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Propositions Formalized in Chu Spaces*

Shengyang Zhong

Abstract. In the literature, there are many relational semantics of propositional logics each
of which, although a satisfaction relation is defined, seems to have a “manyvalued” intuition
behind. More precisely, this means that a proposition can take one of more than two “truth
values” at a state. In this paper, we use a kind of mathematical structures called Chu spaces
to model such intuition; and we choose possibility semantics of classical logic, orthologic and
Holliday’s fundamental logic to do case studies. We formalize some informal reasonings about
the intuition behind the relational semantics of these three logics, make explicit the underly
ing assumptions and discover some new consequences of the intuition behind these relational
semantics in our setting.

1 Introduction

Relational semantics is a useful tool in studying logics. ([3, 6, 10]) Bivalence,
a feature of classical logic, is kept in relational semantics of many logics. To be
precise, given a formula and a point in a relational structure, the satisfaction relation
either holds or not between them. Then we get different relational semantics which
can characterize different logics by varying the properties of the relation(s) and the
requirement on the sets of points which can be interpretations/truth sets of formulas.
Arguably, the relation, its properties and the requirement on truth sets of formulas are
formal apparatus, whose intuition behind should and can be explained. Moreover, it is
worth trying to formalize such explanation. This will result in more concrete models
of logics and make explicit the intuition behind logics.

In this paper, we try to implement this process on three logics: (possibility se
mantics of) classical logic, orthologic and Holliday’s fundamental logic. We will
briefly discuss this process on intuitionistic logic at the end.

The intuition behind the relational semantics of these logics has already been
extensively discussed and even partially formalized in the literature. For possibility
semantics of classical logic, please refer to [7] and [9]. For orthologic, a detailed
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treatment can be found in [2]. For fundamental logic, please refer to [8]. A com
mon feature of these discussions is that they all exploit some kind of threevalueness.
In possibility semantics of classical logic, given a possibility and a proposition, at
the possibility the proposition could be settled as true, settled as false or neither. The
background of orthologic is quantum physics. Given a state of a quantum system and
a test of a property of the system, the results of performing the test on the state could
be always positive, always negative or neither, i.e. some positive and some negative.
In fundamental logic, given a state and a proposition, at the state the proposition could
be accepted, rejected or neither. By the way, according to these discussions, a for
mula satisfied at a point corresponds to a proposition settled as true at a possibility in
possibility semantics, the results of performing a test at a state being always positive
in orthologic and a proposition being accepted at a state in fundamental logic, re
spectively. Moreover, for any two points in a relational structure, the intuition behind
the relation holding between them can be somehow explained via the “truth value” or
mode of the propositions at the two points.

Here we use Chu spaces ([4]) over a threeelement set to try to formalize the
informal and implicit threevalued reasoning behind the discussion mentioned above.
In a Chu space, both states/possibilities and tests/propositions are considered as prim
itives and represented by elements from two sets. Moreover, there is an evaluation
function which takes a state/possibility and a test/proposition as input and returns an
element of a fixed threeelement set indicating the “truth value” /mode between the
two. We consider such mathematical structures the simplest for modelling the discus
sion mentioned above with the least builtin assumptions. Then, following [2, 7, 8],
we put axioms on Chu spaces and try to formalize the reasoning in these papers. In the
meantime, we make explicit the assumptions needed in each step of these reasoning
and try to detect any results which may have been bypassed in these papers.

The rest of this paper is organized as follows: In Section 2, we set up the gen
eral framework for our analysis of propositions in Chu spaces. Sections 3 to 5 are
the three instances of case study, possibility semantics of classical logic, orthologic
and Holliday’s fundamental logic, respectively. These three sections follow the same
pattern; and the order is such that the definitions and the properties of the binary re
lations successively become weaker and, arguably, less intuitive. Section 6 contains
the conclusion and some discussion of future work.

2 The Setting

The mathematical structures used in this paper are Chu spaces over a three
element set, which are defined as follows:

Definition 1. A Chu space (over 3) is a tuple S = (X,A, e) such that both X and
A are nonempty sets and e is a function from X × A to 3. In set theory, 3 is a
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threeelement set, which we write as {T, I,F} here. In particular, T ̸= F.
For any x, y ∈ X , we write x ∼ y if and only if, for each P ∈ A, e(x, P ) =

e(y, P ).
For any P,Q ∈ A, we write P ≈ Q, if and only if, for each x ∈ X , e(x, P ) =

e(x,Q).

Remark 1. Originally, in S,X is interpreted as a set of objects,A a set of attributes
and e an evaluation function indicating how an object relates to an attribute. Here we
interpret X as a set of (possible) states, A a set of propositions and e an evaluation
function indicating the relation between a state and a proposition. T can be interpreted
as “being settled as true” in [7], “always positive” in [2] or “being accepted” in [8]; F
can be interpreted as “being settled as false’ in [7], “always negative” in [2] or “being
rejected” in [8]. I means neither and leaves the space between T and F.

Please note that we assume neither of the following:

1. for any x, y ∈ X , x ∼ y implies x = y;
2. for any P,Q ∈ A, P ≈ Q implies P = Q.

Given a Chu space S = (X,A, e), we will take a binary relation ⊑ on X such
that, for any x, y ∈ X , x ⊑ y implies that they satisfy some conditions on their
values of e with elements in A. In different semantics, the concrete conditions for ⊑
are based on different intuitions and thus different. For example, x ⊑ y is interpreted
as “x is a refinement of y” in possibility semantics ([7]), “x is nonorthogonal to y”
in orthologic and “x is open to y” in fundamental logic ([8]).

With such a binary relation, we investigate three topics:
First, we characterize in terms of ⊑ the set of the form {x ∈ X | e(x, P ) = T}

for a P ∈ A. Intuitively, sets of such a form are extensions of propositions. We
observe that significant characterizations emerge, when a further property is added on
S such that T holds between P and as many elements inX as possible. To be precise,
it is the nontrivial direction of (A1) in Section 2.3 of [7] which is the following:

(A1’) for any x ∈ X and P ∈ A, if, for each y ∈ X , y ⊑ x implies e(y, P ) ̸= F,
then e(x, P ) = T.

We will discuss using our formal setting the intuition behind (A1’) in Section 5.3,
where the condition on the relation ⊑ is the weakest among the three instances of
case study and thus the discussion is the most general.

Second, we give a uniform definition of negation adapted from Notion 5 in [2]:

Definition 2.

1. For each P ∈ A, Q ∈ A is a negation of P , if, for each x ∈ X , both of the
following hold:
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(a) e(x,Q) = T if and only if e(x, P ) = F;
(b) e(x,Q) = F if and only if e(x, P ) = T.

2. S is negationclosed, if each P ∈ A has a negation.

Remark 2. Item (a) is (A3) in Section 2.5 of [7].
Note:

1. For any P,Q ∈ A, P is a negation of Q, if and only if Q is a negation of P .
2. For any P,Q,Q′ ∈ A, if both Q and Q′ are negations of P , then Q ≈ Q′.

The intuition behind this definition is that the role of T and F in a proposition
and that in its negation switches.

This definition of negation seems to have built in the double negation law. As can
be seen from the proofs below, Item (a) is not needed in characterizing negations in
many semantics.1 Hence wemay drop Item (a) and get a weaker definition of negation
that may not satisfy the double negation law.

Following the idea in the literature, we will show that, combining with the non
local condition (A1’), this arguably local definition shares the features of different
concrete and nonlocal definitions of negation in different semantics. Moreover,
negationclosedness adds symmetry between T and F in a Chu space in the sense
of the following result.

Proposition 1. Let S be negationclosed. The following are equivalent:

(A1’) For any x ∈ X and P ∈ A, if, for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= F,
then e(x, P ) = T.

(A2’) For any x ∈ X and P ∈ A, if, for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= T,
then e(x, P ) = F.

Here (A2’) is the nontrivial direction of (A2) in Section 2.3 of [7].

Proof. From (A1’) to (A2’): Let x ∈ X and P ∈ A be arbitrary. Since S is
negationclosed, let Q be a negation of P . Assume that, for each y ∈ X , if y ⊑ x,
then e(y, P ) ̸= T. Since Q is a negation of P , by Item (b) in the definition, for each
y ∈ X , if y ⊑ x, then e(y,Q) ̸= F. By (A1’) e(x,Q) = T, so by Item (a) in the
definition e(x, P ) = F.

From (A2’) to (A1’): Let x ∈ X and P ∈ A be arbitrary. Since S is negation
closed, let Q be a negation of P . Assume that, for each y ∈ X , if y ⊑ x, then
e(y, P ) ̸= F. Since Q is a negation of P , by Item (a) in the definition, for each
y ∈ X , if y ⊑ x, then e(y,Q) ̸= T. By (A2’) e(x,Q) = F, so by Item (b) in the
definition e(x, P ) = T. □

1This is because we use (A1’), which we think is intuitive and useful. If we use (A2’) introduced in
Proposition 1, Item (a), instead of Item (b), is needed.
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Third, we give a uniform definition of disjunction adapted from [7]:

Definition 3.

1. For P,Q ∈ A, R ∈ A is a disjunction of P and Q, if, for each x ∈ X ,
e(x,R) = F if and only if e(x, P ) = F and e(x,Q) = F.2

2. S is disjunctionclosed, if any P,Q ∈ A have a disjunction.

Remark 3. For any P,Q,R,R′ ∈ A, it is possible that both R and R′ are disjunc
tions of P and Q but R ̸≈ R′. Let X = {x, y} and A = {P,Q,R,R′}:

P Q R R′

x F F F F
y I I T I

This is no longer the case if we add axioms to S (cf. Propositions 4, 7 and 10
below).

Following the idea in the literature, we will show that, combining with the non
local condition (A1’), this arguably local definition shares the features of different
concrete and nonlocal definitions of disjunction in different semantics, provided that
T and F are symmetric enough in a Chu space.

Finally, since we have clear intuition, we briefly give a uniform definition of
conjunction adapted from [7]:

Definition 4.

1. For P,Q ∈ A, R ∈ A is a conjunction of P and Q, if, for each x ∈ X ,
e(x,R) = T if and only if e(x, P ) = T and e(x,Q) = T.3

2. S is conjunctionclosed, if any P,Q ∈ A have a conjunction.

Remark 4. For any P,Q,R,R′ ∈ A, it is possible that both R and R′ are conjunc
tions of P and Q but R ̸≈ R′.

3 Possibility Semantics of Classical Logic

In this section, we formalize the intuition behind possibility semantics of clas
sical logic, according to [7] and [9]. For convenience, we fix a Chu space S =

(X,A, e).
Define a binary relation ◁ on X as follows:

2This is (A5) in Section 2.5 of [7].
3This is (A4) in Section 2.5 of [7].
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Definition 5. ◁ is the binary relation onX such that, for any x, y ∈ X , x ◁ y if and
only if both of the following hold:

1. for each P ∈ A, e(y, P ) = T implies that e(x, P ) = T;
2. for each PnA, e(y, P ) = F implies that e(x, P ) = F.

Remark 5. Note that:

1. ◁ is reflexive and transitive.
2. The roles of T and F are symmetric in this definition.

Let ⊑ be a (not necessarily proper) subset of ◁ which is reflexive and transitive.

3.1 Proposition

Here we show that the notion of propositions in our setting coincides with that in
[7]. The result is (C1) in Section 2.4 of [7]. Our proof is different, for we do not use
(A2’) or other stronger axioms. Moreover, we find that these can also be characterized
by persistence in intuitionistic logic (Item (iii) in the following proposition).

Proposition 2. Let S satisfy (A1’).
For any x ∈ X and P ∈ A, the following are equivalent:

(i) e(x, P ) = T;
(ii) for each y ∈ X , if y ⊑ x, then there is a z ∈ X such that z ⊑ y and e(z, P ) =

T;
(iii) for each y ∈ X , if y ⊑ x, e(y, P ) = T.

Proof. From (i) to (ii): Let y ∈ X be such that y ⊑ x. By (i) and Item 1 in
Definition 5 e(y, P ) = T. Moreover, by reflexivity y ⊑ y. Hence y is the required z.

From (ii) to (iii): Let y ∈ X satisfy y ⊑ x. Suppose (towards a contradiction)
that e(y, P ) ̸= T. By (A1’) there is a y′ ∈ X such that y′ ⊑ y and e(y′, P ) = F.
Consider y′. Since y′ ⊑ y and y ⊑ x, y′ ⊑ x. Moreover, since e(y′, P ) = F, for
each z ∈ X , z ⊑ y′ implies that e(z, P ) = F and thus e(z, P ) ̸= T. This contradicts
(ii). Hence e(y, P ) = T.

From (iii) to (i): By reflexivity x ⊑ x. By (iii) e(x, P ) = T. □

According to the analysis in [7], Item (i) is equivalent to Item (iii) plus a condition
called refinability. We show that in our setting refinability always holds because of
(A1’), so Item (i) is equivalent to Item (iii) alone.

Lemma 1. Let S satisfy (A1’). For any x ∈ X andP ∈ A, if e(x, P ) ̸= T, then there
is a y ∈ X such that y ⊑ x and, for each z ∈ X , z ⊑ y implies that e(z, P ) ̸= T.

Proof. Assume that e(x, P ) ̸= T. By (A1’) there is a y ∈ X such that y ⊑ x and
e(y, P ) = F. Hence for each z ∈ X , z ⊑ y implies that e(z, P ) = F and thus
e(z, P ) ̸= T. □
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3.2 Negation and Disjunction

In this section, we investigate negation and disjunction in possibility semantics.
First we show that the notion of negations in our setting coincides with that in

[7]. The equivalence between (i) and (iii) below is mentioned without detailed proof
as (C4) in [7]. Moreover, we find that negation can also be characterized by an ap
parently stronger condition (Item (ii) in the following proposition).

Proposition 3. Let S satisfy (A1’). For any x ∈ X and P,Q ∈ A such that Q is a
negation of P , the following are equivalent:

(i) e(x,Q) = T;
(ii) for each y ∈ X , if y ⊑ x, then e(y, P ) = F;
(iii) for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= T.

Proof. From (i) to (ii): Assume that e(x,Q) = T. Let y ∈ X satisfy y ⊑ x.
Since y ⊑ x, e(y,Q) = T. Since Q is a negation of P , by Item (a) in the definition
e(y, P ) = F.

From (ii) to (iii): Since T ̸= F, it holds.
From (iii) to (i): Assume that, for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= T.

Since Q is a negation of P , by Item (b) in the definition, for each y ∈ X , if y ⊑ x,
then e(y,Q) ̸= F. By (A1’) e(x,Q) = T. □

Remark 6. The equivalence between (i) and (iii) does not need Item (a) in the def
inition of negation. From the proof, it is obvious that the direction from (iii) to (i)
does not need it. In the direction from (i) to (iii), we can derive from e(y,Q) = T
that e(y,Q) ̸= F, and then get e(y, P ) ̸= T by Item (b) in the definition.

Therefore, it seems that (ii) is equivalent to (i) as well as (iii), only if we use
both Item (a) and Item (b) to define the notion of negation, which builds in the double
negation law. If we use the weaker definition of negation which only has Item (b),
(ii) will be strictly stronger than (i) and (iii). Consider the following example where
X = {x, y}, A = {P,Q} and

P Q

x I T
y F T

Then we show that the notion of disjunctions in our setting coincides with that
in [7]. The proof of the direction from (i) to (ii) is essentially the informal proof of
(C5) in [7]. Here we also need (A2’) in Proposition 1, which is the following:

(A2’) For any x ∈ X and P ∈ A, if, for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= T,
then e(x, P ) = F.
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Proposition 4. Let S satisfy (A1’) and (A2’).
For any P,Q,R ∈ A, the following are equivalent:

(i) R is a disjunction of P and Q;
(ii) for each x ∈ X , e(x,R) = T if and only if, for each y ∈ X , if y ⊑ x, then there

is a z ∈ X such that z ⊑ y and at least one of e(z, P ) = T and e(z,Q) = T
holds.

In particular, this equivalence holds, if S is negationclosed.

Proof. From (i) to (ii): First assume that e(x,R) = T. Let y ∈ X be such that
y ⊑ x. By definition e(y,R) = T. Then e(y,R) ̸= F. By (i) e(y, P ) ̸= F or
e(y,Q) ̸= F. By (A2’) there is a z ∈ X such that z ⊑ y and at least one of e(z, P ) =

T and e(z,Q) = T holds.
Second assume that, for each y ∈ X , if y ⊑ x, then there is a z ∈ X such that

z ⊑ y and at least one of e(z, P ) = T and e(z,Q) = T holds. Let y ∈ X be such
that y ⊑ x. By the assumption there is a z ∈ X such that z ⊑ y and at least one of
e(z, P ) = T and e(z,Q) = T holds. By definition e(y, P ) ̸= F or e(y,Q) ̸= F. By
(i) e(y,R) ̸= F. By (A1’) e(x,R) = T.

From (ii) to (i): First assume that e(x,R) = F. Let y ∈ X be such that y ⊑ x.
By definition e(y,R) = F. Then e(y,R) ̸= T. By (ii) there is a z ∈ X such
that z ⊑ y and, for each u ∈ X , if u ⊑ z, then e(u, P ) ̸= T and e(u,Q) ̸= T. By
Proposition 2 e(y, P ) ̸= T and e(y,Q) ̸= T. By (A2’) e(x, P ) = F and e(x,Q) = F.

Second assume that e(x, P ) = F and e(x,Q) = F. Let y ∈ X satisfy y ⊑ x.
By definition e(y, P ) = F and e(y,Q) = F. Suppose (towards a contradiction) that
e(y,R) = T. On the one hand, by reflexivity y ⊑ y. By (ii) there is a u ∈ X such
that u ⊑ y and at least one of e(u, P ) = T and e(u,Q) = T holds. On the other hand,
since u ⊑ y ⊑ x, by transitivity u ⊑ x. By the assumption and Item 2 in Definition
5 e(u, P ) = F and e(u,Q) = F. We get a contradiction. Hence e(y,R) ̸= T. By
(A2’) e(x,R) = F. □

4 Orthologic

In this section, we formalize the intuition behind orthologic, following [2]. For
convenience, we fix a Chu space S = (X,A, e).

Define a binary relation ◁ on X as follows:

Definition 6. ◁ is the binary relation onX such that, for any x, y ∈ X , x ◁ y if and
only if both of the following hold:

1. for each P ∈ A, e(y, P ) = T implies that e(x, P ) ̸= F;
2. for each P ∈ A, e(y, P ) = F implies that e(x, P ) ̸= T.
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Remark 7. Note that:

1. ◁ is reflexive and symmetric.
2. The roles of T and F are symmetric in this definition.
3. Comparing with the definition in the previous section, e(x, P ) = T is weak

ened to e(x, P ) ̸= F and e(x, P ) = F is weakened to e(x, P ) ̸= T.

Let⊑ be a (not necessarily proper) subset of ◁which is reflexive and symmetric.

4.1 Proposition

We show that the notion of propositions in our setting coincides with that in [6].

Proposition 5. Let S satisfy (A1’).
For any x ∈ X and P ∈ A, the following are equivalent:

(i) e(x, P ) = T;
(ii) for each y ∈ X , if y ⊑ x, then there is a z ∈ X such that z ⊑ y and e(z, P ) =

T.

Proof. From (i) to (ii): Let y ∈ X be such that y ⊑ x. By (i) and Item 1 in
Definition 6 e(x, P ) = T. Moreover, by symmetry x ⊑ y. Hence x is the required z.

From (ii) to (i): Assume that, for each y ∈ X , if y ⊑ x, then there is a z ∈ X

such that z ⊑ y and e(z, P ) = T. Suppose (towards a contradiction) that e(x, P ) ̸=
T. By (A1’) there is a y ∈ X such that y ⊑ x and e(y, P ) = F. By the assumption
there is a z ∈ X such that z ⊑ y and e(z, P ) = T. Since z ⊑ y, e(y, P ) ̸= F,
contradicting that e(y, P ) = F. □

4.2 Negation and Disjunction

In this section, we study negation and disjunction in orthologic. First we show
that the notion of negations in our setting coincides with that in orthologic ([6]).

Proposition 6. Let S satisfy (A1’). For any x ∈ X and P,Q ∈ A such that Q is a
negation of P , the following are equivalent:

(i) e(x,Q) = T;
(ii) for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= T.

Proof. From (i) to (ii): Assume that e(x,Q) = T. Let y ∈ X satisfy y ⊑ x. By
definition e(y,Q) ̸= F. Since Q is a negation of P , by Item (b) in the definition
e(y, P ) ̸= T.

From (ii) to (i): Assume that, for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= T.
Since Q is a negation of P , Item (b) in the definition, for each y ∈ X , if y ⊑ x, then
e(y,Q) ̸= F. By (A1’) e(x,Q) = T. □
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Then we show that the notion of disjunctions in our setting coincides with that
in orthologic. For this, we also need (A2’). In fact, since ⊑ is symmetric, we can
also use (A2−) introduced in the next section.

Proposition 7. Let S satisfy (A1’) and (A2’)/(A2−).
For any P,Q,R ∈ A, the following are equivalent:

(i) R is a disjunction of P and Q;
(ii) for each x ∈ X , e(x,R) = T if and only if, for each y ∈ X , if y ⊑ x, then there

is a z ∈ X such that z ⊑ y and at least one of e(z, P ) = T and e(z,Q) = T
holds.

In particular, this equivalence holds if S is negationclosed.

Proof. From (i) to (ii): First assume that e(x,R) = T. Let y ∈ X be such that
y ⊑ x. By definition e(y,R) ̸= F. By (i) e(y, P ) ̸= F or e(y,Q) ̸= F. By (A2’)
there is a z ∈ X such that z ⊑ y and at least one of e(z, P ) = T and e(z,Q) = T
holds.

Second assume that, for each y ∈ X , if y ⊑ x, then there is a z ∈ X such that
z ⊑ y and at least one of e(z, P ) = T and e(z,Q) = T holds. Let y ∈ X be such
that y ⊑ x. By the assumption there is a z ∈ X such that z ⊑ y and at least one of
e(z, P ) = T and e(z,Q) = T holds. By definition e(y, P ) ̸= F or e(y,Q) ̸= F. By
(i) e(y,R) ̸= F. By (A1’) e(x,R) = T.

From (ii) to (i): First assume that e(x,R) = F. Let y ∈ X be such that y ⊑ x.
By definition e(y,R) ≠ T. By (ii) there is a z ∈ X such that z ⊑ y and, for each
u ∈ X , if u ⊑ z, then e(u, P ) ̸= T and e(u,Q) ̸= T. By Proposition 5 e(y, P ) ̸= T
and e(y,Q) ̸= T. By (A2’) e(x, P ) = F and e(x,Q) = F.

Second assume that e(x, P ) = F and e(x,Q) = F. Let y ∈ X be such that
y ⊑ x. Suppose (towards a contradiction) that e(y,R) = T. By symmetry x ⊑ y.
By (ii), there is a u ∈ X such that u ⊑ x and at least one of e(u, P ) = T and
e(u,Q) = T holds. By Definition 6 at least one of e(x, P ) ̸= F and e(x,Q) ̸= F
holds, contradicting the assumption. Hence e(y,R) ̸= T. By (A2’) e(x,R) = F. □

5 Holliday’s Fundamental Logic

In this section, we formalize the intuition behind Holliday’s fundamental logic,
according to [8]. For convenience, we fix a Chu space S = (X,A, e).

Define a binary relation ◁ on X as follows:

Definition 7. Take a binary relation ◁ onX such that, for any x, y ∈ X , x◁y if and
only if, for each P ∈ A, e(y, P ) = T implies that e(x, P ) ̸= F.

Remark 8. Note that:
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1. ◁ is reflexive.
2. The roles of T and F are not symmetric in this definition.
3. Comparing with the definition in the previous section, only Item 1 is kept and

Item 2 is deleted.

Let ⊑ be a (not necessarily proper) subset of ◁ which is reflexive.

5.1 Proposition

We show that the notion of propositions in our setting coincides with that in [8].

Proposition 8. Let S satisfy (A1’).
For any x ∈ X and P ∈ A, the following are equivalent:

(i) e(x, P ) = T;
(ii) for each y ∈ X , if y ⊑ x, then there is a z ∈ X such that y ⊑ z and e(z, P ) =

T.

Proof. From (i) to (ii):
Let y ∈ X be such that y ⊑ x. By (i) and Definition 7 e(x, P ) = T. Since

y ⊑ x, x is the required z.
From (ii) to (i): Assume that, for each y ∈ X , if y ⊑ x, then there is a z ∈ X

such that y ⊑ z and e(z, P ) = T. Suppose (towards a contradiction) that e(x, P ) ̸=
T. By (A1’) there is a y ∈ X such that y ⊑ x and e(y, P ) = F. By the assumption
there is a z ∈ X such that y ⊑ z and e(z, P ) = T. Since e(y, P ) = F and y ⊑ z, by
definition e(z, P ) ̸= T, contradicting that e(z, P ) = T. □

5.2 Negation and Disjunction

In this section, we study negation and disjunction in fundamental logic. First we
show that the notion of negations in our setting coincides with that in [8].

Proposition 9. Let S satisfy (A1’). For any x ∈ X and P,Q ∈ A such that Q is a
negation of P , the following are equivalent:

(i) e(x,Q) = T;
(ii) for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= T.

Proof. From (i) to (ii): Assume that e(x,Q) = T. Let y ∈ X satisfy y ⊑ x. By
definition e(y,Q) ̸= F. Since Q is a negation of P , by Item (b) in the definition
e(y, P ) ̸= T.

From (ii) to (i): Assume that, for each y ∈ X , if y ⊑ x, then e(y, P ) ̸= T.
Since Q is a negation of P , by Item (b) in the definition, for each y ∈ X , if y ⊑ x,
then e(y,Q) ̸= F. By (A1’) e(x,Q) = T. □
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Then we show that the notion of disjunctions in our setting coincides with that
in [8]. For this, we also need (A2−), a variant of (A2’).

(A2−) for any x ∈ X and P ∈ A, if, for each y ∈ X , x ⊑ y implies that e(y, P ) ̸= T,
then e(x, P ) = F.

It is the nontrivial direction of the intuitive meaning of rejecting a proposition ex
plained in Remark 4.2 in [8]. The direction from (i) to (ii) in the following result is
also mentioned without proof in the last sentence of this remark.

Proposition 10. Let S satisfy (A1’) and (A2−).
For any P,Q,R ∈ A, the following are equivalent:

(i) R is a disjunction of P and Q;
(ii) for each x ∈ X , e(x,R) = T if and only if, for each y ∈ X , if y ⊑ x, then there

is a z ∈ X such that y ⊑ z and at least one of e(z, P ) = T and e(z,Q) = T
holds.

Proof. From (i) to (ii): First assume that e(x,R) ̸= T. By (A1’) there is a y ∈ X

such that y ⊑ x and e(y,R) = F. By (i) e(y, P ) = F and e(y,Q) = F. Then, for
each z ∈ X such that y ⊑ z, e(z, P ) ̸= T and e(z,Q) ̸= T.

Second assume that e(x,R) = T. Let y ∈ X satisfy y ⊑ x. By definition
e(y,R) ̸= F. By (i) e(y, P ) ̸= F or e(y,Q) ̸= F. In either cases, by (A2−) there is a
z ∈ X such that y ⊑ z and at least one of e(z, P ) = T and e(z,Q) = T holds.

From (ii) to (i): First assume that e(x, P ) = F and e(x,Q) = F. Let y ∈ X

satisfy x ⊑ y. Consider x. We have x ⊑ y and, for each z ∈ X , if x ⊑ z, then by the
assumption and definition e(z, P ) ̸= T and e(z,Q) ̸= T. By (ii) e(y,R) ̸= T. By
(A2−) e(x,R) = F.

Second assume that e(x,R) = F. Let y ∈ X satisfy x ⊑ y. Then e(y,R) ̸= T.
By (ii) there is a z ∈ X such that z ⊑ y and, for each u ∈ X , z ⊑ u implies that
e(u, P ) ̸= T and e(u, P ) ̸= T. By Proposition 8 e(y, P ) ̸= T and e(y,Q) ̸= T. By
(A2−) e(x, P ) = F and e(x,Q) = F. □

5.3 (A1’), (A2−) and Maximality

In this subsection, we discuss the intuition behind (A1’) and (A2−) via some
formal results. We start with some definitions about TF pair.

Definition 8. Let S = (X,A, e) be a Chu space.

1. A TF pair in S is an ordered pair (U, V ) ∈ ℘(X)× ℘(X)4 such that, for any
x ∈ U and y ∈ V , y ̸⊑ x.

4For a set A, ℘(A) denotes the power set of A.
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2. A TF pair (U, V ) is Tmaximal, if, for each TF pair (U ′, V ′), U ⊆ U ′ and
V ⊆ V ′ imply that U = U ′.

3. A TF pair (U, V ) is Fmaximal, if, for each TF pair (U ′, V ′), U ⊆ U ′ and
V ⊆ V ′ imply that V = V ′.

4. A TF pair (U, V ) is maximal, if, for each TF pair (U ′, V ′), U ⊆ U ′ and
V ⊆ V ′ imply that U = U ′ and V = V ′.

Proposition 11. For each P ∈ A, the following are equivalent:

(A1’(P)) For each x ∈ X , if, for each y ∈ X , y ⊑ x implies e(y, P ) ̸=
F, then e(x, P ) = T.

(TMax(P))
(
{x ∈ X | e(x, P ) = T}, {x ∈ X | e(x, P ) = F}

)
is a

Tmaximal TF pair.

Proof. From (A1’(P)) to (TMax(P)): First prove that it is aTF pair. Let x, y ∈ X

such that e(x, P ) = T and e(y, P ) = F. By definition y ̸⊑ x.
Second prove Tmaximality. Assume that (U, V ) is a TF pair such that {x ∈

X | e(x, P ) = T} ⊆ U and {x ∈ X | e(x, P ) = F} ⊆ V .
Let x ∈ U . For each y ∈ X satisfying y ⊑ x, since x ∈ U and (U, V ) is a TF

pair, y ̸∈ V and thus y ̸∈ {x ∈ X | e(x, P ) = F}, so e(y, P ) ̸= F. By (A1’(P))
e(x, P ) = T.

From (TMax(P)) to (A1’(P)): Assume that, for each y ∈ X , y ⊑ x implies
e(y, P ) ̸= F. Then

(
{x ∈ X | e(x, P ) = T} ∪ {x}, {x ∈ X | e(x, P ) = F}

)
is

a TF pair. Since {x ∈ X | e(x, P ) = T} ⊆ {x ∈ X | e(x, P ) = T} ∪ {x}, by
(TMax(P)) e(x, P ) = T. □

Corollary 1. The following are equivalent:

(A1’) For any x ∈ X and P ∈ A, if, for each y ∈ X , y ⊑ x implies
e(y, P ) ̸= F, then e(x, P ) = T.

(TMax) For each P ∈ A,
(
{x ∈ X | e(x, P ) = T}, {x ∈ X |

e(x, P ) = F}
)
is a Tmaximal TF pair.

Proposition 12. For each P ∈ A, the following are equivalent:

(A2−(P)) For each x ∈ X , if, for each y ∈ X , x ⊑ y implies e(y, P ) ̸=
T, then e(x, P ) = F.

(FMax(P))
(
{x ∈ X | e(x, P ) = T}, {x ∈ X | e(x, P ) = F}

)
is an

Fmaximal TF pair.

Proof. From (A2−(P)) to (FMax(P)): The proof that it is a TF pair is the same as
that in Proposition 11. For Fmaximality, assume that (U, V ) is a TF pair such that
{x ∈ X | e(x, P ) = T} ⊆ U and {x ∈ X | e(x, P ) = F} ⊆ V .
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Let x ∈ V . For each y ∈ X satisfying x ⊑ y, since x ∈ V and (U, V ) is a TF
pair, y ̸∈ U and thus y ̸∈ {x ∈ X | e(x, P ) = T}, so e(y, P ) ̸= T. By (A2−(P))
e(x, P ) = F.

From (FMax(P)) to (A2−(P)): Assume that, for each y ∈ X , x ⊑ y implies
e(y, P ) ̸= T. Then

(
{x ∈ X | e(x, P ) = T}, {x ∈ X | e(x, P ) = F} ∪ {x}

)
is

a TF pair. Since {x ∈ X | e(x, P ) = F} ⊆ {x ∈ X | e(x, P ) = F} ∪ {x}, by
(FMax(P)) e(x, P ) = F. □

Corollary 2. The following are equivalent:

(A2−) For any x ∈ X and P ∈ A, if, for each y ∈ X , if x ⊑ y, then
e(y, P ) ̸= T, then e(x, P ) = F.

(FMax) For each P ∈ A,
(
{x ∈ X | e(x, P ) = T}, {x ∈ X |

e(x, P ) = F}
)
is an Fmaximal TF pair.

Corollary 3. The following are equivalent:

(i) S satisfies (A1’) and (A2−).
(Max) For each P ∈ A,

(
{x ∈ X | e(x, P ) = T}, {x ∈ X |

e(x, P ) = F}
)
is a maximal TF pair.

Proof. Note that (Max) is equivalent to (TMax) and (FMax) together. □

Finally, (A2’) in possibility semantics can be analyzed in the same way. The key
is to observe that (A2’) follows from (A2−), so we may assume (A2−) in our analysis
of possibility semantics. Please note that in the following the definition of ⊑ is the
one in Section 3.

Lemma 2. Let S = (X,A, e) be a Chu space. (A2−) implies (A2’) (introduced in
Proposition 1.)

Proof. Let x ∈ X and P ∈ A be arbitrary. Assume that, for each y ∈ X , y ⊑ x

implies e(y, P ) ̸= T. Note that, for each y ∈ X satisfying x ⊑ y, e(y, P ) ̸= T;
otherwise, by definition e(x, P ) = T and by reflexivity x ⊑ x, contradicting the
assumption. By (A2−) e(x, P ) = F. □

6 Conclusion and Future Work

In this paper, we use Chu spaces to formalize the discussion about the intuition
behind the relational semantics of three logics, namely, possibility semantics of clas
sical logic, orthologic and Holliday’s fundamental logic, in the literature. ([2, 7, 8,
9])
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1. The definition of Chu spaces is from [4]. Many other definitions are formaliza
tions of their informal counterparts in the literature. These include: Definition
2 (from [2]), Definitions 3, 4 and 5 (from [7]), Definition 6 (from [2, 6]) and
Definition 7 (from [8]). The conditions (A1’) and (A2’) are both inspired by
[7], and (A2−) is inspired by [8].

2. Some results are formalizations of their informal counterparts in the literature.
These includes:

(a) the equivalence between (i) and (ii) in Proposition 2;
(b) the equivalence between (i) and (iii) in Proposition 3;
(c) the direction from (i) to (ii) in Proposition 4;
(d) Propositions 8 and 9, as well as the direction from (i) to (ii) in Proposition

10, are mentioned and considered straightforward in [8].

The analysis of orthologic here follows the pattern in Section 2 in [7].
3. The directions from (ii) to (i) in Propositions 4 and 10 complete the analysis in

[7] and [8].
4. Section 5.3 is completely original and is the main contribution of this paper.

We propose the axiom (Max) whose intuition is arguably clear and simple: for
each proposition P , minimize the set {x ∈ X | e(x, P ) = I}. And we prove
that it is equivalent to (A1’) and (A2−) together, which are sufficient, and pos
sibly necessary, to derive all the results we want in all three semantics under
consideration.

The investigation in this paper is highly tentative. The additional “truth value” I
introduces great flexibility with which it is still not clear how to deal properly. Cur
rently it seems that Chu spaces satisfying (Max) is a general and proper setting. How
ever, many questions are still waiting for studying. Here we briefly mention three
examples.

The first one is what is the precise relation between the original twovalued re
lational settings and our threevalued setting. It may be helpful to follow the method
in [1] and study the functors between the categories formed by the different kinds of
mathematical structures. In fact, the use of ⊑, instead of ◁, facilitates the definition
of such functors.

The second one is what is intuitionistic logic in our setting. Intuitively the def
initions of ⊑ and ◁ in possibility semantics of classical logic and intuitionistic logic
are the same in our setting: in negationclosed Chu spaces, the relations preserve
truth. Moreover, as is mentioned in Item 4 above, the notions of propositions in these
two semantics can be uniformly characterized by persistence. Hence it is not clear
at present and is interesting that in our setting where the difference between possibil
ity semantics of classical logic and intuitionistic logic lies. Two directions are worth
considering. One is to investigate the properties of the weak negation defined using
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only Item (b); and the other is to follow [5] and [7] and investigate the counterpart of
a nucleus in our setting.

Third, considering the generality of our setting, it is an important direction for
future work to consider whether paraconsistent logics can be handled in our setting.
The key to make ◁ and⊑ no longer reflexive; for this, we may need to change e from
a function to a relation.
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命题在 Chu空间中的形式化

钟盛阳

摘 要

文献中的许多命题逻辑的关系语义尽管都以满足关系为基础，但它们背后似

乎有着“多值”的直观。更准确地说，这意味着在一个状态下，一个命题可以拥

有两个以上“真值”中的一个。在本文中，我们使用一种被称为 Chu空间的数学
结构来为这种直观建立数学模型；我们选择经典逻辑的可能性语义、正交逻辑以

及 Holliday的基本逻辑作为案例研究。我们对与这三种逻辑的关系语义背后的直
观相关的一些非形式推理进行了形式化，明确了隐含的假设，并发现了在我们的

理论框架中这些逻辑背后的直观具有一些新的后果。
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