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Paradox of Nothing: A Paracomplete Solution*

Fei Liang Zhongxu TianB

Abstract. The concept of nothing(ness) is a profound philosophical enigma, it is simultane
ously a thing but no thing, and hence is paradoxical. To solve this paradox, Priest proposes a
systematic formalization for theory of nothing based on paraconsistent logic and mereology.
In this paper, we propose an alternative approach to resolve the paradox using a paracomplete
logic, Łucasiewich 3valued logic. We argue that, even though we accept Priest’s characteriza
tions of nothing, accepting contradictions about nothing is still not necessary.

1 Introduction

The concept of nothing(ness) is inherently enigmatic and embodies a paradox.
It represents the ultimate absence, the point at which all things have been eliminated.
However, in a peculiar twist, nothing paradoxically exists as a subject of discourse.
We can talk about it, make statements about it, and even consider it in a philosophical
context. This leads to the conundrum: nothing is simultaneously a thing but no thing.
This is the paradox of nothing.

The debate surrounding the philosophical concept of nothingness is frequently
contentious. The crux of this debate hinges on whether “nothing” or “nothingness” is
employed as a noun, as opposed to being used as a phrase that quantifies. If it could
be employed as a noun, what kind of object does it refer to? To answer this question,
there are different ways to account for “nothing”.

Voltolini ([8]) argues that “nothing” is not a genuine name, he consider it as a
definite description, that is the thing satisfying the property of being a thing such that
there is no thing that is identical to it. Using Russellian way to deal with definite de
scriptions, he concludes that nothing doesn’t denote anything. Oliver and Smiley ([1])
makes a distinction between “nothing” as a quantifier and as an empty term. They use
“zilch” as the empty term and define it as ιxx ̸= x. Since all things are selfidentical,
“zilch” denote no things. Simionato ([7]) considers “nothing” as a consistent object.
He defines it in terms of empty possible worlds, and thinks that “nothing” is a world
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in which no thing exists. In [2, 3, 4, 5], Priest argues that, unlike the definition in
[7], “nothing” is an inconsistent object, and it is the absence of everything but not
the empty worlds. Unlike the definitions in [1] and [8], “nothing” denotes the object
which is the mereological fusion of no things. It is not a empty denotation word. He
constructs a pareconsistent based mereology to account for the theory of nothing.

In this paper, we will propose another approach, which is based on Łucasiewich
3valued logic, a paracomplete logic, to solve the paradox of nothing. It shows that
the paraconsistent logic is not a unique way to solve the problem even we accept
the Priest’s characterizations of nothing. Hence, accepting the contradiction is not
necessary.

The paper is structured as follows. In Section 2, wewill recall some preliminaries
which will be used in the susequent sections. In Section 3, we present the Priest’s
approach, which is based on paraconsistent logic, for the theory of nothing. In Section
4, we propose our approach, which is based on a paracomplete logic, to solve the
paradox.

2 Preliminary

In [5], Priest argues that nothing could be used as a noun, for example, “Hegel
and Heidegger wrote about nothing, but they said different things about it”. ([5, p.19])
But does nothing, as a noun, refer to an object?

From the perspective of Meinonism, Priest thinks that “an object is the kind of
thing that can be referred to by a name, be subject to predication, be quantified over,
be the target of an intentional state”. In this sense, nothing is also an object. Since
some objects exist and some do not from this point of view, “Contrary to the way that
Kant is often—and erroneously—interpreted, exists is a perfectly ordinary monadic
predicate.”([5, p.27]) Not like the standard quantifiers (e.g. ∃) used in firstorder logic,
Priest introduces the general quantifiers (e.g.S) to the language to quantify over both
existent and nonexistent objects, and then the standard existential quantifier becomes
a monadic predicate in the language. Hence “nothing is something” is formalized as
Sx(x = n).1

Furthermore, nothing is not only a object but also a specific object. We could use
some properties to characterize it and pick it out, that is, use some definite descriptions
or indefinite descriptions to specify it.2 According to Priest’s definition, nothing is an
inconsistent object, and it is the absence of everything intuitively. In order to make it
more precise, he introduces the mereological concepts to define nothing as the fusion
of no things. Mereology is the theory of parts and wholes. One of the central concepts

1In the following paper, we use boldface letters nothing, everthing to mean these words as nouns.
2The definite descriptions can be considered as a special indefinite descriptions, that is, the unique

one.



20 Studies in Logic, Vol. 17, No. 6 (2024)

of mereology is that of a mereological fusion, that is, the result of putting together
a bunch of things to make a bigger thing. The converse of putting things together is
taking them away. If you take something away, you have an absence. Therefore, in the
formal language, he introduces the indefinite description and mereological operators
to the language.

The language is a firstorder language with identity, a binary predicate, and a
general quantifier (instead of existential quantifier), which is defined inductively as
below:

A ::= t < t | (t = t) | ¬A | (A → A) | (A ∧A) | (A ∨A) | SxA(x)

where t is a constant, or a variable, or a indefinite descriptionwith the form of εxA(x),
AxA(x) := ¬Sx¬A(x), and A ↔ B := (A → B ∧ B → A). The formula x < y

means x is a proper part of y intuitively. In what follows, we will use x, y, z . . .

(with or without subscripts) to denote arbitary variables, a, b, c . . . (with or without
subscripts) and A,B,C . . . (with or without subscripts) to denote arbitary formulas,
and use t1 ̸= t2 as the abrreviation for ¬(t1 = t2) in the language. Without bringing
confusions, we will omit the parenthesis as many as we can. In order to express more
mereological operations, we introduce the following abbreviations:

1. x ≤ y := x < y ∨ x = y

2. x ◦ y := Sz(z ≤ x ∧ z ≤ y)

3. x • y := ¬(x ◦ y)

◦ is a overlap operation, the formula x◦ymeans there are some common parts between
x and y, conversely, • means two objects haven’t any overlap intuitively. In what
follows, we will introduce the axiomatic system of the standard mereology, which
is in fact mereological axioms plus the firstorder logic, and the paraconsistent first
order logic first. Priest combines them together to formalize the theory of nothing.

The axiomatic system for mereology is the firstorder logic (replacing “∃” with
“S”) with identity, a binary predicate <, and the following characteristic axioms for
mereology:

M1 x < y ∧ y < z → x < z

M2 x < y → ¬y < x

M3 ¬y ≤ x → Sz(z ≤ y ∧ z • x)
M4 SxA(x) → SzAy(y ◦ z ↔ Sx(y ◦ x ∧A(x)))

where M1M3 are for characterizing the properties of “partof” relation. But M4 is a
principle which Priest assumes for general composition. It means that if there is some
object (both existent or nonexistent) satisfying the conditionA(x) charecterizes, then
the merelogical fusion of them still constitutes an object. In the next section, we
will see how he does use this principle to define nothing. To express the indefinite
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descriptions in this system, we also need to add the following axiom:

M5 SxA → Ax(εxA)

in which Ax(t) means replacing the occurrence x in A with t.
Let σxA(x) := εzAy(y ◦ z ↔ Sx(y ◦ x ∧ A(x))), that is, the mereological

fusion of all objects satisfying the property A. Using M1M5 (plus the firstorder
logic), we could prove the following corollaries:

Corollary 1. (1) SxA(x) → Ay(y ◦ σxA(x) ↔ Sx(y ◦ x ∧A(x)))

(2) Az(z ◦ x ↔ z ◦ y) → x = y

(3) A(x) → x ≤ σxA(x)

Moreover, let u− v := σx(x ≤ u ∧ x • v) given that ¬u ≤ v, we have:

(4) (u− v) • v
(5) y ◦ u → ((y ◦ u− v) ∨ y ◦ v)

we could consider u − v as the relative complement of v with respect to u. Cor
respondingly, we can also define the absolute complement. Before doing this, Priest
uses M4 to define the object e (means “everything”) as σxx = x. Intuitively, since all
things are identical to themselves, the object “everything” is the mereological fusion
of every thing (both existent and nonexistent) indeed. 3 Then it follows that

(6) Ay y ≤ e

The absolute complement v̄ is the complement of v relative to e, which is defined as:

(7) e− v := Av(e ̸= v → Sx(x • v ∧ Ay(y ◦ x ∨ y ◦ v)))

By (2), the uniqueness of v̄ follows. But notice that ē doesn’t exist since there is no
empty fusion.4

A logic is paraconsistent if the explosion law doesn’t hold in the logic. The
firstorder paraconsistent logic RM3 consists of the following axioms and rules5:

1. Axioms :

A1 A → A

A2 (A ∧ (A → B)) → B

A3 (A ∧B) → A

A4 (A ∧B) → B

A5 ((A → B) ∧ (A → C)) → (A → (B ∧ C))

3In section 3, we will argue that only existent things can be claimed to be identical to themselves.
4In the next section, we will see how Priest modifies the standard mereology by admitting the empty

fusion, and hence ē exists in his theory.
5It is a bit different from what Priest uses in [5, pp. 53–54]
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A6 A → A ∨B

A7 B → A ∨B

A8 (A → C) → ((B → C) → (A ∨B → C))

A9 (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧ C))

A10 (A → ¬A) → ¬A
A11 (A → ¬B) → (B → ¬A)
A12 ¬¬A → A

A13 (¬A ∧B) → (A → B)

A14 ¬A → (A ∨ (A → B))

A15 AxA → Ax(c)

A16 Axx = x

A17 A ∨ ¬A

2. Rules:

MP A,A → B ⊢ B

Adj A,B ⊢ A ∧B

Aff A → B,C → D ⊢ (B → C) → (A → D)

UG A ⊢ AxA

Subst a = b ⊢ Ax(a) ↔ Ax(b)

3 Theory of Nothing: a Paraconsistent Approach

In this section, we will introduce a theory of nothing which Priest proposes in [5,
Part II]. He changes the base of standard mereology (classical firstorder logic) to the
paraconsistent firstorder logicRM3 above. Therefore, he could use an contradictory
sentences to characterize the inconsistent property of nothing.

3.1 Axiomatic system PMn

Aswe see in Section 2, on the one hand, nothing can be used as a noun, we could
introduce a constant n to denote it. On the other hand, nothing is a particular object,
we could use some properties to pick it out. It can be characterized as themereological
fusion of no things. In order to formalize this definition, we need to introduce an
unary property “no thing” and then the characterization of nothing follows by the
principle of general composition. We have known that the property that “x is a thing
(or object)” is symbolized as “Syx = y”, and then “x is no thing” can be symbolized
as “Ayx ̸= y” dually, which is equivalent to x ̸= x. Therefore, by M4 andSxx ̸= x,

M4n SzAy(y ◦ z ↔ Sx(y ◦ x ∧ x ̸= x))



Fei Liang, Zhongxu Tian / Paradox of Nothing: A Paracomplete Solution 23

Let n := σx(x ̸= x) = εzAy(y ◦ z ↔ Sx(y ◦ x ∧ x ̸= x)), then by M5 and M4n, it
follows that

(8) Ay(y ◦ n ↔ Sx(y ◦ x ∧ x ̸= x))

Since (3) is not provable in RM3 based mereology, in order to say any object, which
is no thing, is part of nothing, we also need to add the following axiom:

M4n+ Ax(x ̸= x → x ≤ n)

Moreover, since (2) cannot be derived in RM3 based mereology, instead we add it as
an axiom in the theory of nothing:

M2+ Az(z ◦ x ↔ z ◦ y) → x = y

Analogously, for characterizing everything, it is necessary to add two new ax
ioms:

M4e SzAy(y ◦ z ↔ Sx(y ◦ x ∧ x = x))

and let e := σx(x = x) = εzAy(y ◦ z ↔ Sx(y ◦ x ∧ x = x)),

M4e+ Ax(x = x → x ≤ e)

In the characteristic axiom of n, Priest assumes that the mereological fusion of empty
exists, and hence, not like the complement in Section 2, we do not need to make
distinction between relative complement and absolute complement since there is also
the complement of e. Therefore the antecedent of (7) can be dropped, it is modified
by the following axiom:

Mc3 AxSy(x • y ∧ Az((z ̸= z) ∨ (z ◦ x) ∨ (z ◦ y)))

Let Comp(x, y) := x•y∧Az((z ̸= z)∨ (z ◦x)∨ (z ◦y)), and x̄ := εyComp(x, y),
in order to make all complements (both relative and absolute) unique, the following
axiom is also necessary:

Mc3+ Comp(x, y1) ∧ Comp(x, y2) → y1 = y2

Definition 1 (PMn). The axiomatic systemPMn consists ofRM3 and the following
axioms:

M1,M2,M2+,Mc3,Mc3+,M4n,M4n+,M4e,M4e+,M5

The object n is inconsistent in the sense that it is both an object and not an object.
It is also called the paradox of nothing, which can be formalized as Sxx = n ∧
¬Sxx = n. In what follows, we can show that it is derivable in PMn.6

6For saving space, we omit some steps in the proof.
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Proof.

1. Axx = x A16
2. ¬Sxx ̸= x 1, Definition of A
3. Ay(y ◦ n ↔ Sx(y ◦ x ∧ x ≠ x)) M4n, M5, MP
4. Ayy • n 2,3,UG
5. n • n 4, A15, MP
6. n ◦ n ↔ Sz(z ≤ n ∧ z ≤ n) Definition of ◦
7. ¬Szz ≤ n 5, 6, definition of↔
8. ¬n ≤ n 7, A15, MP
9. n ̸= n 8, De Morgan, A3, MP
10. x = n ∨ x ̸= n A17
11. n ̸= n → (x = n → x ̸= n) HS,A11
12. x = n → x ̸= n 9,11, MP
13. x ̸= n → x ̸= n A1
14. (x = n ∨ x ̸= n) → x ̸= n A8, 12,13, MP
15. x ̸= n 10,14, MP
16. Axx ̸= n 15, UG
17. ¬Sxx = n 16, definition of A
18. n = n 1, A15, MP
19. Sxx = n 18, A15, A11, MP
20. Sxx = n ∧ ¬Sxx = n 14, 16, Adj

□

Hence, from the perspective of proof theory, the paradox of nothing is admitted
in PMn. In the subsequent subsections, it is also shown that there is a model which
satisfies all axioms and rules in PMn.

It is also very interesting to prove that the complement of e is n in PMn. In fact,
it gives another way to characterize nothing, that is, the absence of every thing. By
definition, Comp(e,n) := e • n ∧ Az((z ̸= z) ∨ (z ◦ e) ∨ (z ◦ n)), which can be
derived as follows:

Proof.

1. ¬Szz ≤ n 7 in the previous proof
2. Az¬z ≤ n 1, Definition of A
3. Az¬(z ≤ n ∧ z ≤ e) 2, A6, De Morgan
4. e • n 3, Definition of •



Fei Liang, Zhongxu Tian / Paradox of Nothing: A Paracomplete Solution 25

5. Axx ≤ e M4e+, A16, MP
6. x ◦ e definition of ◦
7. (x ̸= x) ∨ (x ◦ e) ∨ (x ◦ n) 6, A6, A7
8. Ax((x ̸= x) ∨ (x ◦ e) ∨ (x ◦ n)) 7, UG
9. e • n ∧ Ax((x ̸= x) ∨ (x ◦ e) ∨ (x ◦ n)) 4, 8, Adj

□

3.2 Semantics for PMn

In this subsection, we will introduce the semantics for PMn, which can be found
in [5, Chapter 4]. In order to solve the paradox of nothing, it is not enough to give a
proof system only, but also to give a concrete model to make the system work.

Definition 2 (Structure). An interpretation for PMn without εterms is a pair S =

⟨D, δ⟩ which satisfies:

1. n, e ∈ D;
2. δ(c) ∈ D for any constant c;
3. δ(P ) = (δ+(P ), δ−(P )) ⊆ Dn×Dn, s.t. δ+(P )∪δ−(P ) = Dn for any nary

predicate P ;
4. δ(=) = (δ+(=), δ−(=)) = ({(d, d) | d ∈ D}, {(n,n)}).

Intuitively, δ+(P ) is a set of ntuples ofDwhich is the extension of the predicate
P , and δ−(P ) is a set of ntuples ofD which is the antiextension of the predicate P .
Although the union of δ+(P ), δ−(P ) exhausts Dn, not like the classical firstorder
logic, the intersection of them is not necessary empty. Therefore, it is possible that
some contradictions are admissible.

Let |=+ and |=− stand for truth and falsity with respect to a structure S respec
tively, then the truth conditions for the language is defined inductively as follows: let
P be an nplace predicate:

• |=+ P (c1, . . . , cn) iff ⟨δ(c1), . . . , δ(cn)⟩ ∈ δ+(P ).
• |=− P (c1, . . . , cn) iff ⟨δ(c1), . . . , δ(cn)⟩ ∈ δ−(P ).

• |=+ ¬A iff |=− A.
• |=− ¬A iff |=+ A.

• |=+ A ∧B iff |=+ A and |=+ B.
• |=− A ∧B iff |=− A or |=− B.

• |=+ A ∨B iff |=+ A or |=+ B.
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• |=− A ∨B iff |=− A and |=− B.

• |=+ A → B iff (if, materially, |=+ A then |=+ B) and (if, materially, |=− B

then |=− A).
• |=− A → B iff |=+ A and |=− B.

• |=+ AxA iff for all d ∈ D, |=+ Ax(cd).
• |=− AxA iff for some d ∈ D, |=− Ax(cd).

• |=+ SxA iff for some d ∈ D, |=+ Ax(cd).
• |=− SxA iff for all d ∈ D, |=− Ax(cd).

where there is a corresponding constant cd such that δ(cd) = d, for every d ∈ D in
the language.

For interpreting the indefinite descriptions, we also need to introduce another
semantic device Φ into structure. An interpretation S for PMn is a triple ⟨D, δ,Φ⟩,
in which ⟨D, δ⟩ is defined as above, and

Φ : D ×D → D

is a choice function, s.t. for ⟨X,Y ⟩ ∈ D×D, Φ(⟨X,Y ⟩) ∈ X ifX ̸= ∅, otherwise,
Φ(⟨X,Y ⟩) = d for arbitary d ∈ D. Then the denotation of εterms is:

• δ(εxA) = Φ(⟨{d : |=+ Ax(cd)}, {d : |=− Ax(cd)}⟩)

Definition 3 (Semantic consequence relation). Let Σ be a set of formulas, the se
matic consequence relation Σ |= A is defined in terms of truthpreserving, that is, for
every interpretation, if |=+ B for all B ∈ Σ, then |=+ A.

3.3 Concrete Interpretation for PMn

In this subsection, we will give a concrete interpretation which makes every
axioms and rules in PMn true. It means thatPMn is not vacuous system. The paradox
of nothing is solved in the sense that it is both true and false in this interpretation.

Definition 4 (Concrete Interpretation). Let S = (D, δ,Φ) be an interpretation for
PMn, which is defined as follows:

• D = {⊤, a, b,⊥}.
• δ(n) = ⊥, δ(e) = ⊤, δ(ca) = a and δ(cb) = b.
• δ(<) = (δ+(<), δ−(<)) s.t. δ+(<) = {(a,⊤), (b,⊤), (⊥,⊤)} and δ−(<) =

{(⊤,⊤), (⊤, a), (⊤, b), (⊤,⊥), (a, a), (a, b), (a,⊥), (b, a), (b, b), (b,⊥),

(⊥,⊤), (⊥, a), (⊥, b), (⊥,⊥)}.
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• δ(=) = (δ+(=), δ−(=)) s.t. δ+(=) = {(⊤,⊤), (a, a), (b, b), (⊥,⊥)} and
δ−(<) = {(⊤, a), (⊤, b), (⊤,⊥), (a,⊤), (a, b), (a,⊥), (b,⊤), (b, a), (b,⊥),

(⊥,⊤), (⊥, a), (⊥, b), (⊥,⊥)}.
• Φ is an arbitary choice function defined as above.

We use the following tables to illustrate the structure above:

< ⊤ a b ⊥
⊤ − − − −
a + − − −
b + − − −
⊥ ± − − −

= ⊤ a b ⊥
⊤ + − − −
a − + − −
b − − + −
⊥ − − − ±

where + indicates the membership of the extension (only), −, membership of the
antiextension (only), and ± indicates both. By the definition of ≤, ◦, and •, the
interpretation for them are illustrated as below:

≤ ⊤ a b ⊥
⊤ + − − −
a + + − −
b + − + −
⊥ ± − − ±

◦ ⊤ a b ⊥
⊤ + + + ±
a + + − −
b + − + −
⊥ ± − − ±

• ⊤ a b ⊥
⊤ − − − ±
a − − + +

b − + − +

⊥ ± + + ±

In what follows, we are going to check all characteristic axioms are true in this inter
pretation, other axioms and rules can be checked in the standard way.

Proposition 1 (Soundness). M1, M2, M2+, Mc3, Mc3+, M4n, M4n+, M4e, M4e+,
M5 are true in S.

Proof. Given S = (D, δ,Φ) defined as in Definition 4.

M1 x < y ∧ y < z → x < z7

It is vacuously true, since it can never be the case that both conjuncts of the
antecedent are true (+ or ±). Hence the antecedent is always −.

M2 x < y → ¬y < x

We list all combinations below in which the antecedent is + or ±. It is not
difficult to see the consequent is always true in all cases. Hence M2 is true in
S.

7Notice that the verification of a conditional requires to establish the truthpreservation forward and
falsitypreservation backwards, that is, if A → B is true, it is required that:

– if A is + or ±, then B is + or ±;
– if B is − or ±, then A is − or ±, or equivalently, if A is +, then B is +.



28 Studies in Logic, Vol. 17, No. 6 (2024)

x y x < y ¬(y < x)

a ⊤ + +

b ⊤ + +

⊥ ⊤ ± +

M2+ Az(z ◦ x ↔ z ◦ y) → x = y

It suffices to prove if the consequent is −, then the antecedent is −; and if the
consequent is ±, then the antecedent is ±. Ignoring symmetries, we list all
values of x, y which makes the consequent − or ±; and the third column is the
value of z to make the antecedent − or ±. The first four lines requires z to
make the antecedent −, while the fifth line requires z to make the antecedent
±.

x y

⊤ a b

⊤ ⊥ a (or b)
a b a (or b)
a ⊥ a

⊥ ⊥ ⊤ (or ⊥)

Mc3 AvSx(v • x ∧ Ay(y ̸= y ∨ y ◦ x ∨ y ◦ v))
We firstly list all the possible values of v in the first column of the following
table, and give a witness v′ for x; the corresponding values of the first and
second conjuncts are in the third and fourth columns. And we can check that
every value of y other than⊥makes the disjunction y ̸= y ∨ y ◦ x∨ y ◦ v to be
+, and ⊥ makes it ±:

v v′

⊤ ⊥ ± ±
a b + ±
b a + ±
⊥ ⊤ ± ±

HenceMc3 takes the value ±.
Moreover, ignoring the symmetry between a and b, in the following table, the
first and second columns contains all the the values of v and all possible values
of x other than v′:
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v x

⊤ ⊤
⊤ a

a ⊤
a a b

a ⊥ b

⊥ a b

⊥ ⊥ a or b

The value of v, x in the first three lines makes the first conjunct of M3c −.
Meanwhile, in the last four lines there is a value of y which makes the second
conjunct −. Hence in all cases the conjunction is −. So v′ is the only value of
x which makes Comp(v, x) true.

Mc3+ Comp(v, x1) ∧ Comp(v, x2) → x1 = x2
It suffices to prove if the consequent is −, then the antecedent is −; and if the
consequent is ±, then the antecedent is ± or −. That is, if x1 = x2 is −, then
as is discussed above, at least one of the conjuncts is −, hence the conjunction
is−; if x1 = x2 is±, then x1 = x2 = ⊥, hence the conjunction is±(when v is
⊤) or −(otherwise). Hence, for any value of v, the set of things which satisfy
Comp(v, x) is a singleton, {v′}. So any Y , Φ(⟨{v′}, Y ⟩) = v′; and the value
of εxComp(v, x), that is, v̄, is v′.

M4n SzAy(y ◦ z ↔ Sx(y ◦ x ∧ x ̸= x))

⊥ is a witness of z, for consider:

– y ◦ ⊥ ↔ Sx(x ̸= x ∧ y ◦ x)

In the following table, the left column is the four values of y, and the values of
the corresponding left and right sides of the biconditional are in the middle and
right columns:

⊤ ± ±
a − −
b − −
⊥ ± ±

The middle column can be calculated immediately. In the right column, when
y is ⊤ or ⊥, take x to be ⊥ will make the conjunction ±, and when y is a or b,
the conjunction is −.
Moreover, ⊥ is the only witness, sinceM2+ holds in the structure. That is, the
set of objects in the domain which witness z is {⊥}. By semantics of Φ, for
any Y , Φ⟨{⊥}, Y ⟩ = ⊥, and so the denotation of n, that is εzAy(y ◦ z ↔
Sx(y ◦ x ∧ x ̸= x)), is ⊥.

M4n+ Ax(x ̸= x → x ≤ n)
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Only ⊥ makes x ̸= x true, and the value of ⊥ ≤ ⊥ is ±, so truth is preserved
forward. x ̸= x is always false in this interpretation. So falsity is preserved
backwards.

M4e SzAy(y ◦ z ↔ Sx(y ◦ x ∧ x = x))

⊤ is a witness for z. For consider:

– y ◦ ⊤ ↔ Sx(y ◦ x ∧ x = x)

In the following table, the left column is the four values of y, and the values of
the corresponding left and right sides of the biconditional are in the middle and
right columns:

⊤ + +

a + +

b + +

⊥ ± ±

For the last column: In the first three lines, give x the value in the first column
in the same line. In the last line, both ⊤ and ⊥ make the conjunction ± (the
other values giving −), which makes the S to be ±.
Moreover, ⊤ is the only witness, since M2+ holds in the structure. That is,
the set of objects in the domain which witness z is {⊤}. By semantics of Φ,
for any Y , Φ⟨{⊤}, Y ⟩ = ⊤, and so the denotation of e, that is εzAy(y ◦ z ↔
Sx(y ◦ x ∧ x = x)), is ⊤.

M4e+ Ax(x = x → x ≤ e)
We can check in the beginning table that x ≤ ⊤ is always true(+ or ±) in this
interpretation, i.e. truth is preserved forward. The only value which makes
x ≤ ⊤ false is ⊥, and ⊥ = ⊥ is false, hence falsity is preserved backward.

M5 SxA → Ax(εxA)

If |=+ SxA, then there is some c s.t. Ax(c) is +, hence {d :|=+ Ax(cd)} is
nonempty, then δ(εxA) ∈ {d :|=+ Ax(cd)}, w.l.o.g., let it be δ(c0), i.e. εxA
is c0, then |=+ Ax(c0). So the truth is preserved forward.
If |=− Ax(εxA), it means that δ(εxA) /∈ {d :|=+ Ax(cd)}. By semantics of Φ
we know that {d :|=+ Ax(cd)} is ∅, i.e. A has no extension, hence |=− SxA.
So the falsity is preserved backward.

□

4 A Paracomplete Solution to Paradox of Nothing

A logic is paracomplete if there are some formulas such that these formulas and
their negations are not true simutaneously, that is, the excluded law doesn’t hold in
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this logic. In this section, we are going to propose another approach, which is based
on a paracomplete logic, to deal with the paradox of nothing. We will show that
even though we accept Priest’s definition for nothing, there still has another way to
solve the paradox. Based on Łukasiewicz’s three valued logic L3, we construct a
new axiomatic system L3Mn for theory of nothing , which is a L3 based mereology
system. We will give a concrete model for this theory and show that both “nothing
is something” and “nothing is no thing” are neither true nor false in this model, and
hence the paradox can be solved.

On the one hand, we agree with Priest on that nothing could refer to an object as
a noun and we could use some characterizations to pick it out. On the other hand, like
Quine’s famous criticism of the existence of possible objects ([6, pp.3–5]), we could
use the similar argument to argue that we cannot even claim that x = x when x is
not an existent object for being lack of the criteria of identity. Therefore, the relation
between everything and nothing is not symmetric. As the mereological fusion of all
existent objects, everything is an existent object when we accept the principle of gen
eral composition, but as the mereological fusion of both all existent and nonexistent
objects, it is not an existent object anymore. While nothing, as the mereological
fusion of no things, cannot be an existent object. Therefore, when we talk about
nothing, it is always an nonexistent object but it is not the case for everything. In
this sense, when we define everything as the object which is the mereological fusion
of every thing that is selfidentical, we always means the existent everything since
we cannot claim that x = x when x is not an existent object.

4.1 Axiomatic system L3Mn

In the language, we make distinctions between the standard quantifiers (∃, ∀),
which quantify over existent objects, and general quantifiers (S,A), which quantify
over both existent and nonexistent objects in the language. Correspondingly, we
also introduce two classes of constants, one for existent objects and the other for both
existent and nonexistent objects. We use e1, . . . , en, . . . to stand for the former and
c1, . . . , cn, . . . to stand for the latter in the language 8. The axiomatic system L3Mn
contains the following axioms and rules:

1. Mereology axioms:

M1 x < y ∧ y < z → x < z

M2 x < y → ¬y < x

M2r ¬x < x

M2+’ ∀x∀yAz(z ◦ x ↔ z ◦ y) → x = y

M3c’ AvSx(v • x ∧ ∀y(y ◦ x ∨ y ◦ v))

8For the objects nothing and everything, we use n and e instead of en and ce respectively.
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M3c+’ Comp(v, x1) ∧ Comp(v, x2) → v = e ∨ x1 = x2
M4n SzAy(y ◦ z ↔ Sx(y ◦ x ∧ x ̸= x))

M4e’ SzAy(y ◦ z ↔ ∃x(y ◦ x ∧ x = x))

M4n+ Ax(x ̸= x → x ≤ n)
M4e+’ ∀x(x = x → x ≤ e)

M5 SxA → Ax(εxA)

M6 n • e

2. Paracomplete firstorder logic axioms :

I1 A → (B → A)

I2 (A → B) → ((B → C) → (A → C))

I3 (A → (B → C)) → (B → (A → C))

I4 ((A → B) → B) → ((B → A) → A)

I5 ((((A → B) → A) → A) → (B → C)) → (B → C)

C1 A ∧B → A

C2 A ∧B → B

C3 (A → B) → ((A → C) → (A → B ∧ C))

D1 A → A ∨B

D2 B → A ∨B

D3 (A → C) → ((B → C) → (A ∨B → C))

N1 (¬B → ¬A) → (A → B)

P12 AxA → Ax(c)

P12’ ∀xA → Ax(e)

P13 ∀xx = x

P14 ∀xx ≤ e

3. Rules:

MP A,A → B ⊢ B

Adj A,B ⊢ A ∧B

Aff A → B,C → D ⊢ (B → C) → (A → D)

UG A ⊢ AxA

QE AxA ⊢ ∀xA
Subst a = b ⊢ Ax(a) ↔ Ax(b)

For the reasons discussed above, the axioms M3c, M3c+, M4e, M4e+ in PMn is
replaced with M3c’,M3c+’, M4e’, M4e+’ respectively, moreover, we modify the
definition of Comp(u, v) as below:

Comp(u, v) ::= u • v ∧ ∀y(y ◦ x ∨ y ◦ v)

From the view of proof theory, the paradox of nothing, symbolized as

Sxx = n ∧ ¬Sxx = n
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is not provable in L3Mn. However, using M3c’, we can still prove Comp(e,n) as
below, it means nothing is the absence of everything intuitively.

Proof.

1. n • e M6
2. ∀xx ≤ e M4e+’, P13, MP
3. x ◦ e definition of ◦
4. (x ◦ e) ∨ (x ◦ n) 3, D1, MP
5. ∀x((x ◦ e) ∨ (x ◦ n)) 4, UG’
6. e • n ∧ ∀x((x ◦ e) ∨ (x ◦ n)) 1, 5, Adj

□

Moreover, ∀x¬x ≤ n is an immediate consequence of the axiom P15 as below:

Proof.

1. Ax(¬x ≤ n ∨ ¬x ≤ e) definition of A, •, De Morgan
2. ∀x(¬x ≤ n ∨ ¬x ≤ e) 1, QE
3. ∀xx ≤ e P14
4. ∀x¬x ≤ n 2, 3, DS

□

4.2 Semantics for L3Mn

In the following sections, we are going to show that the axiomatic system L3Mn
is not trivial, it defines some models. In this subsection, we introduce the interpreta
tion for L3Mn and give a concrete model in the next subsection.

Definition 5 (Structure). An interpretation forL3Mnwithout εterms is a tuple S =

⟨D,D∅, δ⟩ which satisfies:

1. n ∈ D∅ and e ∈ D;
2. δ(c) ∈ D for any existent constant c, and δ(e) ∈ D∅ for any nonexistent

constant e;
3. δ(P ) = (δ+(P ), δ−(P )) ⊆ (D∪D∅)n×(D∪D∅)n, s.t. δ+(P )∩δ−(P ) = ∅

for any nary predicate P ;
4. δ(=) = (δ+(=), δ−(=)) = ({(d, d) | d ∈ D}, {(d1, d2) | d1, d2 ∈ D ∪

D∅ and d1 ̸= d2}).

Clearly, besides true and false, there is also a thirdvalue, neither true nor false, in
the structure, we use i to denote this value. Let |=+, |=− and |=i stand for truth, falsity
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and truthvalue gap with respect to a structure S respectively, then the truth condi
tions for the language is defined inductively as follows: let P be an nplace predicate:

• |=+ P (c1, . . . , cn) iff ⟨δ(c1), . . . , δ(cn)⟩ ∈ δ+(P ).
• |=− P (c1, . . . , cn) iff ⟨δ(c1), . . . , δ(cn)⟩ ∈ δ−(P ).
• |=i P (c1, . . . , cn), otherwise.

• |=+ ¬A iff |=− A.
• |=− ¬A iff |=+ A.
• |=i ¬A, otherwise.

• |=+ A ∧B iff |=+ A and |=+ B.
• |=− A ∧B iff |=− A or |=− B.
• |=i A ∧B, otherwise.

• |=+ A ∨B iff |=+ A or |=+ B.
• |=− A ∨B iff |=− A and |=− B.
• |=i A ∨B, otherwise.

• |=+ A → B iff (1) |=− A, or (2) |=+ B, or (3) |=i A and |=i B.
• |=− A → B iff |=+ A and |=− B.
• |=i A → B, otherwise.

For the quantifiers, we augment the language with a constant, cd for every d ∈ D

such that δ(cd) = d, and d for any element in D or D∅ without making distinctions
in syntax and semantics. Ax(c) is A with every free occurrence of x replaced by c,
and Ax(d) is defined respectively.

• |=+ AxA iff for all d ∈ D ∪D∅, |=+ Ax(d).
• |=− AxA iff for some d ∈ D ∪D∅, |=− Ax(d).
• |=i AxA, otherwise.

• |=+ ∀xA iff for all d ∈ D, |=+ Ax(cd).
• |=− ∀xA iff for some d ∈ D, |=− Ax(cd).
• |=i ∀xA, otherwise.

• |=+ SxA iff for some d ∈ D ∪D∅, |=+ Ax(d).
• |=− SxA iff for all d ∈ D ∪D∅, |=− Ax(d).
• |=i SxA, otherwise.

• |=+ ∃xA iff for some d ∈ D, |=+ Ax(cd).
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• |=− ∃xA iff for all d ∈ D, |=− Ax(cd).
• |=i ∃xA, otherwise.

Like the interpretation forPMn, an interpretationS forL3Mn is a quadruple ⟨D,D∅, δ,Φ⟩,
in which ⟨D,D∅, δ⟩ is defined as above, and

Φ : (D ∪D∅)3 → D ∪D∅

is a choice function, s.t. Φ(⟨X,Y, Z⟩) ∈ X if X ̸= ∅; and Φ(⟨X,Y, Z⟩) ∈ Y if
X = ∅ and Y ̸= ∅; otherwise, Φ(⟨X,Y, Z⟩) = n, for any ⟨X,Y, Z⟩ ∈ (D ∪D∅)3.
Then the denotation of εterms is:

• δ(εxA) = Φ(⟨{d : |=+ Ax(cd)}, {d : |=i Ax(cd)}, {d : |=− Ax(cd)}⟩)

Definition 6 (Semantic consequence relation). Let Σ be a set of formulas, the se
matic consequence relation Σ |= A is defined in terms of truthpreserving, that is, for
every interpretation, if |=+ B for all B ∈ Σ, then |=+ A.

Proposition 2. Comp(e,n) is true in L3Mn.

Proof. We first show that for any c ̸= n, |=− c ◦ n. That is because for any d ∈
D ∪D∅, if d ∈ D, then |=− cd ≤ n; if d ∈ D∅, then |=− cd ≤ c. Hence |=− e ◦ n,
|=+ e • n.
For any d ∈ D, |=+ cd ≤ e, hence |=+ ∀y(y ◦ e ∨ y ◦ n), finally we get |=+

Comp(e,n). □

In our semantics, to say nothing is or is not something is neither true or false.

Proposition 3. |=i Sxx = n, and |=i ¬Sxx = n.

Proof. For any d ∈ D ∪D∅, if d ∈ D, then by interpretation of =, |=− cd = n; if
d ∈ D, then by interpretation of=, |=i cd = n, notice that in this case cd is exactly n.
Hence we get |=i Sxx = n. By semantics of ¬, we can easily get |=i ¬Sxx = n. □

4.3 Concrete Interpretation for L3Mn

In this subsection, we will give a concrete interpretation which makes every ax
ioms and rules inL3Mn true. It means thatL3Mn is not vacuous system. The paradox
of nothing is solved in the sense that it is neither true nor false in this interpretation.

Definition 7 (Concrete Interpretation). Let S = (D,D∅, δ,Φ) be an interpretation
for L3Mn, which is defined as follows:

• D = {⊤, a, b}, D∅ = {⊥}.
• δ(n) = ⊥, δ(e) = ⊤, δ(ca) = a, and δ(cb) = b.
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• δ(<) = (δ+(<), δ−(<)) s.t. δ+(<) = {(a,⊤), (b,⊤)}, and δ−(<) =

{(⊤,⊤), (⊤, a), (⊤, b), (⊤,⊥), (a, a), (a, b), (a,⊥), (b, a), (b, b), (b,⊥),

(⊥,⊤), (⊥, a), (⊥, b), (⊥,⊥)}.
• δ(=) = (δ+(=), δ−(=)) s.t. δ+(=) = {(⊤,⊤), (a, a), (b, b)} and δ−(<) =

{(⊤, a), (⊤, b), (⊤,⊥), (a,⊤), (a, b), (a,⊥), (b,⊤), (b, a), (b,⊥), (⊥,⊤),

(⊥, a), (⊥, b)}.
• Φ is an arbitary choice function defined as above.

We use the following tables to illustrate the structure above:

< ⊤ a b ⊥
⊤ − − − −
a + − − −
b + − − −
⊥ − − − −

= ⊤ a b ⊥
⊤ + − − −
a − + − −
b − − + −
⊥ − − − i

where + indicates the membership of the extension (only), −, membership of the
antiextension(only), and ± indicates both. By the definition of ≤, ◦, and •, the
interpretation for them are illustrated as below:

≤ ⊤ a b ⊥
⊤ + − − −
a + + − −
b + − + −
⊥ − − − i

◦ ⊤ a b ⊥
⊤ + + + −
a + + − −
b + − + −
⊥ − − − i

• ⊤ a b ⊥
⊤ − − − +

a − − + +

b − + − +

⊥ + + + i

In what follows, we are going to check all characteristic axioms are true in this inter
pretation, other axioms and rules can be checked in the standard way.

Proposition 4 (Soundness). M1, M2,M2r, M2+, Mc3’, Mc3+’, M4n, M4n+, M4e’,
M4e+’, M5, M6 are true in S.

Given S = (D,D∅, δ,Φ) defined as in Definition 7.

M1 x < y ∧ y < z → x < z

It is vacuously true, since it can never be the case that both conjuncts of the
antecedent are + (or i). Hence the antecedent is always −.

M2 x < y → ¬y < x

We list all combinations below in which the antecedent is +. It is not difficult
to see the consequent is always+ when the antecedent is+ in all cases. Hence
M2 is true in S.

x y x < y ¬(y < x)

a ⊤ + +

b ⊤ + +
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M2r ¬x < x

It can be easily check in the table of the interpretation of <.
M2+’ ∀xAy(Az(z ◦ x ↔ z ◦ y) → x = y)

It suffices to show that if the consequent is − (or i), so is the antecedent.
Considering there are standard quantifiers in the beginning, there is no such
pair of x, y making the consequent i. Omitting the symmetric cases, we list all
pairs of x, y who makes the consequent −, and show the witness of the falsity
of the antecedent:

x y

a ⊤ b

b ⊤ a

a b a (or b)
a ⊥ a

b ⊥ b

Mc3’ AvSx(v • x ∧ ∀y(y ◦ x ∨ y ◦ v))
The first column in the table below contains all the possible values of v. The
second is a witness, v′, for x, and the third and fourth are the corresponding
values of the first and second conjuncts, the truth is guaranteed by the interpre
tation of ◦ and •.

v v′

⊤ ⊥ + +

a b + +

b a + +

⊥ ⊤ + +

HenceMc3’ is true.
Moreover, ignoring the symmetry between a and b, in the following table, the
first column contains all the the values of v. The second column contains all
possible values of x other than v′:

v x

⊤ ⊤
⊤ a

a ⊤
⊥ ⊥
a a b

a ⊥ b

⊥ a b

In the first four lines, the value of the first conjunct of Mc3’ is − or i. In the
last three lines there is a value of y which makes the second conjunct−, which
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is shown in the third column. Hence in all cases the conjunction is −. So v′ is
the only value of x which makes Comp(v, x) true.

Mc3+’ Comp(v, x1) ∧ Comp(v, x2) → v = e ∨ x1 = x2
We have just seen that for any value of v, unless the interpretations of x1 and
x2 are both v′, the value of the antecedent is −. If they are, the value of the
antecedent is +, and the value of the consequent is +; in particular, if v is e,
then the left disjunct is + but the right one is i.
AsMc3+’ shows, for any value of v, the set of things which satisfyComp(v, x)

is a singleton, {v′}. Hence, for any Y, Z, Φ⟨{v′}, Y, Z⟩ = v′; and the value of
εxComp(v, x), that is, v̄, is v′.

M4n SzAy(y ◦ z ↔ Sx(y ◦ x ∧ x ̸= x))

⊥ is a witness of z, for consider:

– y ◦ ⊥ ↔ Sx(x ̸= x ∧ y ◦ x)

In the following table, the left column is the four values of y, and the values of
the corresponding left and right sides of the biconditional are in the middle and
right columns:

⊤ − −
a − −
b − −
⊥ i i

The only x who makes x ̸= x not − is ⊥, however unless y = ⊥, y ◦ ⊥ is −,
hence in the first three cases rightside of the biconditional is −, and in the last
case it is i:
Moreover, ⊥ is the only witness, for any other interpretation of z, just take y
as ⊥, then the left side of the biconditional is always −, and meanwhile ⊥ is
a witness of the right side being i. That is, the set of objects in the domain
which witness z is {⊥}. Hence, for any Y, Z, Φ⟨{⊥}, Y, Z⟩ = ⊥, and so the
denotation of n, that is εzAy(y ◦ z ↔ Sx(y ◦ x ∧ x ̸= x)), is ⊥.

M4n+ Ax(x ̸= x → x ≤ n)
There is no value makes x ̸= x true, and the only value makes x ̸= x in the
value of i, is ⊥. But the value of ⊥ ≤ ⊥ is also i. SoM4n+ is valid.

M4e’ SzAy(y ◦ z ↔ ∃x(y ◦ x ∧ x = x))

⊤ is a witness for z. For consider:

– y ◦ ⊤ ↔ ∃x(y ◦ x ∧ x = x)

In the following table, the left column is the four values of y, and the values of
the corresponding left and right sides of the biconditional are in the middle and
right columns:
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⊤ + +

a + +

b + +

⊥ − −
For the last column: In the first three lines, the value of x in the first column
gives the result. In the last line, for there is no such x ∈ D makes⊥◦ x true or
i, hence the conjunction is −.
Moreover, ⊤ is the only witness. For any other values of z, as shown in the
following table. In the first two lines, the value of y makes the left side of the
biconditional−, and the value of x is a witness of the right side; in the last line,
the value of y makes the left side i, and there is no witness of the right side,
hence the right side is −.

z y x

a b b

b a a

⊥ ⊥
That is, the set of objects in the domain which witness z is {⊤}. Hence, for
any Y, Z, Φ⟨{⊤}, Y, Z⟩ = ⊤, and so the denotation of e, that is εzAy(y ◦ z ↔
Sx(y ◦ x ∧ x = x)), is ⊤.

M4e+’ ∀x(x = x → x ≤ e)
It can be checked in the table at the beginning of subsection 4.3.

M5 SxA → Ax(εxA)

IfSxA is+, then there is some c, s.t. Ax(c) is+, and for δ(εxA) = Φ(⟨{δ(c) :
|=+ Ax(c)}, {d : |=i Ax(cd)}, {d : |=− Ax(cd)}⟩), w.l.o.g., let δ(εxA) = c0,
by semantics of Φ, for {δ(c) : |=+ Ax(c)} is nonempty, hence c0 ∈ {δ(c) :

|=+ Ax(c)}, i.e. |=+ Ax(εxA).
IfSxA is i, then {d : |=+ Ax(cd)} is empty but {d : |=i Ax(cd)} is nonempty,
hence by semantics of Φ, δ(εxA) ∈ {d : |=i Ax(cd)}, i.e. |=i Ax(εxA).
In summary,M5 is true in both of these two cases.

M6 n • e
It can be checked in the table at the beginning of 7.

From semantic theoretic perspective, the paradox of nothing,Sxx = n∧¬Sxx = n
is neither true nor false inLMn3. But it doesn’t mean that every proposition involving
nothing is neither true nor false, there are still some true propositions for nothing,
e.g., it is the absence of everything.
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“无”之悖论：一个弗完全解决方案

梁飞 田中旭 B

摘 要

“无”的概念包含着一个深刻的哲学谜题，它既是又不是一个东西，因而形

成了一个悖论。为了解决这一悖论，普里斯特提出了一种基于弗协调逻辑和分体

论的刻画“无”的理论。本文则提出了另一种解决该悖论的方法，即基于弗完全

（卢卡西维茨三值逻辑）和分体论的形式系统。本文将论证，即便我们接受普里斯

特对于“无”的刻画，我们也没有必要接受关于“无”的矛盾命题。
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