
Studies in Logic, Vol. 17, No. 3 (2024): 86–101
PII: 1674-3202(2024)-03-0086-16

Decidability for Modal Logic with Counting ML(#)
in Different Frame Classes*

Xiaoxuan Fu Zhiguang Zhao

Abstract. In the present paper, we give the decision procedure of satisfiability of modal logic
with counting ML(#) in different frame classes, by two types of methods, one by modifying the
decision algorithm of satisfiability for ML(#) with respect to the class of all Kripke frames as
described by J. van Benthem and T. Icard (2021), the other by reducing decidability of ML(#)
to that of basic modal logic. We also show the decidability of graded modal logic with counting
GML(#) with respect to the class of all Kripke frames.

1 Introduction

In the literature, there are many works combining cardinality comparison with
logical languages ([1, 3, 6, 7]). In particular, in [2], van Benthem and Icard investi-
gated modal logic with counting ML(#), and studied its model-theoretic properties:
some invariance results and finite depth property of ML(#) are proved, and it was also
shown that ML(#) is decidable via a normal form argument. In this paper, we study
the decidability of ML(#) in different frame classes in two different ways: the first is
still via the normal form argument, but with modified algorithms; the second is via
reducing ML(#)-formulas to basic modal formulas. We also show the decidability
of graded modal logic with counting GML(#) with respect to the class of all Kripke
frames.

The structure of the paper is as follows: Section 2 gives preliminaries on ML(#).
Section 3 recalls the decision algorithm for ML(#) in the class of all Kripke frames.
Section 4 gives the decision algorithms for ML(#) in different frame classes. Section
5 shows the decidability of graded modal logic with counting GML(#) with respect
to the class of all Kripke frames.

Received 2023-02-23
Xiaoxuan Fu School of Humanities, China University of Political Science and Law

xfuuva@gmail.com
Zhiguang Zhao School of Mathematics and Statistics, Taishan University

zhaozhiguang23@gmail.com
*The research of the first author is supported by Tsinghua University Initiative Scientific Research

Program. The research of the second author is supported by Taishan Young Scholars Program of the
Government of Shandong Province, China (No. tsqn201909151), Shandong Provincial Natural Science
Foundation, China (No. ZR2023QF021) and the Support Plan on Science and Technology for Youth
Innovation of Universities in Shandong Province (No. 2021KJ086).

Xiaoxuan Fu, Zhiguang Zhao / Decidability for ML(#) in Different Frame Classes 87

2 Modal Logic with Counting ML(#)

In the present section, we give preliminaries on the modal language with count-
ing ML(#). For more details, see [2, Section 7].

Syntax. Given a set Prop of propositional variables, we define the formulas and
numerical terms of ML(#) as follows:

formulas: p | ⊥ | ⊤ | ¬φ | φ ∧ ψ | #φ ≿ #ψ
numerical terms: #φ

where p ∈ Prop. We use standard abbreviations for ∨,→,↔. In addition, we define
the following abbreviations:

• #φ ≻ #ψ is defined as (#φ ≿ #ψ) ∧ ¬(#ψ ≿ #φ);
• #φ = #ψ is defined as (#φ ≿ #ψ) ∧ (#ψ ≿ #φ);
• The standard modality 3φ is defined as #φ ≻ #⊥;
• 2φ is defined as ¬3¬φ.

Definition 1 (Counting depth). The counting depth of an arbitrary formula is de-
fined recursively as follows:

• d(p) = d(⊥) = d(⊤) = 0;
• d(¬φ) = d(φ);
• d(φ ∧ ψ) = max{d(φ), d(ψ)};
• d(#φ ≿ #ψ) = max{d(φ), d(ψ)}+ 1.

Semantics. ML(#)-formulas are interpreted on Kripke frames F = (W,R) where
W ̸= ∅ is the domain and R is a binary relation on W . A Kripke model is a tuple
M = (F, V)whereV : Prop → P(W) is a valuation onW . We useR[s] = {t : Rst}
to denote the set of successors of s, and JφKM = {w ∈W | M, w ⊩ φ} to denote the
truth set of φ inM.

The satisfaction relation for the basic case and Boolean connectives are defined
as usual. For numerical terms,

J#φKM,s = |R[s] ∩ JφKM|,

i.e. J#φKM,s is the number of successors of s where φ is true.
For cardinality comparison formulas,

M, s ⊩ #φ ≿ #ψ iff J#φKM,s ≥ J#ψKM,s

i.e. #φ ≿ #ψ is true at s if more (or the same number of) R-successors of s make φ
true than make ψ true.

88 Studies in Logic, Vol. 17, No. 3 (2024)

3 DecisionAlgorithm for SatisfiabilitywithRespect to all Kripke Frames

In this section, we recall the decision algorithm for ML(#)-formulas with respect
to the class of all Kripke frames in [2, Section 7], by the use of normal forms. This
section is about existing results (with some more detailed proofs), we repeat it only
for the sake of making the proofs in the later sections easier.

In this paper, we fix a finite number of propositional variables p1, . . . , pm.

Definition 2. Given m propositional variables p1, . . . , pm, a literal is a formula of
the form pi or ¬pi, for i = 1, . . . ,m. A complete conjunctive clause is a formula of
the form (¬)p1∧. . .∧(¬)pm, i.e. a conjunction ofm literals of different propositional
variables.

Definition 3 (n-type, see Definition 4 in [2]). Fixm propositional variables p1, . . . ,
pm, the n-types are defined inductively on n:

• A 0-type is a complete conjunctive clause;
• An (n+ 1)-type is a conjunction of a 0-type and a complete set of inequalities
which form a linear order (i.e. reflexive, transitive and total, but not necessarily
anti-symmetric)

#T1,1 = #T1,2 = . . . = #T1,k1 ≻ #T2,1 = #T2,2 = . . . = #T2,k2 ≻

. . . ≻ #Tt,1 = #Tt,2 = . . . = #Tt,kt
where T1,1, T1,2, . . . , Tt,kt is a complete list of all formulas that are disjunctions
(possibly an empty disjunction) of n-types.

Example 1. Given m = 1 and propositional variable p1, the formulas p1 and ¬p1
are all 0-types, and p1 ∧ #(p1 ∨ ¬p1) ≻ #p1 = #¬p1 ≻ #⊥ is a 1-type.

Notice that n-types can be unsatisfiable, e.g. the 1-type p1 ∧ #(p1 ∨ ¬p1) ≻
#p1 = #⊥ ≻ #¬p1, since the number of successors satisfying ⊥ could not be larger
than 0.

We can see that the inductive step in Definition 3 makes sense because it is easy
to show inductively that the set of n-types is finite for each n (when fixingm propo-
sitional variables):

Proposition 1. Fixm propositional variables p1, . . . , pm, there are finitely many n-
types for each n.

Proof. For the case n = 0, there are 2m many different complete conjunctive
clauses.

Suppose that for n = k we have finitely many different k-types, then for n =

k + 1, there are finitely many possible disjunctions of k-types, therefore there are

Xiaoxuan Fu, Zhiguang Zhao / Decidability for ML(#) in Different Frame Classes 89

finitely many possible linear orders of those disjunctions. Together with the fact that
there are 2m many 0-types, we have that there are finitely many (k + 1)-types. □

Proposition 2 (Fact 6 in [2], with slight revision). Each formula φ of ML(#) with
counting depth at most n is equivalent to a disjunction of n-types, and this disjunction
can be computed by an algorithm.

Proof. We prove this by induction on n.
For the case n = 0, φ is of depth 0, so it is a propositional formula, therefore

it can be written in disjunctive normal form, so it can be written as a disjunction of
complete conjunctive clauses, i.e. 0-types. This can be done by an algorithm.

For the case n = k+1, every formula of depth at most k+1 can be rewritten into
a Boolean combination of propositional variables and formulas #ψ ≿ #θ with ψ, θ of
counting depth at most k. By induction hypothesis, these ψ’s and θ’s can be rewritten
into their respective equivalent disjunctions of k-types. Therefore, the whole formula
is equivalent to a disjunction of conjunctions of such statements (without loss of gen-
erality we assume that each disjunction branch has a complete conjunctive clause as a
subformula), where negations of cardinality comparison formulas can be replaced by
strict inequalities. Therefore, some comparisons between disjunctions of k-types are
already given, and then we replace this formula by the disjunction of all completions
of the comparisons to fill in comparisons between all disjunctions of k-types, which
is possible by the linearity of ≿. All of these can be achieved by an algorithm. □

Proposition 3. For any two different n-types φn and ψn, the formula φn ∧ψn is not
satisfiable.

Proof. For the case n = 0, it is obvious.
For the case n = k + 1, for any two different n-types φk+1 and ψk+1, if their

0-type parts are not the same, then their conjunction is not satisfiable. If their 0-
type parts are the same, then their linear order must be different, so there are two
disjunctions of k-types

∨
αi and

∨
βi such that their relative order is different in

φk+1 and ψk+1, so the conjunction φk+1 ∧ ψk+1 is not satisfiable. □

Proposition 4. Suppose that α1, . . . , αt enumerate all the n-types, then the formula
⊤ ↔ α1 ∨ . . . ∨ αt is valid.

Proof. By Proposition 2, since d(⊤) = 0 ≤ n, it is equivalent to a disjunction of
n-types. Therefore, ⊤ → α1 ∨ . . . ∨ αt is valid. The validity of α1 ∨ . . . ∨ αt → ⊤
is trivial. □

The following proposition is useful in the decision algorithm for the class of
reflexive frames:

90 Studies in Logic, Vol. 17, No. 3 (2024)

Proposition 5. For each (k + 1)-type φk+1, if φk+1 is satisfiable, then we can rec-
ognize a unique k-type φk such that φk+1 → φk is valid propositionally and for all
other k-types ψk, φk+1 ∧ ψk is not satisfiable. Otherwise φk+1 is not satisfiable and
φk+1 → φk is valid for all k-types φk. In both cases we can recognize such a k-type
efficiently, which we will call the canonical k-type of φk+1.

Proof. Existence:
For the case k = 0, since each 0-type is a complete conjunctive clause, and each

1-type is a conjunction of a 0-type and a complete set of inequalities which form a
linear order of disjunctions (possibly empty) of 0-types, we can take φk to be the
0-type part of the 1-type.

Now for the case k > 0. Since each (k + 1)-type φk+1 is a conjunction of a
0-type and a complete set of inequalities which form a linear order of disjunctions
(possibly empty) of k-types, and each k-type ψk is a conjunction of a 0-type and a
complete set of inequalities which form a linear order of disjunctions (possibly empty)
of (k− 1)-types, from Proposition 2, we get that each (k− 1)-type can be effectively
rewritten as a disjunction of k-types, so we can find all such disjunctions of k-types in
subformulas of φk+1, which form a sub-linear order. By taking this sub-linear order
on the (k − 1)-types together with the 0-type of φk+1, we get the required formula
φk.

Uniqueness:
If there are two different k-types φk and φ′

k such that φk+1 → φk and φk+1 →
φ′
k are valid, then by the satisfiability of φk+1 we get the satisfiability of φk ∧ φ′

k, a
contradiction.

To show that for all other k-typesψk, the conjunctionφk+1∧ψk is not satisfiable,
suppose otherwise, φk+1 ∧ ψk is satisfiable, then by the validity of φk+1 → φk, we
have that φk ∧ ψk is satisfiable, a contradiction.

The otherwise part follows immediately.
Since the recognition of φk does not depend on the satisfiability of φk+1 and can

be done via an algorithm, we can recognize φk from φk+1 anyway. □

Proposition 6. For each (k + 1)-type φk+1, if its canonical k-type φk is satisfiable,
then for any disjunction of k-type T , either φk → T is valid, or φk → ¬T is valid. If
φk is not satisfiable, then φk → T is valid for all disjunction of k-type T .

Proof. If φk is satisfiable, then when T contains φk as a disjunction branch, then
clearly φk → T is valid; if T does not contain φk as a disjunction branch, then φk∧α
is not satisfiable for all disjunction branches α of T , so φk → ¬α is valid for all α,
so φk →

∧
¬α, i.e. φk → ¬T , is valid. □

Xiaoxuan Fu, Zhiguang Zhao / Decidability for ML(#) in Different Frame Classes 91

Definition 4.
• Given a cardinality comparison formula #S ≿ #T where S is α1∨ . . .∨αs and
#T is β1 ∨ . . .∨ βt and each αi (1 ≤ i ≤ s) and βj (1 ≤ j ≤ t) is a n-type, we
assign the inequality

xα1 + . . .+ xαs ≥ xβ1 + . . .+ xβt

to #S ≿ #T , and denote it as Ineq(#S ≿ #T). When S or T is ⊥, then we
assign 0 to its side of the inequality.
For cardinality comparison formula #S ≻ #T , we replace ≥ by > in the in-
equality above.
For cardinality comparison formula #S = #T , we replace ≥ by = in the in-
equality above.

• Given a complete set of inequalities

#T1,1 = #T1,2 = . . . = #T1,k1 ≻ #T2,1 = #T2,2 = . . . = #T2,k2 ≻

. . . ≻ #Tt,1 = #Tt,2 = . . . = #Tt,kt
which form the linear order part of the (n+1)-type φ, for each pair of different
Ti,j and Tk,l, if according to the linear order, #Ti,j ≻ #Tk,l (resp. #Ti,j =

#Tk,l, #Tk,l ≻ #Ti,j), then we assign the inequality Ineq(#Ti,j ≻ #Tk,l) (resp.
Ineq(#Ti,j = #Tk,l), Ineq(#Tk,l ≻ #Ti,j)) to it. Finally, we collect all the
inequalities to form a linear inequality system Sys(φ).

Proposition 7. Given a linear inequality system, by the Fourier-Motzkin algorithm
allowing infinite cardinalities, it is decidable whether this linear inequality system
has a non-negative solution (possibly some variables have infinite cardinality value).

Proof. See [2, Section 4.2]. □

Proposition 8 (Proposition 12 in [2]). ML(#) is decidable.

Proof. We show that the satisfiability problem for ML(#) is decidable, for each
formula θ of depth n.

We first rewrite θ by an algorithm into an equivalent disjunction of n-types.
If this disjunction is empty, then we output “not satisfiable”. Otherwise, we run the
following algorithm for each disjunction branchφ (i.e. an n-type) of the input formula
θ, according to n:

• At depth n = 0, check whether φ is propositionally satisfiable.
• At depth n = k + 1, for the given (k + 1)-type φ, we check that

1. the atomic part for φ is satisfiable;
2. the linear inequality system Sys(φ) has a non-negative solution;

92 Studies in Logic, Vol. 17, No. 3 (2024)

3. for each non-zero value of variables in step 2, check the satisfiability of
its corresponding k-type.

If one of the previous steps fail, thenwe output “φ is not satisfiable”. Otherwise,
we output “φ is satisfiable”.

It is easy to see that each step in the algorithm above is decidable. When the
disjunction is empty, then the formula is equivalent to ⊥ and is hence not satisfiable.
When the steps described fail, it is easy to see that the formula is not satisfiable. If
all the steps pass through without failure, then by induction on the depth of φ, we
can find a root node satisfying the atomic part of φ, and for each non-zero value in
the solution of the linear inequality system, by copying and taking disjoint subtrees,
we can satisfy it at any desired number of successors for the root as described by the
inequalities of stage 2. Notice that by Propositions 3 and 4, each successor node can
satisfy exactly one n-type. □

4 Algorithms for Other Systems

In this section, we will modify the algorithm in the previous section to get the
decision method for satisfiability with respect to different frame classes.

The frame classes we will consider are the following (the names are the corre-
sponding names for the basic modal logic systems, here we abuse the names to denote
the corresponding frame classes):

• reflexive frames (which we denote as T);
• serial frames (which we denote as D);
• equivalence relations (which we denote as S5);
• transitive and Euclidean frames (which we denote as K45);
• serial, transitive and Euclidean frames (which we denote as KD45);
• frames where each node has at most one successor (which we denote as Alt1);
• frames where each node has at most two successors (which we denote as Alt2).

4.1 T

We show that the satisfiability problem for ML(#) with respect to the class of
reflexive frames is decidable, for each formula θ of depth n.

We first rewrite θ by an algorithm into an equivalent disjunction of n-types.
If this disjunction is empty, then we output “not satisfiable”. Otherwise, we run the
following algorithm for each disjunction branchφ (i.e. an n-type) of the input formula
θ, according to n:

• At depth n = 0, check whether φ is propositionally satisfiable.
• At depth n = k + 1, for the given (k + 1)-type φ,

Xiaoxuan Fu, Zhiguang Zhao / Decidability for ML(#) in Different Frame Classes 93

1. check that the atomic part for φ is propositionally satisfiable;
2. check that the canonical k-type φk of φ is T-satisfiable;
3. find out all the disjunctions of k-types S such that S is T-implied by the

canonical k-type φk of φ (which is essentially checking T-validity for
depth-k implicative formulas φk → S);

4. add, to the linear inequality system Sys(φ), inequalities corresponding to
S = α1 ∨ . . . ∨ αs saying that xα1 + . . . + xαs ≥ 1, and get the linear
inequality system Sys′(φ);

5. check that the linear inequality system Sys′(φ) has a non-negative solu-
tion;

6. for each non-zero value of variables in the previous step, check the T-
satisfiability of its corresponding k-type.

If one of the previous steps fail, thenwe output “φ is not satisfiable”. Otherwise,
we output “φ is satisfiable”.

It is easy to see that each step in the algorithm above is decidable. We only focus
on that part that is different from the case of all Kripke frames.

For depth k + 1 case, the difference of the T case from the all Kripke frames
case is that the root point is reflexive, if the canonical k-type φk of φ is T-satisfiable
(which is a necessary requirement forφ to be T-satisfiable), then all the disjunctions of
k-types S T-implied by φk would be true at the root node, and all the rest disjunctions
of k-types are not T-satisfiable together with φk. So when counting the number of
successors satisfying S, we need to require that the root node already satisfies S for
those such that φk → S is T-valid, so the requirement that xα1 + . . . + xαs ≥ 1 is
necessary.

4.2 D

We show that the D-satisfiability problem for ML(#) is decidable, for each for-
mula θ of depth n.

We first rewrite θ by an algorithm into an equivalent disjunction of n-types.
If this disjunction is empty, then we output “not satisfiable”. Otherwise, we run the
following algorithm for each disjunction branchφ (i.e. an n-type) of the input formula
θ, according to n:

• At depth n = 0, check whether φ is propositionally satisfiable.
• At depth n = k + 1, for the given (k + 1)-type φ,

1. check that the atomic part for φ is propositionally satisfiable;
2. add, to the linear inequality system Sys(φ), an inequality xα1 + . . . +

xαt > 0 such that α1, . . . , αt enumerates all the k-types, and get the
linear inequality system Sys′(φ);

94 Studies in Logic, Vol. 17, No. 3 (2024)

3. check that the linear inequality system Sys(φ) has a non-negative solu-
tion;

4. check that for each non-zero value of variables in the previous step, check
the D-satisfiability of its corresponding k-type.

If one of the previous steps fail, thenwe output “φ is not satisfiable”. Otherwise,
we output “φ is satisfiable”.

It is easy to see that each step in the algorithm above is decidable. We only focus
on that part that is different from the case of all Kripke frames.

For depth k+1 case, the difference of the D case from the all Kripke frames case
is that the root point is serial, so #⊤ should have value> 0, so by the equivalence that
⊤ ↔ α1∨ . . .∨αt, we need an additional inequality saying that xα1 + . . .+xαt > 0.

4.3 S5

For the class of equivalence relations, we have the following normal form re-
duction:

First of all, since when a formula φ is satisfiable on an equivalence relation
frame, then by taking the generated submodel, we have that φ is satisfiable on a full
relation frame, i.e. frames whereR =W ×W . Since the class of full relation frames
is a proper subclass of the class of equivalence relation frames, the satisfiable formulas
of the two classes coincide. Therefore, in what follows we consider the satisfiability
problem in the class of full relation frames.

We have the following proposition, which is the basis of our algorithm in this
section:

Proposition 9. Suppose that φ has a subformula of the form #ψ ≿ #θ. Then φ ↔
(φ[⊤/#ψ ≿ #θ]∧ (#ψ ≿ #θ))∨ (φ[⊥/#ψ ≿ #θ]∧¬(#ψ ≿ #θ)) is valid in the class
of full relation frames.

Proof. For any pointed full relation model (M, w), since #ψ ≿ #θ is either globally
true or globally false,

M, w ⊩ φ

iff (M, w ⊩ φ andM ⊩ (#ψ ≿ #θ)) or (M, w ⊩ φ andM ⊩ ¬(#ψ ≿ #θ))
iff (M, w ⊩ φ andM ⊩ (#ψ ≿ #θ) ↔ ⊤ andM ⊩ (#ψ ≿ #θ)) or

(M, w ⊩ φ andM ⊩ (#ψ ≿ #θ) ↔ ⊥ andM ⊩ ¬(#ψ ≿ #θ))
iff (M, w ⊩ φ[⊤/#ψ ≿ #θ] andM ⊩ #ψ ≿ #θ) or

(M, w ⊩ φ[⊥/#ψ ≿ #θ] andM ⊩ ¬(#ψ ≿ #θ))
iff M, w ⊩ (φ[⊤/#ψ ≿ #θ] ∧ (#ψ ≿ #θ)) ∨ (φ[⊥/#ψ ≿ #θ] ∧ ¬(#ψ ≿ #θ)).

□

By applying the proposition above, any formula is equivalent to a depth-1 for-
mula, and the formula can be computed by an algorithm.

Xiaoxuan Fu, Zhiguang Zhao / Decidability for ML(#) in Different Frame Classes 95

Nowwe show that the S5-satisfiability problem for ML(#) is decidable, for each
formula θ of depth n.

We first rewrite θ by an algorithm into an equivalent depth-1 formula, and then
by an algorithm into an equivalent disjunction of 1-types. If this disjunction is empty,
then we output “not satisfiable”. Otherwise, we run the following algorithm for each
disjunction branch φ (i.e. an 1-type) of the input formula θ:

At depth n = 1, for the given 1-type φ,

1. check that the atomic part for φ is satisfiable;
2. find out all the disjunctions of 0-types T such that T is S5-implied by the atomic

part of φ (which is essentially checking S5-validity for depth-0 implicative for-
mulas φ0 → T);

3. add, to the linear inequality system Sys(φ), inequalities corresponding to T =

α1 ∨ . . . ∨ αs saying that xα1 + . . . + xαs ≥ 1, and get the linear inequality
system Sys′(φ);

4. check that the linear inequality system Sys′(φ) has a non-negative solution.

If one of the previous steps fail, then we output “φ is not satisfiable”. Otherwise, we
output “φ is satisfiable”.

It is easy to see that each step in the algorithm above is decidable. By the pre-
vious propositions, we have the soundness of the reduction to depth-1 formula and
a disjunction of 1-types. Then we check whether the formula is satisfiable in a full
relation frame: we first find out all the disjunctions of 0-types implied by φ0, and re-
quire them to have at least one successor satisfying them (namely the root node), and
then if the system has a solution, we just create the corresponding number of points
satisfying the corresponding 0-type. Notice that all 0-types are satisfiable.

4.4 K45

First of all, we can see that for any K45-frame F = (W,R), for any point w in
the frame, consider the generated subframe Fw = (Ww, Rw) generated by w, then
for any v such that Rwwv, we have that Rw[w] = Rw[v]. By an easy induction, we
can show that for all points v in Fw, we haveRw[w] = Rw[v]. Therefore, the domain
Ww is {w} ∪Rw[w], and the relation Rw isW ×Rw[w].

Therefore, there are three possibilities:

• w has no successor, i.e. Rw[w] = ∅;
• w is not reflexive and w is accessible to an equivalence cluster, i.e. w /∈ Rw[w]

and Rw = ({w} ×Rw[w]) ∪ (Rw[w]×Rw[w]);
• w is reflexive and belongs to an equivalence relation, i.e. w ∈ Rw[w] and
Rw = Rw[w]×Rw[w].

96 Studies in Logic, Vol. 17, No. 3 (2024)

Therefore, if w has successors, then the generated submodel by any successor v
of w is a full relation model.

We have the following decision algorithm for the K45-satisfiability problem for
ML(#), for each formula θ of depth n.

We first rewrite θ by an algorithm into an equivalent disjunction of n-types.
If this disjunction is empty, then we output “not satisfiable”. Otherwise, we run the
following algorithm for each disjunction branchφ (i.e. an n-type) of the input formula
θ, according to n:

• At depth n = 0, check whether φ is propositionally satisfiable; if not, then
output “φ is not satisfiable”, otherwise, output “φ is satisfiable”.

• At depth n = k + 1, for the given (k + 1)-type φ,

1. check whether the atomic part for φ is propositionally satisfiable; if not,
then output “φ is not satisfiable”; otherwise, go to the next step;

2. check whether the linear order part has no ≻-formulas; if there is no ≻-
formulas, then output “φ is satisfiable”, otherwise go to the next step;

3. check whether the linear order part of φ is S5-satisfiable; if it is S5-
satisfiable, then output “φ is satisfiable”, otherwise output “φ is not sat-
isfiable”.

It is easy to see that each step in the algorithm above is decidable. We only focus
on that part that is different from the case of all Kripke frames.

For depth k+1 case, we check if there is no≻-formulas, if not, thenwe can assign
value 0 to all variables for k-types in the linear inequality system, so in the model,
the root node has no successor. If there are ≻-formulas, then there are successors of
the root node w, and for any v ∈ R[w], we have R[w] = R[v], and the submodel
generated by R[v] is a full relation model. So φ is satisfiable at w iff the atomic part
of φ is satisfiable at w and the linear order part of φ is satisfiable at v, i.e. at the
generated submodel generated by v, i.e. at an S5-model.

4.5 KD45

For KD45, we can see that for any KD45-frame F = (W,R), for any point w
in the frame, consider the generated subframe Fw = (Ww, Rw) generated by w, then
for any v such that Rwwv, we have that Rw[w] = Rw[v]. By an easy induction, we
can show that for all points v in Fw, we haveRw[w] = Rw[v]. Therefore, the domain
Ww is {w} ∪Rw[w], and the relation Rw isW ×Rw[w].

Therefore, there are two possibilities:

• w is not reflexive and w is accessible to an equivalence cluster, i.e. w /∈ Rw[w]

and Rw = ({w} ×Rw[w]) ∪ (Rw[w]×Rw[w]);

Xiaoxuan Fu, Zhiguang Zhao / Decidability for ML(#) in Different Frame Classes 97

• w is reflexive and is belonging to an equivalence relation, i.e. w ∈ Rw[w] and
Rw = Rw[w]×Rw[w].

Therefore, the generated submodel by any successor v of w is a full relation
model. The difference between the KD45 case and the K45 case is that the root node
must have at least one successor node.

Now the decision algorithm for KD45-satisfiability is given as follows, for each
formula θ of depth n.

We first rewrite θ by an algorithm into an equivalent disjunction of n-types.
If this disjunction is empty, then we output “not satisfiable”. Otherwise, we run the
following algorithm for each disjunction branchφ (i.e. an n-type) of the input formula
θ, according to n:

• At depth n = 0, check whether φ is propositionally satisfiable; if not, then
output “φ is not satisfiable”, otherwise, output “φ is satisfiable”.

• At depth n = k + 1, for the given (k + 1)-type φ,

1. check whether the atomic part for φ is satisfiable; if not, then output “φ
is not satisfiable”; otherwise, go to the next step;

2. check whether the linear order part has no ≻-formulas; if there is no ≻-
formulas, then output “φ is not satisfiable”; otherwise, go to the next step;

3. check whether the linear order part of φ is S5-satisfiable; if it is S5-
satisfiable, then output “φ is satisfiable”, otherwise output “φ is not sat-
isfiable”.

It is easy to see that each step in the algorithm above is decidable. We only focus
on the part that is different from the case of K45 frames.

For depth k + 1 case, we need to guarantee that the root node has successor, so
if there is no ≻-formulas, then #⊤ = #⊥, which means that the root node has no
successor, which is not satisfiable on a KD45 frame. The rest of the proof is similar
to the K45 case.

4.6 Alt1 and Alt2

For Alt1 and Alt2, we apply another approach to get the decidability of satisfia-
bility problems, namely reducing ≿-formulas to basic modal formulas.

Proposition 10. For any frame F = (W,R) in Alt2,

F ⊩ #φ ≻ #ψ ↔ ((2φ ∧ ¬2ψ) ∨ (3φ ∧ ¬3ψ))

Proof. Consider any frame F = (W,R) in Alt2 and any valuation V on F and any
w ∈W . From right to left is trivial. For the left to right direction, if F, V, w ⊩ #φ ≻
#ψ, then there are two cases:

98 Studies in Logic, Vol. 17, No. 3 (2024)

• J#φKF,V,w = 2 and J#ψKF,V,w < 2;
• J#φKF,V,w = 1 and J#ψKF,V,w = 0.

In the first case, we have that w has two successors and F, V, w ⊩ 2φ∧¬2ψ, in the
second case, we have that F, V, w ⊩ 3φ ∧ ¬3ψ. □

Since Alt1 is a subclass of Alt2, the previous proposition also holds for Alt1.
Therefore, we can transform an ML(#)-formula into an equivalent basic modal for-
mula. Then by the decidability of the satisfiability problem for ML in Alt1 and Alt2,
we get the decidability of the satisfiability problem for ML(#) in Alt1 and Alt2.

5 Decidability of GML(#)

In this section, we consider the expansion ofML(#) with gradedmodal operators.
For more details of graded modal logic, see [4, 5].

In the syntax of graded modal logic with counting GML(#), we have graded
modalities 3≥nφ for each positive natural number n, intuitively reads “there are at
least n successors satisfying φ”. In what follows, we use cardinality comparison
formulas in the shape #φ ≿ #n in place of 3≥nφ, for the sake of defining normal
forms. We use the following abbreviations:

• #φ ≻ #n for #φ ≿ #n+ 1;
• #n ≻ #φ for ¬(#φ ≿ #n);
• #n ≿ #φ for ¬(#φ ≻ #n);
• #φ = #n and #n = #φ for (#φ ≿ #n) ∧ (#n ≿ #φ).

For counting depth, we define d(#φ ≿ #n) = d(φ) + 1.
For the semantics of #φ ≿ #n,

M, s ⊩ #φ ≿ #n iff J#φKM,s ≥ n.

When defining the normal form of GML(#), not only do we need to fix a finite
number of propositional variables p1, . . . , pm, but also we need to fix an upper bound
of the number n occurring in the graded formulas #φ ≿ #n, in order to make the
counterpart of the definition of k-types finite.

Now we define the notion ofm,n, k-types as follows:

Definition 5 (m,n, k-type). Fixm propositional variables p1, . . . , pm and an upper
bound of the number n occurring in the graded formulas #φ ≿ #n, the k-types are
defined inductively on k:

• A 0-type is a complete conjunctive clause;

Xiaoxuan Fu, Zhiguang Zhao / Decidability for ML(#) in Different Frame Classes 99

• A (k + 1)-type is a conjunction of a 0-type and a complete set of inequalities
which form a linear order

#T1,1 = #T1,2 = . . . = #T1,k1 ≻ #T2,1 = #T2,2 = . . . = #T2,k2 ≻

. . . ≻ #Tt,1 = #Tt,2 = . . . = #Tt,kt
where T1,1, T1,2, . . . , Tt,kt is a complete list of all formulas that are disjunctions
(possibly an empty disjunction) of k-types together with all numerical constants
1, 2, . . . , n.

By similar arguments, we have the counterparts of Propositions 1, 2, 3, 4:

Proposition 11. Fix m propositional variables p1, . . . , pm and an upper bound of
the number n occurring in the graded formulas #φ ≿ #n, there are finitely many
m,n, k-types for each k.

Proposition 12. Each formula φ of GML(#) with counting depth at most k is equiv-
alent to a disjunction of m,n, k-types for some m,n, and this disjunction can be
computed by an algorithm.

Proposition 13. For any two differentm,n, k-types φk and ψk, the conjunction φk∧
ψk is not satisfiable.

Proposition 14. Fix m,n,k, suppose that α1, . . . , αt enumerate all them,n, k-types,
then ⊤ ↔ α1 ∨ . . . ∨ αt is valid.

Then we can assign inequalities to the linear order part of anm,n, k-type, where
we assign the number n instead of sum of variables to the cardinality comparison
formulas involving n.

Then Proposition 7 still holds, and we can apply the same algorithm as Proposi-
tion 8 to show that the satisfiability problem of GML(#) with respect to the class of all
Kripke frames is decidable (notice that each formula has finitely many propositional
variables and an upper bound n in cardinality comparison formulas).

References

[1] G. A. Antonelli, 2010, “Numerical abstraction via the Frege quantifier”, Notre Dame
Journal of Formal Logic, 51(2): 161–179.

[2] J. van Benthem and T. Icard, 2021, “Interleaving logic and counting”, Prepublication
(PP) Series.

[3] H. Herre, M. Krynicki, A. Pinus and J. Väänänen, 1991, “The Härtig quantifier: A sur-
vey”, Journal of Symbolic Logic, 56(4): 1153–1183.

100 Studies in Logic, Vol. 17, No. 3 (2024)

[4] W. V. der Hoek, 1992, “On the semantics of graded modalities”, Journal of Applied
Non-Classical Logics, 2(1): 81–123.

[5] M. Ma, 2011, Model Theory for Graded Modal Languages, phdthesis, Tsinghua Uni-
versity.

[6] M. Otto, 2017, Bounded Variable Logics and Counting: A Study in Finite Models, Cam-
bridge: Cambridge University Press.

[7] N. Rescher, 1962, “Plurality quantification”, Journal of Symbolic Logic, 27(3): 373–
374.

Xiaoxuan Fu, Zhiguang Zhao / Decidability for ML(#) in Different Frame Classes 101

模态计数逻辑ML(#)在不同框架类下的可判定性

付小轩 赵之光

摘 要

在本文中，我们给出模态计数逻辑ML(#)在不同框架类下的可满足性的判定
过程。我们使用两种方法，一种是通过修改ML(#)相对于全部克里普克框架的可
满足性的判定算法，另一种是将ML(#)的可判定性归约到基本模态逻辑。我们还
证明了分次模态计数逻辑 GML(#)相对于全部克里普克框架的可判定性。

付小轩 中国政法大学人文学院

xfuuva@gmail.com
赵之光 泰山学院数学与统计学院

zhaozhiguang23@gmail.com

	Introduction
	Modal Logic with Counting ML(#)
	Decision Algorithm for Satisfiability with Respect to all Kripke Frames
	Algorithms for Other Systems
	T
	D
	S5
	K45
	KD45
	Alt1 and Alt2

	Decidability of GML(#)

