O}. If A C
B C K and p € S,,(B) a complete type over B, then by p|A we mean the restriction
{¢ € p| ¢ isaformulaover A}. If p = tp(a/K) and a € Of, then by res(p) we
mean the complete type tp(res(a)/k).

Our notations for model theory are standard, and we will assume familiarity with
basic notions such as very saturated models (or monster models), partial types, type-
definable, finitely satisfiable, etc. We refer reader to [15] as well as [13].
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2 Definable Subsets of the Valuation Ring

In this section, we will study the definable subsets of Ox. Let f(x), g(x) € K]x]
be polynomials. Suppose that

f(x) =0bo+ -+ byz".
Letes € {bo,-- , by} such that

v(ef) = min{v(b;)| i =0,--- ,n}.
Let f* = f/ey, then f* € Og|x]. Itis easy to see that f and f* have the same zeros.

Remark 5. Leta € Ok such that f(a) € Ok. Since res is a homomorphism from
Ok to k, we see that f(a) # 0 whenever res(f(a)) # 0. We conclude directly that
if X = {a € Ok| f(a) =0} and Z = {u € k| res(f)(u) = 0}, then X C res~}(2)
andres 1 (k\Z) C O\ X.

Lemma 3. Suppose that a € Ok. Ifres(f*(a)) # 0, then v(f(a)) = v(ey).

Proof. Clearly, v(f(a)) = v(ef) + v(f*(a)). Since res(f*(a)) # 0, we have
v(f*(a)) = 0. Sov(f(a)) = v(es) as required. O

Corollary 2. Let g € K[z]. If X = {a € Ok| v(f(a )) v(g(a))} then there is a
finite set Z C k such that either X C res™(Z) orres™1(k\Z) C X.

Proof. Suppose that g(z) = ¢y + - - + ¢pa™. Take e4 € {co,- - , ¢} such that
v(eg) = min{v(c;)| j =0,--- ,m}. Let g* = g/ey and

Z ={c ekl (res(f)(c) = 0) v (res(g”)(c) = 0)}.

Then Z is finite. By Lemma 3, if v(e) < v(ey), thentes ! (k\Z) C X. If v(eys) >
v(eg), then X C res™1(2). O

Lemmad4. If X = {a € Og| K = P,(f(a))}, then there is a finite set Z C k such
that either X C res™H(Z) orres™1(k\Z) C X.

Proof. Let Z = {c € k| res(f*)(c) = 0}. By Lemma 3, v(f(a)) = v(ey) when-
evera ¢ res™1(Z). By Corollary 1, ifv(es) € nl', thenres ™! (k\Z) C X, otherwise,
X Cres™1(Z). O

Let Z C kand X C Ok, then it is easy to see that X C resfl(Z) implies
es 1(k\Z) C (Ox\X), and res 1 (k\Z) C X implies O\ X C res™1(Z). Sum-
marising Remark 5, Corollary 2, and Lemma 4, we conclude that
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Corollary 3. Suppose that X is either p(K,a) or ~p(K,a), where a is a tuple from
K and o(x,7) is an Ly g-formula of Type (i)-(iii). Then there is a finite set Z C k
such that either X N O C res Y (Z) or res ™ (k\Z) C X N O. In particular,
res(X N Ok) is finite iff res(Ox \ X) is cofinite in k.

Theorem 7. Let Y C O be definable, there is a finite set Z C k such that
res 1 (k\Z) C Y ifres(Y) is infinite. In particular, res(Y) is cofinite in k iff
res(Ox \Y) is finite.

Proof. By quantifier elimination and Remark 3, we may assume that Y is a finite
boolean combination of sets given in Corollary 3. Suppose that Y = (;_; Uj‘:1 Yi i,
where each Y] ; is either either ¢; (K, a; ;) or ~¢; j(K,a;;), where each a; ; is a
tuple from K and each ¢; j(x, g; ;) is an Ly g-formula of Type (i)-(iii). By Corollary
3, for each Y; ;, there is a finite set Z; ; C k such that either Y; ; C res_l(Zm-) or
res_l(k\Zi,j) C Ok\Yi;. Let Z = Uigr,jgs Z; j, then we have that either Y; ; C
res 1 (Z) orres }(k\Z) C Ok\Y;; foreachi < rand j < s. Clearly, res(Y) C
N Ui res(Yiy).

If res(Y') is infinite, then for each i < r there is j(i) < s such that res(Y] ;(;)) is
infinite, hence is cofinite in k. Thus res~! (k\ Z) is contained in Y; ;) for eachi < r,
we conclude that res~! (k\ Z) is contained in Y. O

Definition 1. We call a definable subset X of K res-finite (resp. res-cofinite) if
res(X N Ok) is finite (resp. cofinite). We call an Ly r(K) formula ¢(z) res-finite
(resp. res-cofinite) if p(K) is res-finite (resp. res-cofinite).

Let ¢(x) be an Ly (K )-fromula. By Theorem 7, ¥ ( K) res-finite iff =) (K) is
res-cofinite.

Corollary 4. Let X be a definable subset of Ok, Ko a subfield of K. If X is res-
cofinite, then X N Ko # 2.

Proof. By Theorem 7, there is a cofinite subset Z* C k such that res™!(Z*) C X.
Let kg be the residue field of K. Then kg is a subfield of k. Clearly, Z* N kg is
nonempty as ko is infinite. Take any u € Z*Nkg and @ € Ok, such thatres(a) = u,
thenu € X N K. [l

3 Stable Domination and Generic Stability of Ox and U

Recall that by a definable group in K, we mean a definable set G and a definable
map - : G X G — G such that (G, -) is a group. We call an Ly p(K)-formula p(z) a
G-formula if K = VZ(p(z) — G(Z)).

In this section, K will also be an arbitrary elementary submodel of K. Suppose
that G is definable over K. The type space Si(K) of G over K can be also consider
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as the space of ultrafilters of the algebra of G-formulas over K. If ¢ € G(K) and
©(z) is a G-formula, then by g - ¢, we mean the formula ¢(g~! - Z). It is easy to see

that (9-¢)(K) = g-(¢(K)). If g € G(K)andp € Sg(K),theng-p = {g-¢| ¢ € p}.
It is easy to see that g - p € S (K). Let

Prans i (%) = {v(2) = 0} U {h(res(x)) # O] h(z) € klz]}.
We see from Remark 4 that p, . is a partial type over K.
Lemma 5. Let o(x) be an Ly p(K )-formula, then p,, . = ©(x) iff it is res-cofinite.

Proof. Suppose that ¢ is res-finite. Thenres(p(K)NOk) = {u1, - ,uy} is finite.
Let h(z) =[] (x — u;), then h(z) € k[z] and

{a € Ok| h(res(a)) #0} Np(K) = 2.

Namely, (v(z) = 0) A (h(res(z)) # 0)) is inconsistent with (). Since

(v(z) = 0) A (h(res(x)) # 0)) € Py

we conclude that p,. .. = ().
Suppose that ¢ is res-cofinite. Then there is a finite set Z = {uy, -+ ,u,} C k
such that res™!(k\Z) C p(K). Let h(z) =[], (¥ — u;), then

{a € K(v(a) = 0) A (h(res(a)) # 0)} C res™ (k\Z) C o(K).

so we have
K v (0(0) = 0) A (h(res(a)) £ 0) = pla) ),

which implies that p,. . = ©(z). O

By Theorem 7, an Ly r(K)-formula ¢(x) is res-finite (resp. res-cofinite) iff
—p(x) is res-cofinite (resp. res-finite). So we see from Lemma 5 that p,, . deter-
mines a complete type over K, abusing the notation, this complete type is also denoted
BY Diuns i -

The residue field k of K is algebraically closed. It is well-known that the theory
of algebraically closed fields has quantifier elimination in the language L.;n4. So
every definable subset of k is finite or cofinite. Let g, , € Si(k) be the unique
transcendental type over k, namely, g, = {f(x) # 0| fe k[x]}. Tt is easy to see

that q,,,, , is precisely res(pmms’ x): forany a = Doans. 16 > res(a) = [/

Theorem 8. p,_ .. is dominated by q,__, via the residue map.
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Proof. Suppose that a |= ¢, , and @ € res (a). Let ¢(z) be an Ly p(K)-
formula. By Theorem 7, res(p(K) N Ok) is a definable subset of k. Let ¢(x)
be an L;;p4-formula with parameters from k such that ¢ (kx) = res(¢(K) N Ok).
Suppose that @ = ¢(x), then a € ¥ (kg). Since a realizes the transcendental type
over k, we see that ¢)(k) is cofinite. We conclude that a realizes every res-cofinite
Ly g-formula over K, so a realizes p,,, , by Lemma 5. U

Lemma 6. Let G be either (Ox,+) or (U, x), then p,,, . is G-invariant, conse-
quently, p,.... . is a global G-generic type.

Proof. Let &, and &,, be the additive group (kx, +) and the multiplicative group
(kx\{0}, x) respectively. Since k is strongly minimal, g, , is invariant under
both the actions of &, and &,,,.

Note that res : Og — ki is a ring homomorphism with res(Ox) = &, and
res(U) = &,,,. We see from stable domination that p,, . is G-invariant. g

We now show that p,. . € S1(K) is a generically stable type.
Lemma 7. p_ . is finitely satisfiable in every elementary submodel of K.

Proof. Let K be an elementary submodel of K and ¢(x) an Ly r(K)-formula.
Suppose that ¢(z) € p,,, x- By Lemma 5, ¢(z) is res-cofinite, and by Corollary 4,
©(K) N Ky # @. This completes the proof. ]

Lemma8. p_ . is definable over &.

Proof. For each Ly p formula o(x,3), let
D@ = {E € KIQ" SO(.CC, 5) € ptrans,K}'

To see the definability of p,,. .., we need to show that: For each Ly g formula p(x, ),
D, is @-definable. By quantifier elimination, we only need to check the formulas of
Type (i)-(iv). (Note that Remark 3 does not apply since our parameter set is just
dcl(@), rather than a model)

Let f(x,9) = go(y) + 91(7)x + -+ + gn(y)2", where go, ..., gn € Z[g]. By
Remark 5, we see that

{be KW (f(2,) = 0) € Py} = {b € K| go() = ... = g (b) = 0}

Obviously, @-definable. So D, is @-definable for any formula p(x, i) of Type (i).
Suppose that p(x, 3) is of the Type (ii), namely, of the form

o(f(2,9)) < v(g(z,9)),

where
f(@,9) = g0(y) + g1(y)z + - + gn(y)z",
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and
g(x,2) = ho(§) + h1(§)x + - - + hun ()™,

By Lemma 3, for any be Kl
0(2,b) € Pograns,x == min{v(g;(b))| i < n} < min{v(h;(b))|j < m}.
Clearly,
D, = {b € K| min{v(g;(b))| i <n} <min{v(h;())|j < m}}

is definable over @.
Suppose that p(z, ) is of the Type (iii), namely, of the form P,,,(f(x, 3)), where

f@,9) =900 + 1Pz + - + gn(y)2"
By Corollary 1 and Lemma 3, for each b € K%l we have that
P8 € e =V (] (i) < vl5500) A Pul ) ).
=0 *j5=0

Clearly,

be 101\ (A (o) < o0, 69) A Pt

=0 j=0

is definable over @.
Suppose that ¢(x, 3) is of the Type (iv), namely, of the form N (f(z, 7)), where

f(@,9) = g0(%) + q1(@)z + -+ + gn(y)a"™.

By Lemma 3, for each b € K/7!, we have that

n

N(f(@B) € pommx < \/ (/\ o(gi( >><v<g]<b>>)AN<gz<b>>)

=0 =0
Clearly,
e k1 (\ (a®) < (o) A Nai®)
i=0 *j7=0

is definable over &. O
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Remark 6. It is easy to see from the proof of Lemma 8 that: For any elementary
extension Ky of K, p,,. ., is definable over &, and is the unique heir of p, ., over
K.

Summarizing Lemma 7, Lemma 8, and Lemma 6, we have that
Theorem 9. (Ox, +) and (U, x) are generically stable, and p,,,, . is a witness.

Fact 10 (See Lemma 9.7 and Lemma 9.12 of [3]). Let X C K" be a definable
set, F a type-definable equivalence relation on X, defined over K. If |X/E]| is
small/bounded, then for every a,b € X, a/E = b/ E whenever tp(a/K) = tp(b/ K).

Let G be a group definable in K, H a subgroup of G, and A C K a set of
parameters. We call H a type-definable subgroup of G over A if H < G is defined
by a partial type over A. Suppose that H < G is a type-definable subgroup over K
with small/bounded index, namely, |G/H| < |K]|, then the above fact says that each
p € Sg(K) determines a coset of H, i.e. , forany g1, g2 € G, tp(g1/K) = tp(g2/K)
implies that gy H = g9 H. Since T has NIP, by [10], G has the smallest type-definable
subgroup of bounded index, written G°°, which is type-definable over & and called
the type-definable connected component of G. The following fact is a folklore:

Fact11. Let G be a group definable in K. If there is a global type p € S¢(K) which
is G-invariant, namely, g - p = p for all ¢ € G, then G = G.

Proof. Let H be a type-definable subgroup of G over A of bounded index. Let K
be an elementary small submodel of K such that A C K and K meets every coset
of H. Let pg € Sg(K)p) be the restriction of p to K. Then g - pg = pg for all
g € G(Kp). Assume that p is contained in some coset of H, say gH. If H is a proper
subgroup of G, then there is ¢’ € G such that ¢'gH # gH. Since ¢’ - p is contained
in g'gH, we see that p # ¢’ - p. A contradiction. O

We conclude from Lemma 6 and Fact 11 that:

Corollary 5. Let G be Ok or U, then G = G,

4 Stable Domination and Generic Stability of GL(n, O)

In this section, we identify an n-tuple @ € K™*" with an n x n matrix. Recall
that
GL(n, Ok) = {g € O*"| det(g) € U}

is the group of invertible n x n matrices over Ok, and

GL(n, kx) = {a € k| det(a) # 0}
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is the n x n general linear algebraic group over kk. Let G denote the group GL(n, Ok)
and & denote the group GL(n, kk). Clearly, G is an @-definable group in the home
sort, and & is an @-definable group in the residue sort. Suppose that g = (g;;) €
O™, by res(g) we mean the matrix (res(g;;)) € kp™". It is easy to see that the
map:

g—res(g),G — &

is an onto group homomorphism. We denote this homomorphism by res for conve-
nience.
The following fact is easy to verify.

Fact 12. Let My < M; < My < Mj be structures over a language L. Let b € M3
and a € M.

(i) If both tp(b/M2) and tp(a/M;) are definable over My, then tp(a,b/M;) is de-
finable over M.

(i) If both tp(b/M>) and tp(a/M) are finitely satisfiable in M), then tp(a,b/M;)
is finitely satisfiable in M.

Now we consider the small submodel K. Let K = Ky < K7 < --- < K2 be

an elementary chain such that g; € K; and g; |= p,,, ., , foreachi =1,--- ,n2.
Let g* = (g1,...,gn2). Let k; be the residue field of K; for i = 0,...,n?. Since
res(g;) is transcendental over k;, foreachi = 1, -- ,n?, the transcendence degree

trdeg(res(g*)/k) (or, equivalently, algebraic dimension dim(res(g*)/k)) of res(g*)
over k is n?, we see that res(det(g*)) = det(res(g*)) # 0, so det(g*) € U, and thus
g* € G. Letpg, . € Sg(K) be the type realized by g*.

Lemma 9. Let p, ;. be as the above, then p, , is definable over and finitely satisfi-
able in every small submodel of K.

Proof. Let M < K. Then by Lemma 7 and Lemma 8, tp(g;/K;—1) = Proans 6, is
definable over and finitely satisfiable in M for each i = 1,--- ,n%. Applying Fact
12 and induction on i < n?, we conclude that p, . is definable over and finitely
satisfiable in M. ' O

Note that since p,,,, , has a unique heir over any set A 2 K, we see that p,, ;.
is realized by any tuple b = (h1,- -, h,2) € G such that by |= p,,. ., he [= the
unique heir of p,. - over K U{h1},---,and h,> [= the unique heir/coheir of p,_,., ,
over K U{hi, - ,hp2_1}.

Let H be a group definable in an w-stable structure &/. We say that p € Sy (i)
is generic if the Morley rank of p equals to the Morley rank of H. Note that “generic”
coincides with “H -generic” in w-stable theories. If H is definably-connected, namely,
H has no proper definable subgroup of finite index, then Sy () contains a unique
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generic type, and p € Sy (U) is generic iff p is H-invariant (see Chapter 2 of [2] for
details).

Now the residue field k algebraically closed field, hence is w-stable, and the
transcendence degree of a tuple a over k coincides with the Morley rand of tp(a/k).
Let g5, € Se(k) be a generic type. Since & C kﬂ’g is an irreducible algebraic
group over &, it is definably-connected. So g, , is the unique generic type in Sg (k).
Clearly, g, ,, is &(k)-invariant. Moreover, for each a € &,

akqs, < trdeg(a/k)= n?,

which implies that g, , = res(p, ), namely, is realized by res(g*) for any

g ):pG,K'

q(‘é,k

Theorem 13. p, . is dominated by q,, ,, via the residue map. Namely, for any a € G,

akE Pox = res(a) = Qo e

To prove Theorem 13, we need to prove the following Lemmas. Let F be any
field, then by F?2 we mean the (field-theoretic) algebraic closure of E. If £ C K,
we say that F is algebraically closed in K if ¢ N K = F.

Lemma 10. Suppose that Ko C K is algebraically closed in K. If there is u € Ky
such that v(u) = 1, then Ky < K.

Proof. Clearly, K is a valued subfield of K with valuation ring O, = Ko N Ok.
It is also easy to see that K is henselian since K is algebraically closed in K, and K
is henselian. We claim that the residue field kg of K| is algebraically closed, i.e. an
elementary substructure of k. By Fact 6, kg has a lift £y in Of,,. By Remark 2, Ej
can be extended to a lift I of k, so we can consider kg as a subfield k. Since K is
algebraically closed in K, we see that kg is algebraically closed in k, which implies
that kg is an algebraically closed field.

Secondly, we show that I, the value group of K, is an elementary substructure
of I'. Let X C T" be a nonempty set definable over I'y in the language of Presburger
arithmetic. It suffices to show that X N[y # @. By [4], we may assume that X is of
the form

X={nella<n<BADyn-7}

where o, 3,7 € Iy, and D, () is the predicate for “z is divisible by n. Take any
a,b,u € Ky such that v(a) = a,v(b) = Band v(u) = 1. If 8 — a € N>, then
there is i < (3 — « such that v(u’a) = i + v(a) € X NTy. Otherwise, assume
that 5 — a > N. Take any ¢ € K| such that v(¢) = 7. There is ¢ < n such that
v(ula/c) =i+ v(a) — v(c) is divisible by n. Let n = v(ua), thennp € X N T,
Now we see that kg < k and 'y < I', according to the Ax-Kochen-Ershov-
results, Ky < K (see Theorem 4’ of [5] for details). O
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Lemma 11. Let E < kg such that E ~ k. Then there exists K1 < K such that
K1 > K and the residue field k1 of K1 is E.

Proof. By Fact 6, we consider E as a subfield of K. Let K be the algebraic closure
of FUK in K. By Lemma 10, K; < K. Since K C K, weseethat K < K. Letk;
be the residue field of K;. We now verify that k; = E. Clearly, £ C k;. Conversely,
consider k; a subfield of K; and take any a € k;. Let F' be the field generated by
E UK. If a ¢ F, then there is non-constant f(z) = ¢o + - - ¢,z € F[z] such
that f(a) = 0. Let A = min{v(¢;)| i = 0,--- ,n} and f* = f/A. Thenres(f*)isa
nonzero polynomial over £ and

res(f*)(a) = res(f*)(res(a)) = res(f*(a)).

Since f*(a) = f(a) = 0, res(f*(a)) = 0. We conclude that a is algebraic over E.
Since F is algebraically closed, a € E. This completes the proof. O

Proof of Theorem 13 Leta = (a1, -+ ,a,2) = ¢y, Let Ey = k, and each E;
is the algebraic closure of F;_1(a;—;1) fori = 1,..., n2. By Lemma 11, there is an
elementary chain K = Ky < K1 < ... < K,2 such that k; = FE;, where k; is the
residue field of K. Since a; is transcendental over k;_1, we have that a; = g, .. .
for each i < n?. Suppose that a* = (af,--- ,a’,) € res”'(a). Then by Theorem 8,
we see that ] = P, x, , fori=1,-- ,n?. S0 a@* = p, ;. as required. O

Corollary 6. p, ,. is G(K)-invariant, namely, g-p., ,» = pg  forallg € G(K). In
particular, p, . is a witness of the generic stability of G.

Proof. Letg € G(K), thenres(g) - s, = Gy, SINCE g4, is B(k)-invariant. We
see that if h |= g - p ., then

res(h) = res(g) - Qor = o -
Since p, , is dominated by g, , via the residue map, g - p ,, = p, , as required. [
Corollary 7. p,, . is the unique witness of the generic stability of G.

Proof. Suppose that r € Sg(K) witnesses the generic stability of G, then ry =
res(r) is also a witness of the generic stability of &. Since & has only one such
witness, we see that rg = g, ,,. Since p, ;. is dominated by g, , via the residue map,
T = Ppgx as required. O

We conclude from Fact 11, Corollary 6, and Corollary 7 that:

Corollary 8. G = G,
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