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Understanding and Explanation: An
Epistemic-Logical Perspective*

Yu Wei

Abstract. Epistemic logicians barely pay any attention to the notion of understanding, which
stands in sharp contrast to the current situation in philosophy of science and epistemology. This
paper proposes an epistemic-logical-style framework for understanding. Since explanations
aid understanding, our models incorporate varying degrees of explanations, among which a
partial order is established. Inspired by philosophical discussions, we syntactically include a
spectrum of understanding modalities, ranging fromminimal to everyday, demanding, and ideal
understanding. A sound and complete axiomatization is provided, followed by discussions on its
application to multi-agent scenarios, such as making comparative statements of understanding
among different agents and exploring meta-understanding between them.

1 Introduction

1.1 Understanding

Epistemic logic was discussed already by medieval logicians, who not only con-
sidered the usual epistemic modalities such as knowing and believing, but also doubt-
ing and understanding. ([6]) Among these, the modality of understanding is thought to
be a particularly interesting one.1 However, understanding became a largely forgot-
ten notion in modern epistemic logic research that mainly concerns reasoning patterns
of knowledge and belief.

Nevertheless, recent epistemology and philosophy of science have witnessed
a resurgence of interest in the nature of understanding. Some philosophers believe
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1Interested readers are referred to [5, 6] for further discussions of Medieval epistemic logic. Con-
cerning understanding, for example, the Middle Ages introduced many non-standard modalities into
epistemic logic, among which “understanding” was a natural and common one. Besides, understanding
is thought to be a prerequisite for knowledge and has interaction relations with many other epistemic
modalities; and based on views from the philosophy of mind in the Middle Ages, the KK-like principle
for understanding (i.e., one understands implies that she understands that she understands) is proposed.
We will revisit some of them in the Sect. 3 below.
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that understanding promises to be a lively topic throughout the twenty-first century.2
While different uses of “understanding” seem to mean many different things, there
are three main types of understanding ([10]):

• Propositional understanding or understanding-that: “S understands that ….”

• Atomistic understanding or understanding-wh: “S understands why/how/
where/what ….”

• Objectual understanding or holistic understanding: “S understands X .”

Among all these types, much of the recent philosophical discussion focuses on
understanding-wh. Philosophers like Gordon ([10]) and Baumberger ([3]) argue that
genuine instances of propositional understanding are quite rare, and for those rare in-
stances of epistemologically relevant usage, many are just synonymous with proposi-
tional knowledge, others are actually identical to understanding-wh or objectual un-
derstanding. As for objectual understanding, it is roughly viewed as the understanding
one has of a subject matter, typically expressed through a noun phrase (e.g., “Al-
ice understands quantum mechanics”). Philosophers like Khalifa ([14]) contend that
the notion of understanding-wh already captures anything philosophically important
about objectual understanding.

The goal of this paper is to investigate epistemic-logically the typical understand-
ing-wh termed understanding why, which is also referred to as a narrow conception
of understanding in [17]. In the view of philosophers such as Pritchard (e.g., [20]),
the usual use of “understanding” is “understanding why,” as in “I understand why the
house caught fire” or “Alice understands why Bob did this,” etc. Understanding why
is a paradigmatic expression of understanding. For the sake of simplicity, the notion
of understanding will be treated as understanding why in the following.

Understanding why is widely named as “explanatory understanding”3, which
indicates the close relations between understanding and the notion of explanation.
The author of [30] argues that explanations are precisely those sorts of things that
bring about understanding. Alternatively, consider the slogan by Strevens in [27]: No
understandingwithout explanation. Discussions about explanation and understanding
will guide us in defining the language and semantics of our framework.

2See, for example [4, 13] and the bibliographies therein.
3For example, see [4, 14] and the bibliographies therein. It is also noted that we should not treat the

“why” in “understanding why” as an implicit restriction: some kinds of understanding why might be
more idiomatically expressed as understanding how ([14]). For example, it might be more natural to talk
about understanding how the dinosaurs went extinct rather than why they went extinct, although there
is no significant difference between the two. In either case, what is required is a correct explanation of
the extinction.
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1.2 Explanation

Serious why-questions demand explanations. Why does a piece of iron rust? The
explanation for this phenomenon, for instance, is that iron and oxygen undergo a redox
reaction when they come into contact in the presence ofH2O (whether in liquid form
or as moisture in the air). Why is the sky blue? It is due to the way sunlight interacts
with our atmosphere. The capacity to construct explanations is widely recognized as
a fundamental feature of scientific theorization. It is commonly held that to provide
an explanation is to respond to a why-question. Engaging in this process is thought
to enhance our understanding of the world.

There are numerous contemporary philosophical studies on explanation. 4As
usual, we use the Latin words explanandum and explanans to cover what is being
explained and whatever doing the explaining respectively. If we ask “why X?” then
X is the explanandum. If we answer “because Y ,” then Y is the explanans. For in-
stance, given an explanation E, it could be represented as Y ⇒ X , where X is the
explanandum (e.g. the phenomenon of a piece of iron rusting), Y is the explanans
(e.g. a redox reaction), and ⇒ symbolizes the explanatory relations between Y and
X . A theoretical account of explanation would specify the nature of⇒ and Y , X .

Accordingly, the distinctions among various theories of explanation (so-called
models of explanation in the literature) primarily concern the acceptable types of ex-
plananda and explanantia and the nature of their relations. For example, in Hempel’s
deductive-nomological (DN)model of explanation ( [12]), considered one of the foun-
dations ofmodern discussions on explanation, the explanans and explanandum consist
of specific statement sets, with the explanatory relation being logical entailment; and
in the inductive-statistical (IS) model ([11]), inductive support is emphasized as the
main explanatory relation. In Salmon’s causal-mechanical (CM) model ([23]), the
explanandum, which is an event, is explained by demonstrating how it fits within the
causal nexus referred to by the explanans, so the explanatory relation is causal.

A full account of explanation is beyond the scope of this paper. Instead, we
consider explanation at an abstract level and focus on the dichotomy of elements (ex-
planandum and explanans) and their relations, regardless of the nature of the compo-
nents. There is already some formal work on explanation along this line:

• Frameworks for explanations: It is argued that an explanation is a certain type
of argument, thus the abstract argumentation framework introduced in [8] is
applied to model explanation. The explanatory argumentation framework in

4Although explanations are commonly referred to as “scientific explanations” (especially in the field
of philosophy of science), it is widely accepted that explanations given in daily life share significant sim-
ilarities with explanations given in the sciences ( [30, 31, 32]). Scientific explanations are typically more
precise and rigorous than our explanations in everyday, non-scientific contexts, but the distinction be-
tween these two types of explanations is largely a matter of degree, rather than a fundamental difference
in nature. That is, everyday explanations is continuous with scientific explanations. Thus explanation
is thought to be a unified notion in this paper.
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[25] is a tuple ⟨A,X ,→, 99K,∼⟩, where ⟨A,→⟩ is the argumentation system
consisting of the set of arguments (explanations)A and the attack relation→⊆
A×A. X is the set of explananda, 99K⊆ (A×X )∪(A×A) is the explanatory
relation holding between an argument and an explanandum, and between two
arguments, ∼⊆ A×A is the incompatibility relation between arguments. 5
Similarly, the abstract explanation framework in [24] is a tuple ⟨P,K,E⟩where
P is a set of explananda and explanantia, K is a set of criteria imposed on
explanations, and E ⊆ K → (P × P ) is the explanatory-relation function
fromK to binary relations on P . 6

• Frameworks for explanations and epistemic notions: Xu, Wang and Studer [33]
take the ideas similar to justification logic together with the standard epistemic
logic to capture agent i knowing why p (in formula: Kyip), which is taken as
agent i knowing an explanation of p semantically. The explanatory relation is
characterized by t : p, which is a formula from justification logic originally
stating that “t is a justification of p”. Thus the semantical analysis of “knowing
why p” is ∃tKi(t : p).
Philosophically inspired by [16] and technically by [33], Wei [29] analyzes the
expression understanding why φ (in formula: Uyφ) as ∃t1∃t2(K(t2 : (t1 : φ)),
where t1 : φ means t1 is an explanation for φ and t2 : (t1 : φ) expresses t2
is a higher-order explanation for “t1 is an explanation for φ”. This framework
thereby embodies the philosophical idea that understanding why requires at
least two explanations at different levels, as opposed to merely knowing why.

We will borrow some ideas from the work in frameworks for explanations to
expand and enhance the logical framework on understanding why by [29] .

1.3 Basic ideas of the syntax and semantics

The relation between understanding and knowing has been a prominent theme
in the search for a satisfactory account of understanding, as noted by [22]. Our point
of departure is the widely held assumption that understanding why requires “more”
than knowing why. As a case in point, Pritchard [19] introduces a scenario in which a
child knows, via testimony, that a house burned down due to faulty wiring. The child
then knows why the house burned down. She could answer a corresponding why-
question since she accepts the information and is ready to repeat it to her friends.
However, she does not understand why the house burned down because she has no
conception of how the faulty wiring caused the fire. Thus, if the child were asked why

5In the explanatory argumentation framework, a 99K x is designated as “a explains x”, where
a ∈ A, x ∈ A ∪ X . The explanatory relation between arguments themselves allows for explanations
to be deepened. See [25] for more details.

6In the the abstract explanation framework, xEiy is read as “x explains y according to the criterion
i” or “x is an i-explanans of y”, where x, y ∈ P and i ∈ K. See [24] for more details.
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the introduction of faulty wiring caused the fire, she would be unable to respond. The
idea is that one having an understanding of why could also answer a kind of “vertical”
follow-up why-question (see [16]), which seeks a higher-order explanation, namely,
why a particular explanation (e.g., faulty wiring caused the fire) is the explanation.

Based on the logic of knowing why in [33], the author of [29] define a new
“packed” modality Uy in the language, and conceal the information of high-level
explanations by virtue of the existence quantifications of ∃t1∃t2(K(t2 : (t1 : φ))) in
the semantics. An understanding why modelM is defined as a tuple (W,E,R, E , V )

where (W,R, V ) is an epistemic model, E is a non-empty set of explanations, and E
is an admissible explanation function specifying the set of worlds for both first-level
explanations (E(t, φ)) and second-level explanations (E(t2, ⟨t1, ψ⟩)). If w ∈ E(t, φ)
then t is a (first-level) explanation for φ in the world w, and if v ∈ E(t2, ⟨t1, ψ⟩) then
v is a world where t2 is a second-level explanation for that t1 is an explanation of ψ.

The truth conditions for the standard operators are routine, and with:

• Kyφ holds atM, w iff (1) there exists t ∈ E such that for all v ∈W withwRv,
v ∈ E(t, φ); and (2) for all v ∈W with wRv, φ holds at v.

• Uyφ holds at M, w iff (1) there exist t1, t2 ∈ E such that for all v ∈ W with
wRv, v ∈ E(t2, ⟨t1, φ⟩); and (2) for all v ∈W with wRv, M, v � φ.
Therefore, while the formula Kyφ is roughly ∃tK(t : φ) ∧ Kφ, the structure of

theUyφ can be displayed as ∃t1∃t2K(t2 : (t1 : φ))∧Kφ. The framework limits itself
to two levels of explanation because it investigates “understanding why” by identify-
ing what distinguishes it from “knowing why”. Based on insights from philosophical
viewpoints, two levels of explanations suffice.

Nevertheless, in the framework presented in [29], the notion of understanding
why appears to be an all-or-nothing matter. As noted in [26], much of the recent
literature argues that understanding why is a distinct cognitive state from knowing
why for the reason that, unlike knowledge, understanding comes in degrees. It is
possible to more or less understand something.7 Immediately, two questions arise:

1. What does it mean to understand better?
2. How do we navigate varying degrees of understanding?

As for the first question, according to the philosophical views, the distinctions
among degrees of understanding can be drawn from explanations of the same phenom-
ena, with some considered deeper or better than others ([27]). For example, Railton
([21]) suggests that an explanation which traces an event’s causal history further back

7Borrowing an example from [14], consider Alice, a leading atmospheric physicist. Presumably,
her understanding of why the sky is blue is extensive, encompassing a range of causal factors, deep
theoretical principles, experimental results, and methodologies. Contrast this with Alice’s freshman
student, Bob, who is credited with understanding why the sky is blue even though he knows only a
small fraction of what Alice does. In the story, Alice’s understanding is considered better than Bob’s.
We will return to this example in Sect. 5.
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is deeper. Similarly, Thagard ([28]) argues that deepening occurs in a causal expla-
nation when it provides an underlying causal basis for the causal hypothesis. Recall
the explanatory argumentation framework by [25], the explanatory relation holding
between an argument and an explanandum, as well as between two arguments them-
selves. The explanatory relation between arguments allows for explanations to be
deepened. In the framework, c 99K b 99K a 99K e and b 99K a 99K e can be viewed
as two explanations (where a, b, c ∈ A and e ∈ X ), and the former is deeper than the
latter. The argument c can be used to explain one of the premises of argument b or
the link between the premises and the conclusion of b.

It suggests that we should release the restriction to two levels of explanations in
the model, allowing for deeper explanations and capturing reasoning about explana-
tions and different degrees of understanding at an abstract level. This adds interesting
layers to the analysis. Given a φ-phenomenon to be explained, we refer to t : φ as
an atomic explanation. By contrast, s : t : φ represents a deeper explanation than the
atomic one, as it involves more levels. Furthermore, we have the following:

• An explanation tn : · · · : t1 : φ is deeper than an explanation tm : · · · : t1 : φ

iff n > m.
• tn : · · · : t1 : φ and sm : · · · : s1 : φ are alternative explanations of φ iff
neither tn : · · · : t1 : φ is deeper than sm : · · · : s1 : φ, nor sm : · · · : s1 : φ is
deeper than tn : · · · : t1 : φ.

• An explanation tn : · · · : t1 : φ is called demanding iff n > 2.
• An explanation tn : · · · : t1 : φ is ideal iff it cannot be deepen.

We therefore establish a strict partial order among different explanations of φ by ap-
plying the notion of deepening, and thereby facilitating comparative understanding.

Now, regarding the second question, Khalifa ([14]) suggests two approaches:
we could analyze a minimal understanding by identifying the necessary conditions
for any understanding; alternatively, we might explore a maximal or ideal kind of
understanding, which would serve as the mirror image of the minimal understanding.
In either case, developing a method to compare different degrees of understanding
would allow us to describe the full spectrum, as represented by [14]:

Minimal understanding < Everyday understanding < Typical scientist’s under-
standing < Ideal understanding.

Based on the framework in [29], identifying an explanation is the necessary con-
ditions for any understanding, thus knowing why φ (Kyφ) could be regarded as the
minimal understanding why φ occurs. 8 In addition, the understanding why ψ (Uyψ)

8It resembles the definition of minimal understanding in [14]: “One has minimal understanding of
why p if and only if, for some q, she believes that q explainswhy p, and q explainswhy p is approximately
true”. Note that the notion of minimal understanding is analyzed by identifying only the necessary
conditions for any understanding, which is not a typical notion of understanding.
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characterized by only two levels of explanations could be viewed as the everyday un-
derstanding. So, we redefine multiple different degrees of understanding modalities
in the language, collectively referred to as U, which are respectively:

• MinimalUnderstanding: UMφ, requires an atomic explanation ofφ, i.e., ∃tK(t :

φ).
• Everyday Understanding: UEφ, requires a two-level explanation of φ, i.e.,
∃t1∃t2K(t2 : t1 : φ).

• Demanding Understanding: UDφ, requires a demanding explanation deeper
than two-level of φ, i.e., ∃t1 · · · ∃tmK(tm : · · · : t1 : φ) (m > 2).

• Ideal Understanding: UIφ, requires an ideal explanation ofφ, i.e., ∃t1 · · · ∃tn∃c
K(c : tn : · · · : t1 : φ) (n > 2, c denotes a self-evident explanation that cannot
be deepen anymore).

Therefore, the spectrum of understanding expressed in our framework is:
Minimal Understanding UM < Everyday understanding UE < Demanding un-

derstanding UD < Ideal understanding UI.
For the demanding understanding UDφ, since the comparative measures of ex-

planatory power offered in the extended framework are restricted to explanatory depth,
we cannot further compare two alternative explanations, such as stating that one is
closer to the correct scientific explanation than the other. Therefore, we are not yet
able to properly define a typical scientific understanding, but instead define the de-
manding understandingUDφ that is better than the everyday understandingUEφ. We
will further discuss the issue of comparative principles for two alternative explana-
tions in Sect. 5.

What follows is a brief summary. To formalize this semantics of different de-
grees of understanding, we need to deviate from the models defined in [29] by having
more levels of explanations and ideal explanations in the models.

Our main contributions are summarized below.

• We formalize the notion of varying degrees of understanding using a logical
language featuring four modalities for minimal understanding, everyday un-
derstanding, demanding understanding and ideal understanding respectively.

• We expand the existing model of everyday understanding to establish a par-
tial order among different explanations, thereby facilitating comparative un-
derstanding.

• We provide a sound and complete axiomatization of our logic to characterize
the interplay between different degrees of understanding.

• Using this framework, we explore its application tomulti-agent scenarios, specif-
ically for making comparative statements about the understanding among dif-
ferent agents and meta-understanding between them.

The paper is organized as follows. In Sect. 2, we build our logical framework.
Sect. 3 gives an axiomatization, and the detailed completeness proof is shown in Sect.
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4. Some applications of comparative understanding and meta-understanding in multi-
agent scenarios are discussed in Sect. 5. The last section flags further work.

2 Syntax and Semantics

Definition 1 (Epistemic language of comparative understanding). Fix nonempty set
P of propositional letters, the language ELCU is defined as (where p ∈ P ):

φ ::= p | ¬φ | (φ ∧ φ) | Kφ | UMφ | UEφ | UDφ | UIφ

Intuitively, the formula UMφ says that the agent has a minimal understanding of
why φ. The expression UEφ indicates that the agent has an everyday understanding
of why φ holds. UDφ suggests that the agent possesses a demanding understanding
of why φ holds, surpassing an everyday understanding. UIφ says that the agent has
an ideal understanding of why φ is true. In this paper, the modalities UM, UE, UD,
and UI will collectively be referred to using the unified term U.

We accept the view in [33] that although something is a tautology, you may not
have a minimal understanding (knowledge why) of that it is a tautology. A special set
of “self-evident” tautologiesΛ is introduced, which the agent is assumed to minimally
understand. For example, we can let all the instances of φ ∧ ψ → φ and φ ∧ ψ → ψ

be Λ. At present, we do not suppose any necessitation rule for U in general.

Definition 2. An ELCU modelM is a tuple (W,E,R, E , V ) where:

• W is a non-empty set of possible worlds.
• E is a non-empty set of explanations equipped with operators ·, ! and c such
that:

1. If t, s ∈ E, then t · s ∈ E,
2. If t ∈ E, then !t ∈ E,
3. A special symbol c is in E satisfying that c · c = c.

• R ⊆W ×W is an equivalence relation overW .
• E : En ×ELCU → 2W (n > 1) is an admissible explanation function satisfy-
ing the following conditions:

Explanation Application:
E(⟨tn, . . . , t1⟩, φ→ ψ) ∩ E(⟨sn, . . . , s1⟩, φ)
⊆ E(⟨tn · sn, . . . , t1 · s1⟩, ψ).

Constant Specification:
If φ ∈ Λ, then E(c, φ) =W ,

Higher-level Explanation Factivity:
E(⟨tn+1, tn, . . . , t1⟩, φ) ⊆ E(⟨tn, . . . , t1⟩, φ).
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Epistemic Introspection:
E(t,⃝φ) ⊆ E(!t, ⟨t,⃝φ⟩) for⃝ = K,U.

Ideal Explanation:
If w ∈ E(⟨c, tm, . . . , t1⟩, φ) (m > 2),
then w ̸∈ E(⟨s, c, tm, . . . , t1⟩, φ) for any s ∈ E.

Ideal Explanation Application I:
E(⟨c, tm, . . . , t1⟩, φ→ ψ) ∩ E(⟨c, sn, . . . , s1⟩, φ)
⊆ E(⟨c, tm, . . . , tk · c, tn · sn, . . . , t1 · s1⟩, ψ) (m > n > 2,m > k).

Ideal Explanation Application II:
E(⟨c, tm, . . . , t1⟩, φ→ ψ) ∩ E(⟨c, sn, . . . , s1⟩, φ)
⊆ E(⟨c, sn, . . . , c · sk, tm · sm, . . . , t1 · s1⟩, ψ) (n > m > 2, n > k).

• V : P → 2W is a valuation function.

In justification logic, operators such as ·, !, and c are conventionally used ([1,
15]). The setE is closed under the application operator ·, which combines two expla-
nations into a single one, as well as under the positive introspection operator !. Addi-
tionally, a special symbol c is in E, which is a self-evident explanation. It is required
to fulfill dual roles within the model: uniformly for all the self-evident formulas
within the designated set Λ and uniformly all self-evident higher-order explanations.
c · c = c is natural since c denotes any self-evident explanation. The sum operator +
is excluded because it would satisfy the condition E(t, φ) ∪ E(s, φ) ⊆ E(t + s, φ).
This is problematic in scenarios where different worlds may have different explana-
tions (t1, . . . , tn) for the same formula φ, as UMφmight be incorrectly deduced from
a uniform explanation formed by t1 + . . .+ tn.

The admissible explanation function E specifies the set of worlds for both first-
level and higher-level explanations. If w ∈ E(t, φ), then t is a first-level explanation
for φ in the world w. If v ∈ E(⟨tn, . . . , t1⟩, ψ), then v is a world where ⟨tn, . . . , t1⟩
provides a higher-level explanation of ψ. Note that the notation E(⟨tn, . . . , t1⟩, ψ)
here corresponds to the format tn : · · · : t1 : ψ in the Sect. 1.3.

The first two conditions are for E is obvious. The third condition says that higher-
level explanations yield lower-level explanations, that is,w ∈ E(⟨tn+1, tn, . . . , t1⟩, φ)
implies w is a world where a lower-level explanation ⟨tn, . . . , t1⟩ explains φ.

The reason the epistemic introspection condition of E is introduced is elaborated
in [29]. Intuitively, an answer to a question “Why φ?” is an explanation of the fact
φ. Thus the formula UMKφ, which requires an atomic explanation of Kφ roughly,
pertains to a why-question: why one knows φ. Typically, the person posing this
question does not expect the agent to provide reasons for why her belief in φ is not
subject to Gettier problems; instead, the agent should simply articulate her reasons
for believing φ, i.e., her justification for φ (see [2]). In this context, justification
essentially serves as an explanation. If w ∈ E(t,Kφ), then w is also a world where t
justifies φ. Consequently, there is a conceptual link between “t explains Kφ” in this
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framework and “t is a justification for φ” in standard justification logics, in the sense
that explanations can be justifications.

Justification logics commonly adhere to the logical principle: t : φ→!t : (t : φ).

Fitting argues in [9] that we are typically able to substantiate the reasons underlying
our knowledge in everyday life, and indeed, a purported reason holds no value without
some justification for its validity. Therefore, this principle is essential in justification
logic, asserting that !t always serves as a justification for t : φ, or that !t is an intro-
spective act confirming t : φ. Consequently, a parallel logical principle can be de-
rived here: if w ∈ E(t,Kφ) then w ∈ E(⟨!t, t⟩,Kφ), and without obstacle to include
the understanding modalities U for the same reason as that of Fitting. It is interest-
ing to note that the epistemic introspection condition will give rise to the following
nontrivial axioms about understanding: UMKφ→ UEKφ and UMUφ→ UEUφ.

All in all, if there is an explanation t for epistemic claims, then an introspective
second-level explanation !t of t must always exist to facilitate everyday understand-
ing. Conversely, when t serves as an explanation for the non-epistemic claim φ and
is not a justification, it does not necessarily follow that t can be transformed into a
second-level explanation for why t explains φ.

Finally, we incorporate the ideal explanation condition and the ideal explanation
application I and ideal explanation application II conditions into E in order to cap-
ture the explanations that lead to ideal understanding, which will be further clarified
according to the semantics below.

Definition 3.
M, w � p ⇔ w ∈ V (p)

M, w � ¬φ ⇔ M, w ̸� φ
M, w � φ ∧ ψ ⇔ M, w � φ andM, w � ψ
M, w � Kφ ⇔ M, v � φ for all v such that wRv
M, w � UMφ ⇔ (1) there exists t ∈ E such that for all v ∈W with

wRv, v ∈ E(t, φ)
(2) for all v ∈W with wRv, M, v � φ

M, w � UEφ ⇔ (1) there exist t1, t2 ∈ E such that for all
v ∈W with wRv, v ∈ E(⟨t2, t1⟩, φ) ;
(2) for all v ∈W with wRv, M, v � φ

M, w � UDφ ⇔ (1) there exist t1, . . . , tn ∈ E (n > 2) such that for
all v ∈W with wRv, v ∈ E(⟨tn, . . . , t1⟩, φ) ;
(2) for all v ∈W with wRv, M, v � φ

M, w � UIφ ⇔ (1) there exist t1, . . . , tm ∈ E such that for all
v ∈W with wRv, v ∈ E(⟨c, tm, . . . , t1⟩, φ) (m > 2);
(2) for all v ∈W with wRv, M, v � φ

Note that if the principle that everything has an explanation underpins our frame-
work, whichmay be represented by the condition on E , expressed asw ∈ E(⟨tk, . . . , t1⟩,
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φ) for some t1, . . . , tk with k > 1 for any w ∈ W , then it is equivalent to write the
truth condition of K-formula as follows:

M, w � Kφ ⇔ (1) for all v ∈W with wRv, there exist ti, . . . , tk (k > 1)
such that v ∈ E(⟨tk, . . . , t1⟩, φ),

(2) for all v ∈W with wRv, M, v � φ.

That is, the structure ofKφ can be displayed asK∃t1 · · · ∃tk(tk : · · · : t1 : φ). In
this case, the core difference between K-formulas and U-formulas in truth conditions
lies in the nesting structure of quantifiers. For Kφ, the structure is ∀∃ · · · ∃, while for
Uφ, it is ∃ · · · ∃∀, where ∀ checks all possible states, and ∃ · · · ∃ seeks explanations.

We have got the higher-level explanation factivity condition in the models. Now,
as in [29], we can show that the first-level explanation factivity defined in the follow-
ing is not assumed in the model definition.

Definition 4. An ELCU model M has the property of first-level explanation fac-
tivity, if whenever w ∈ E(t, φ), thenM, w � φ.

Given an ELCU modelM = (W,E,R, E , V ), its first-level factive companion
MF = (W,E,R, EF , V ) can be constructed as EF (⟨tn, . . . , t1⟩, φ) = E(⟨tn, . . . , t1⟩,
φ) − {w | M, w ̸� φ} (n > 1). It is obvious that the MF constructed is indeed an
ELCU model. The proposition below asserts that the ELCU-formulas are neutral
with respect to the first-level explanation factivity.

Proposition 1. For any ELCU formula φ, any w ∈W ,M, w � φ iffMF , w � φ.

Proof. We do induction on the structure of the ELCU-formula. Boolean cases and
the case of Kφ are trivial. For U, we only check the case for UD below:

• ⇐= SupposeMF , w � UDφ, then there exist t1, . . . , tn ∈ E (n > 2) such that
for all v with wRv, we haveMF , v � φ and v ∈ EF (⟨tn, . . . , t1⟩, φ). Then by
definition we get v ∈ E(⟨tn, . . . , t1⟩, φ). Therefore by IHM, w � UDφ.

• =⇒ The proof is similar as above.

�

3 Axiomatization

Nowwe develop the the proof system SCU for varying degrees of understanding.
It is worth noting that the axiom (KYU) expresses that “everyday understand-

ing” is necessary for “minimal understanding” (ordinary knowing why) in epistemic
situations, which corresponds to the epistemic introspection condition in the model.
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System SCU
Axioms

(TAUT) Classical Propositional Axioms
(DISTK) K(φ→ ψ) → (Kφ→ Kψ)
(T) Kφ→ φ

(4) Kφ→ KKφ
(5) ¬Kφ→ K¬Kφ
(DISTU) U(φ→ ψ) → (Uφ→ Uψ) (for U = UM,UE,UD,UI)
(UYK) UMφ→ Kφ
(IYD) UIφ→ UDφ
(DYE) UDφ→ UEφ
(EYM) UEφ→ UMφ
(4∗) Uφ→ KUφ (for U = UM,UE,UD,UI)
(KYU) UM ⃝ φ→ UE ⃝ φ (for⃝ = K,U)

Rules
(MP) Modus Ponens (N) ⊢ φ⇒⊢ Kφ (NE) φ ∈ Λ ⇒⊢ UMφ

Recall that introspection of understanding is proposed by Medieval logicians
(as mentioned in Footnote 1). Do we have the validity of Uφ → UUφ for some
specific degree of understanding over the ELCU models? Unfortunately, it is not
valid in the current setting. However, we could discuss under what conditions it
might be obtained. Once we accept UEφ → UMUEφ, with the help of UMUEφ →
UEUEφ–which is an instantiation of (KYU)–introspection of everyday understand-
ing, UEφ→ UEUEφ, will be valid.

Proposition 2. The following is provable in SCU: (5∗) ¬Uφ → K¬Uφ (for U =

UM,UE,UD,UI).

Proof. (1) ¬Uφ→ ¬KUφ (T)

(2) ¬KUφ→ K¬KUφ (5)
(3) K¬KUφ→ K¬Uφ (4∗), normality of K
(4) ¬Uφ→ K¬Uφ (MP) �

Theorem 1. SCU is sound over ELCU models.

Proof. We omit the cases of standard axioms and rules, as well most other cases
without special tricks.

DISTU : For instance, suppose supposeM, w � UI(φ→ ψ) andM, w � UIφ for
any ELCUmodelM. Then there exist t1, . . . , tm, s1, . . . , sn ∈ E (m,n > 2)

such that for all vwithwRv, v ∈ E(⟨c, tm, . . . , t1⟩, φ→ ψ)∩E(⟨c, sn, . . . , s1⟩,
φ). Assume without loss of generality thatm > n, we have v ∈ E(⟨c, tm, . . . ,
tk · c, tn · sn, . . . , t1 · s1⟩, ψ) (m > k) by the ideal explanation application I
condition of E . Therefore,M, w � UIψ. �
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4 Completeness

Since the spectrum of understanding expressed in our framework is: UM < UE

< UD < UI, thus, when constructing the canonical model, it is actually sufficient to
temporarily include four levels of explanations. As discussed in the next Sect. 5, once
we apply the ELCUmodels to the multi-agents situations, the restrictions on the four
levels of explanations need to be further relaxed. The technical details of the proofs
are inspired by [33] and [29].

Let Ω denote the set of all maximal SCU-consistent sets of formulas.

Definition 5 (Canonical Model). The canonical modelMc for SCU is a tuple (W c,

Ec, Rc, Ec, V c) where:

• Ec is defined in BNF: t ::= c | φ | (t · t) |!t, satisfying c · c = c, where
φ ∈ ELCU.

• W c := {⟨Γ, F,G,H,L, f, g, h, l⟩ | ⟨Γ, F,G,H,L⟩ ∈ Ω×P(Ec × ELCU)×
P(Ec2×ELCU)×P(Ec3×ELCU)×P({c}×Ec3×ELCU), f : {φ | UMφ ∈
Γ} → Ec, g : {φ | UEφ ∈ Γ} → Ec2, h : {UDφ | UDφ ∈ Γ} → Ec3, l :

{UIφ | UIφ ∈ Γ} → {c} × Ec3 such that f , g, h and l satisfy the following
conditions}

1. If ⟨t, φ→ ψ⟩, ⟨s, φ⟩ ∈ F, then ⟨t · s, ψ⟩ ∈ F .
2. If ⟨t2, t1, φ→ ψ⟩, ⟨s2, s1, φ⟩ ∈ G then ⟨t2 · s2, t1 · s1, ψ⟩ ∈ G.
3. If ⟨t3, t2, t1, φ→ ψ⟩, ⟨s3, s2, s1, φ⟩ ∈ H then ⟨t3 · s3, t2 · s2, t1 · s1, ψ⟩ ∈
H .

4. If ⟨c, t3, t2, t1, φ → ψ⟩, ⟨c, s3, s2, s1, φ⟩ ∈ L then ⟨c, t3 · s3, t2 · s2, t1 ·
s1, ψ⟩ ∈ L.

5. If ⟨c, t3, t2, t1, φ → ψ⟩ ∈ L, ⟨c, s2, s1, φ⟩ ∈ H then ⟨c, t3 · c, t2 · s2, t1 ·
s1, ψ⟩ ∈ L.

6. If ⟨c, t2, t1, φ → ψ⟩ ∈ H, ⟨c, s3, s2, s1, φ⟩ ∈ L then ⟨c, c · s3, t2 · s2, t1 ·
s1, ψ⟩ ∈ L.

7. If φ ∈ Λ, then ⟨c, φ⟩ ∈ F .
8. ⟨t2, t1, φ⟩ ∈ G implies ⟨t1, φ⟩ ∈ F

9. ⟨t3, t2, t1, φ⟩ ∈ H implies ⟨t2, t1, φ⟩ ∈ G.
10. ⟨c, t3, t2, t1, φ⟩ ∈ L implies ⟨t3, t2, t1, φ⟩ ∈ H .
11. ⟨c, t2, t1, φ⟩ ∈ H implies ⟨c, c, t2, t1, φ⟩ ̸∈ L.
12. ⟨t,⃝φ⟩ ∈ F implies ⟨!t, t,⃝φ⟩ ∈ G for⃝ = K,U.
13. UMφ ∈ Γ implies ⟨f(φ), φ⟩ ∈ F .
14. UEφ ∈ Γ implies ⟨g(φ), φ⟩ ∈ G.

15. UDφ ∈ Γ implies ⟨h(φ), φ⟩ ∈ H.

16. UIφ ∈ Γ implies ⟨l(φ), φ⟩ ∈ L.
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• ⟨Γ, F,G,H,L, f, g, h, l⟩Rc⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ iff (1) {φ | Kφ ∈
Γ} ⊆ ∆, and (2) f = f ′, g = g′, h = h′, l = l′.

• – Ec : Ecn × ELCU → 2W
c
(1 6 n 6 4) is defined by

Ec(t, φ) = {⟨Γ, F,G,H,L, f, g, h, l⟩ | ⟨t, φ⟩ ∈ F}
Ec(⟨t2, t1⟩, φ) = {⟨Γ, F,G,H,L, f, g, h, l⟩ | ⟨t2, t1, φ⟩ ∈ G}
Ec(⟨t3, t2, t1⟩, φ) = {⟨Γ, F,G,H,L, f, g, h, l⟩ | ⟨t3, t2, t1, φ⟩ ∈ H}
Ec(⟨t4, t3, t2, t1⟩, φ) = {⟨Γ, F,G,H,L, f, g, h, l⟩ | ⟨t4, t3, t2, t1, φ⟩ ∈ L}

– Ec : Ecn×ELCU → 2W
c
(n > 4) is defined as: Ec(⟨tn, . . . , t1⟩, φ) = ∅.

• V c(p) = {⟨Γ, F,G,H,L, f, g, h, l⟩ | p ∈ Γ}.

In the construction, for each world ⟨Γ, F,G,H,L, f, g, h, l⟩ ∈ W c, it contains
information about the explanations leading to each degree ofU formulas in Γ, respec-
tively. More specifically, f is a witness function picking one t for each formula in
{φ | UMφ ∈ Γ}, with the information that t explains φ stored in the component F .
Similarly, h, for instance, is a witness function that selects one ⟨t3, t2, t1⟩ for each
formula in {φ | UDφ ∈ Γ}, and the information that ⟨t3, t2, t1⟩ explains φ is stored
in H .

The following shows thatW c is indeed nonempty.

Definition 6. Given any Γ ∈ Ω, construct FΓ, GΓ,HΓ, LΓ, fΓ, gΓ, hΓ, lΓ as fol-
lows:

• FΓ
0 = {⟨φ,φ⟩ | UMφ ∈ Γ} ∪ {⟨c, φ⟩ | φ ∈ Λ}

• GΓ
0 = {⟨φ · φ, !φ,φ⟩ | UEφ ∈ Γ}

• HΓ
0 = {⟨!!φ,φ · φ, !φ,φ⟩ | UDφ ∈ Γ}

• LΓ
0 = {⟨c, !!φ,φ · φ, !φ,φ⟩ | UIφ ∈ Γ}

• FΓ
n+1 = FΓ

n ∪ {⟨t · s, ψ⟩ | ⟨t, φ → ψ⟩, ⟨s, φ⟩ ∈ FΓ
n for some φ} ∪ {⟨t1, φ⟩ |

⟨t2, t1, φ⟩ ∈ GΓ
n}

• GΓ
n+1 = GΓ

n∪{⟨t2·s2, t1·s1, ψ⟩ | ⟨t2, t1, φ→ ψ⟩, ⟨s2, s1, φ⟩ ∈ GΓ
n for some φ}

∪ {⟨t2, t1, φ⟩ | ⟨t3, t2, t1, φ⟩ ∈ HΓ
n} ∪ {⟨!t, t,⃝φ⟩ | ⟨t,⃝φ⟩ ∈ FΓ

n for⃝ =

K,U}
• HΓ

n+1 = HΓ
n ∪{⟨t3 · s3, t2 · s2, t1 · s1, ψ⟩ | ⟨t3, t2, t1, φ→ ψ⟩, ⟨s3, s2, s1, φ⟩ ∈

HΓ
n for some φ} ∪ {⟨t3, t2, t1, φ⟩ | ⟨c, t3, t2, t1, φ⟩ ∈ LΓ

n}
• LΓ

n+1 = LΓ
n∪{⟨c, t3·s3, t2·s2, t1·s1, ψ⟩ | ⟨c, t3, t2, t1, φ→ ψ⟩, ⟨c, s3, s2, s1, φ⟩

∈ LΓ
n for some φ} ∪ {⟨c, t3 · c, t2 · s2, t1 · s1, ψ⟩ | ⟨c, t3, t2, t1, φ → ψ⟩ ∈

LΓ
n, ⟨c, s2, s1, φ⟩ ∈ HΓ

n for some φ}∪{⟨c, c·s3, t2·s2, t1·s1, ψ⟩ | ⟨c, t2, t1, φ→
ψ⟩ ∈ HΓ

n , ⟨c, s3, s2, s1, φ⟩ ∈ LΓ
n for some φ}

• FΓ =
∪

n∈N F
Γ
n

• GΓ =
∪

n∈NG
Γ
n

• HΓ =
∪

n∈NH
Γ
n

• LΓ =
∪

n∈N L
Γ
n
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• fΓ : {φ | UMφ ∈ Γ} → Ec, fΓ(φ) = φ.
• gΓ : {φ | UEφ ∈ Γ} → Ec × Ec, gΓ(φ) = ⟨φ · φ, !φ⟩.
• hΓ : {φ | UDφ ∈ Γ} → Ec × Ec × Ec, hΓ(φ) = ⟨!!φ,φ · φ, !φ⟩.
• lΓ : {φ | UIφ ∈ Γ} → {c | c ∈ Ec} × Ec × Ec, lΓ(φ) = ⟨c, !!φ,φ · φ, !φ⟩.

Proposition 3. For any Γ ∈ Ω, ⟨Γ, FΓ, GΓ,HΓ, LΓ, fΓ, gΓ, hΓ, lΓ⟩ ∈W c.

Proof. We show that the conditions 1− 16 in the definition ofW c are all satisfied.
Merely selected conditions are discussed below:

• For the condition 1, suppose ⟨t2, t1, φ → ψ⟩, ⟨s2, s1, φ⟩ ∈ GΓ. Then there
exist k, l ∈ N such that ⟨t2, t1, φ → ψ⟩ ∈ GΓ

k , ⟨s2, s1, φ⟩ ∈ GΓ
l . Assume

without loss of generality that k > l. Then we get ⟨t2 · s2, t1 · s1, ψ⟩ ∈ GΓ
k+1

by the construction. Therefore ⟨t2 · s2, t1 · s1, ψ⟩ ∈ GΓ.
• For the condition 6, suppose ⟨c, t2, t1, φ → ψ⟩ ∈ HΓ and ⟨c, s3, s2, s1, φ⟩ ∈

LΓ, then there are k, l ∈ N such that ⟨c, t2, t1, φ→ ψ⟩ ∈ HΓ
k , ⟨c, s3, s2, s1, φ⟩

∈ LΓ
l . Assume without loss of generality that k > l. Then we get ⟨c, c · s3, t2 ·

s2, t1·s1, ψ⟩ ∈ LΓ
k+1 by the construction. Hence ⟨c, c·s3, t2·s2, t1·s1, ψ⟩ ∈ LΓ.

• For the condition 12, suppose ⟨t,⃝φ⟩ ∈ FΓ. Then we have ⟨t,⃝φ⟩ ∈ FΓ
k for

some k ∈ N, which implies ⟨!t, t,⃝φ⟩ ∈ GΓ
k+1 by the construction of GΓ.

• For the condition 14, suppose UEφ ∈ Γ. Then we get ⟨φ · φ, !φ,φ⟩ ∈ GΓ by
the constructions of GΓ

0 and GΓ. Moreover, we have ⟨gΓ(φ), φ⟩ ∈ GΓ by the
construction of gΓ.

• For the condition 16, suppose UIφ ∈ Γ. Then we get ⟨c, !!φ,φ ·φ, !φ,φ⟩ ∈ LΓ

by the constructions of LΓ
0 and LΓ. Moreover, we have ⟨lΓ(φ), φ⟩ ∈ LΓ by the

construction of lΓ. �

For the construction of Rc in the canonical model in Definition 5, we claim:

Proposition 4. Rc is an equivalence relation.

Proof. It is trivial by the construction of Rc and axioms (T), (4) and (5). �

Regarding Ec in canonical models, we check the following:

Proposition 5. Ec satisfies all the conditions in ELCU model definition.

Proof. We only check some of these cases:

Explanation application: Suppose, for instance, ⟨Γ, FΓ, GΓ,HΓ, LΓ, fΓ, gΓ, hΓ, lΓ⟩
∈ Ec(t, φ→ ψ)∩Ec(s, φ). By the construction of Ec, we have both ⟨t, φ→ ψ⟩
and ⟨s, φ⟩ are in F . Then by condition 1 ofW c, we have ⟨t · s, ψ⟩ ∈ F , which
means ⟨Γ, FΓ, GΓ,HΓ, LΓ, fΓ, gΓ, hΓ, lΓ⟩ ∈ Ec(t · s, ψ).

Epistemic introspection: Obvious by condition 12.
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Ideal Explanation: Suppose, for instance, ⟨Γ, FΓ, GΓ,HΓ, LΓ, fΓ, gΓ, hΓ, lΓ⟩ ∈
E(⟨c, t2, t1⟩, φ). Then, by the construction of Ec, we have E(⟨s, c, t2, t1⟩, φ) =
∅ for any s ∈ Ec. Thus ⟨Γ, FΓ, GΓ,HΓ, LΓ, fΓ, gΓ, hΓ, lΓ⟩ ̸∈ E(⟨s, c, t2, t1⟩,
φ) for any s ∈ Ec.

Ideal Explanation Application I: Suppose ⟨Γ, FΓ, GΓ,HΓ, LΓ, fΓ, gΓ, hΓ, lΓ⟩ ∈
E(⟨c, t3, t2, t1⟩, φ → ψ) ∩ E(⟨c, s2, s1⟩, φ). Then, by the construction of Ec,
we have ⟨c, t3, t2, t1, φ → ψ⟩ ∈ L and ⟨c, s2, s1, φ → ψ⟩ ∈ H , which im-
ply ⟨c, t3 · c, t2 · s2, t1 · s1, ψ⟩ ∈ L by the condition 5 of W c. Therefore,
⟨Γ, FΓ, GΓ,HΓ, LΓ, fΓ, gΓ, hΓ, lΓ⟩ ∈ E(⟨c, t3 · c, t2 · s2, t1 · s1⟩, ψ) by the
definition. �

Hence the canonical model is well-defined, based on Proposition 3, 4 and 5.

Proposition 6. The canonical modelMc is well-defined.

Now we prove the existence lemmas for K, UM, UE,UDand UI respectively.

Lemma 1 (K-Existence Lemma). For any ⟨Γ, F,G,H,L, f, g, h, l⟩ ∈W c, if ¬Kφ
∈ Γ, then there exists a ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ ∈W c such that ⟨Γ, F,G,H,
L, f, g, h, l⟩Rc ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩, and ¬φ ∈ ∆.

Proof. (Sketch) Suppose ¬Kφ ∈ Γ. Let ∆− = {ψ | Kψ ∈ Γ} ∪ {¬φ}. First, ∆−

is consistent. The proof is routine by (DISTK) and (N). Next we extend ∆− into a
MCS∆. Finally, we construct F ′, G′,H ′, L′, f ′, g′, h′, l′ to form a world inW c. We
can simply let F ′ = F , G′ = G,H ′ = H , L′ = L and f ′ = f, g′ = g, h′ = h, l′ = l.

�

To semantically refute UMψ while preserving Kψ, we could construct an ac-
cessible world where the first-level explanation for ψ differs from that of the current
world. In [33], all original first-level explanations for φ are replaced with differ-
ent ones during the construction. However, we will simplify the demonstration by
deleting all those explanations for ψ when constructing a canonical world that refutes
UMψ, as in [29].

Lemma 2 (UM-Existence Lemma). For any ⟨Γ, F,G,H,L, f, g, h, l⟩ ∈ W c where
Kψ ∈ Γ, ifUMφ ̸∈ Γ, then for any ⟨t, ψ⟩ ∈ F , there exists a ⟨∆, F ′, G′,H ′, L′, f ′, g′,

h′, l′⟩ ∈W c such that ⟨t, ψ⟩ ̸∈ F ′ and ⟨Γ, F,G,H,L, f, g, h, l⟩Rc ⟨∆, F ′, G′,H ′, L′,

f ′, g′, h′, l′⟩.

Proof. SupposeUMψ ̸∈ Γ, we construct ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ as follows:

• ∆ = Γ

• F ′ = {⟨s, φ⟩ | ⟨s, φ⟩ ∈ F and UMφ ∈ Γ}
• G′ = {⟨s2, s1, φ⟩ | ⟨s2, s1, φ⟩ ∈ G and UMφ ∈ Γ}
• H ′ = {⟨s3, s2, s1, φ⟩ | ⟨s3, s2, s1, φ⟩ ∈ H and UMφ ∈ Γ}
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• L′ = {⟨c, s3, s2, s1, φ⟩ | ⟨c, s3, s2, s1, φ⟩ ∈ L and UMφ ∈ Γ}
• f ′ : {φ | UMφ ∈ ∆} → Ec is defined as: f ′(φ) = f(φ)

• g′ : {φ | UEφ ∈ ∆} → Ec is defined as: g′(φ) = g(φ)

• h′ : {φ | UDφ ∈ ∆} → Ec is defined as: h′(φ) = h(φ)

• l′ : {φ | UIφ ∈ ∆} → Ec is defined as: l′(φ) = l(φ)

Note that F ′ ⊆ F,G′ ⊆ G,H ′ ⊆ H,L′ ⊆ L. The main idea behind the constructions
of F ′ , G′, H ′ and L′ is to “carefully” delete all first-level explanations for {φ |
UMφ ̸∈ Γ}. Given UMψ ̸∈ Γ, it is clear that ⟨t, ψ⟩ ̸∈ F ′ for any ⟨t, ψ⟩ ∈ F by the
construction. In order to complete this proof, firstly, we show that ⟨∆, F ′, G′,H ′, L′,

f ′, g′, h′, l′⟩ ∈ W c by checking the conditions 1 − 16 in the definition ofW c. Only
several cases are written below:

• For the condition 4, suppose ⟨c, t3, t2, t1, φ → ψ⟩, ⟨c, s3, s2, s1, φ⟩ ∈ L′ ⊆ L,
then ⟨c·c, t3 ·s3, t2 ·s2, t1 ·s1, φ⟩ = ⟨c, t3 ·s3, t2 ·s2, t1 ·s1, φ⟩ ∈ L,UM(φ→ ψ)

andUMφ ∈ Γ. Moreover due to the axiom (DISTU) and the property of MCS,
we have UMψ ∈ Γ. Hence ⟨c, t3 · s3, t2 · s2, t1 · s1, ψ⟩ ∈ L′.

• For condition 7, suppose φ ∈ Λ, then UMφ ∈ Γ by (NE) and the property of
MCS, which implies ⟨c, φ⟩ ∈ F ′.

• For condition 11, suppose ⟨c, t2, t1, φ⟩ ∈ H ′ ⊆ H , then ⟨c, c, t2, t1, φ⟩ ̸∈ L,
which implies ⟨c, c, t2, t1, φ⟩ ̸∈ L′.

• For condition 12, suppose ⟨t,⃝φ⟩ ∈ F ′ ⊆ F . Then we get ⟨!t, t,⃝φ⟩ ∈ G

and UM ⃝ φ ∈ Γ, which implies ⟨!t, t,⃝φ⟩ ∈ G′.
• For condition 16, suppose UIφ ∈ ∆. Then we get UIφ ∈ Γ by Γ = ∆, thus

⟨l(φ), φ⟩ ∈ L. By (IYD), (DYE), (EYM) and the property of MCS, we have
UMφ ∈ ∆, so ⟨l′(φ), φ⟩ = ⟨l(φ), φ⟩ ∈ L′.

Secondly, ⟨Γ, F,G,H,L, f, g, h, l⟩Rc ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ holds. We
just need to check the following conditions:

• Since∆ = Γ, obviously we have {φ | Kφ ∈ Γ} ⊆ ∆.
• Since ∆ = Γ, it is clear that dom(f) = dom(f ′), dom(g) = dom(g′),

dom(h) = dom(h) and dom(l) = dom(l′). Then for any φ ∈ {φ | UMφ ∈
∆}, by definition of f ′, we have f(φ) = f ′(φ). Similarly, for any φ ∈ {φ |
UEφ ∈ ∆}, we have g(φ) = g′(φ); for any φ ∈ {φ | UDφ ∈ ∆}, we have
h(φ) = h′(φ); for any φ ∈ {φ | UIφ ∈ ∆}, we have l(φ) = l′(φ). Hence
f = f ′, g = g′,h = h′ and l = l′. �

Similarly, to refute UEφ while preserving UMφ, we construct an accessible
world where any second-level explanation forφ differs from that in the current world.

Lemma 3 (UE-Existence Lemma). For any ⟨Γ, F,G,H,L, f, g, h, l⟩ ∈ W c where
UMψ ∈ Γ, ifUEψ ̸∈ Γ, then for any ⟨s, t, ψ⟩ ∈ G, there exists a ⟨∆, F ′, G′,H ′, L′, f ′,

g′, h′, l′⟩ ∈W c such that ⟨s, t, ψ⟩ ̸∈ G′ and ⟨Γ, F,G,H,L, f, g, h, l⟩Rc ⟨∆, F ′, G′,H ′,

L′, f ′, g′, h′, l′⟩.
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Proof. Suppose UEψ ̸∈ Γ we construct ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ as follows:

• ∆ = Γ

• F ′ = {⟨s, φ⟩ | ⟨s, φ⟩ ∈ F and UMφ ∈ Γ}
• G′ = {⟨s2, s1, φ⟩ | ⟨s2, s1, φ⟩ ∈ G and UEφ ∈ Γ}
• H ′ = {⟨s3, s2, s1, φ⟩ | ⟨s3, s2, s1, φ⟩ ∈ H and UEφ ∈ Γ}
• L′ = {⟨c, s3, s2, s1, φ⟩ | ⟨c, s3, s2, s1, φ⟩ ∈ L and UEφ ∈ Γ}
• f ′ : {φ | UMφ ∈ ∆} → Ec is defined as: f ′(φ) = f(φ)

• g′ : {φ | UEφ ∈ ∆} → Ec is defined as: g′(φ) = g(φ)

• h′ : {φ | UDφ ∈ ∆} → Ec is defined as: h′(φ) = h(φ)

• l′ : {φ | UIφ ∈ ∆} → Ec is defined as: l′(φ) = l(φ)

We omit the remaining proof since it is very similar to the corresponding part in
the proof of Lemma 4 below. �

Lemma 4 (UD-Existence Lemma). For any ⟨Γ, F,G,H,L, f, g, h, l⟩ ∈ W c where
UEψ ∈ Γ, ifUDψ ̸∈ Γ, then for any ⟨r, s, t, ψ⟩ ∈ H , there exists a ⟨∆, F ′, G′,H ′, L′,

f ′, g′, h′, l′⟩ ∈W c such that ⟨r, s, t, ψ⟩ ̸∈ H ′ and ⟨Γ, F,G,H,L, f, g, h, l⟩Rc ⟨∆, F ′,

G′,H ′, L′, f ′, g′, h′, l′⟩.

Proof. SupposeUDψ ̸∈ Γ. we construct ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ as follows:

• ∆ = Γ

• F ′ = {⟨s, φ⟩ | ⟨s, φ⟩ ∈ F and UMφ ∈ Γ}
• G′ = {⟨s2, s1, φ⟩ | ⟨s2, s1, φ⟩ ∈ G and UEφ ∈ Γ}
• H ′ = {⟨s3, s2, s1, φ⟩ | ⟨s3, s2, s1, φ⟩ ∈ H and UDφ ∈ Γ}
• L′ = {⟨c, s3, s2, s1, φ⟩ | ⟨c, s3, s2, s1, φ⟩ ∈ L and UDφ ∈ Γ}
• f ′ : {φ | UMφ ∈ ∆} → Ec is defined as: f ′(φ) = f(φ)

• g′ : {φ | UEφ ∈ ∆} → Ec is defined as: g′(φ) = g(φ)

• h′ : {φ | UDφ ∈ ∆} → Ec is defined as: h′(φ) = h(φ)

• l′ : {φ | UIφ ∈ ∆} → Ec is defined as: l′(φ) = l(φ)

Obviously, F ′ ⊆ F,G′ ⊆ G,H ′ ⊆ H,L′ ⊆ L. Again, the main idea behind the
constructions is to “carefully” delete all third-level explanations for {ψ | UDψ ̸∈ Γ}.
Clearly ⟨t3, t2, t1, ψ⟩ ̸∈ H ′ for any ⟨t3, t2, t1, ψ⟩ ∈ H by the construction, given
UDψ ̸∈ Γ. In order to complete this proof, firstly, we show that ⟨∆, F ′, G′,H ′, L′, f ′,

g′, h′, l′⟩ ∈ W c by verifying the conditions 1 − 16 in the definition of W c. Only
selected cases are detailed below:

• For the condition 3, suppose ⟨t3, t2, t1, φ → ψ⟩, ⟨s2, s2, s1, φ⟩ ∈ H ′ ⊆ H ,
then ⟨t3 · s3, t2 · s2, t1 · s1, φ⟩ ∈ H . Moreover due to the axiom (DISTU) and
the fact that UD(φ → ψ),UDφ ∈ Γ, we have UDψ ∈ Γ. Hence ⟨t3 · s3, t2 ·
s2, t1 · s1, ψ⟩ ∈ H ′.

• For condition 9, suppose ⟨t3, t2, t1, φ⟩ ∈ H ′ ⊆ H , then ⟨t2, t1, φ⟩ ∈ G and
UDφ ∈ Γ, and thus UEφ ∈ Γ by (DYE), which imply ⟨t2, t1, φ⟩ ∈ G′.
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• For condition 16, suppose UIφ ∈ ∆. Then we get UIφ ∈ Γ by Γ = ∆, thus
⟨l(φ), φ⟩ ∈ L. By (IYD) and the property of MCS, we have UDφ ∈ ∆, so
⟨l′(φ), φ⟩ = ⟨l(φ), φ⟩ ∈ L′.

Then it is straightforward to check that ⟨Γ, F,G,H,L, f, g, h, l⟩Rc ⟨∆, F ′, G′,H ′,

L′, f ′, g′, h′, l′⟩ holds. �

Lemma 5 (UI-Existence Lemma). For any ⟨Γ, F,G,H,L, f, g, h, l⟩ ∈ W c where
UDψ ∈ Γ, ifUIψ ̸∈ Γ, then for any ⟨c, r, s, t, ψ⟩ ∈ H , there exists a ⟨∆, F ′, G′,H ′, L′,

f ′, g′, h′, l′⟩ ∈ W c such that ⟨c, r, s, t, ψ⟩ ̸∈ H ′ and ⟨Γ, F,G,H,L, f, g, h, l⟩Rc

⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩.

Proof. If UIψ ̸∈ Γ, then we construct ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ as follows:

• ∆ = Γ

• F ′ = {⟨s, φ⟩ | ⟨s, φ⟩ ∈ F and UMφ ∈ Γ}
• G′ = {⟨s2, s1, φ⟩ | ⟨s2, s1, φ⟩ ∈ G and UEφ ∈ Γ}
• H ′ = {⟨s3, s2, s1, φ⟩ | ⟨s3, s2, s1, φ⟩ ∈ H and UDφ ∈ Γ}
• L′ = {⟨c, s3, s2, s1, φ⟩ | ⟨c, s3, s2, s1, φ⟩ ∈ L and UIφ ∈ Γ}
• f ′ : {φ | UMφ ∈ ∆} → Ec is defined as: f ′(φ) = f(φ)

• g′ : {φ | UEφ ∈ ∆} → Ec is defined as: g′(φ) = g(φ)

• h′ : {φ | UDφ ∈ ∆} → Ec is defined as: h′(φ) = h(φ)

• l′ : {φ | UIφ ∈ ∆} → Ec is defined as: l′(φ) = l(φ)

We have F ′ ⊆ F,G′ ⊆ G,H ′ ⊆ H,L′ ⊆ L by the construction. By “carefully”
deleting all fourth-level explanations for {ψ | UIψ ̸∈ Γ}, we have that ⟨c, t3, t2, t1, ψ⟩
̸∈ L′ for any ⟨c, t3, t2, t1, ψ⟩ ∈ L, given UIψ ̸∈ Γ. To complete this proof, firstly, we
show that ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ ∈W c and omit most cases below:

• For the condition 4, Suppose ⟨c, t3, t2, t1, φ→ ψ⟩, ⟨c, s3, s2, s1, φ⟩ ∈ L′ ⊆ L,
then ⟨c, t3 ·s3, t2 ·s2, t1 ·s1, φ⟩ ∈ L. Moreover due to the axiom (DISTU) and
the fact that UI(φ → ψ),UIφ ∈ Γ, we have UIψ ∈ Γ. Hence ⟨c, t3 · s3, t2 ·
s2, t1 · s1, ψ⟩ ∈ L′.

• For condition 10, suppose ⟨c, t3, t2, t1, φ⟩ ∈ L′ ⊆ L, then ⟨t3, t2, t1, φ⟩ ∈ H

and UIφ ∈ Γ, and thus UDφ ∈ Γ, which imply ⟨t3, t2, t1, φ⟩ ∈ H ′.

Secondly, ⟨Γ, F,G,H,L, f, g, h, l⟩Rc ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ is clearly
holds. �

Finally, it is time to prove the following:

Lemma 6 (Truth Lemma). For any φ ∈ ELCU, ⟨Γ, F,G,H,L, f, g, h, l⟩ � φ iff
φ ∈ Γ.

Proof. The proof is by induction on the structure of φ. The atomic case and boolean
cases are routine. For the case of φ = Kψ, it is clear by Lemma 1. For the case of
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φ = UMψ, the proof is not hard with the help of Lemma 1 and 2. For the case of
UEψ, we omit the proof since it is very similar to the proofs of the cases below, by
applying Lemma 3.

For the case of UDψ,

• ⇐=: Suppose UDψ ∈ Γ. Then for any ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ such
that ⟨Γ, F,G,H,L, f, g, h, l⟩Rc ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩, we getUDψ ∈
∆, which implies ψ ∈ ∆ by (4∗), (DYE) ,(EYM), (UYK), (T), and the prop-
erty of MCS. Thus ⟨∆, F ′, G′,H ′, L′, f ′, g′, h′, l′⟩ � ψ by IH. Furthermore, we
have ⟨h(ψ), ψ⟩ ∈ H , ⟨h′(ψ), ψ⟩ ∈ H ′ and h = h′ by the definition of Mc,
whichmeans that there existh(ψ) = h′(ψ) ∈ Ec3 and ⟨∆, F ′, G′,H ′, L′, f ′, g′,

h′, l′⟩ ∈ Ec(h′(ψ), ψ). Hence ⟨Γ, F,G,H,L, f, g, h, l⟩ � UDψ.
• =⇒: Suppose UDψ ̸∈ Γ. Then we have the following four cases:

– Kψ ̸∈ Γ. By Lemma 1, we have ⟨Γ, F,G,H,L, f, g, h, l⟩ ̸� Kψ, thus
⟨Γ, F,G,H,L, f, g, h, l⟩ ̸� UDψ.

– Kψ ∈ Γ butUMψ ̸∈ Γ. By Lemma 2, we have ⟨Γ, F,G,H,L, f, g, h, l⟩ ̸�
UMψ, thus ⟨Γ, F,G,H,L, f, g, h, l⟩ ̸� UDψ.

– UMψ ∈ Γ butUEψ ̸∈ Γ. By Lemma 3, we have ⟨Γ, F,G,H,L, f, g, h, l⟩
̸� UEψ, thus ⟨Γ, F,G,H,L, f, g, h, l⟩ ̸� UDψ.

– UEψ ∈ Γ. If ⟨r, s, t, ψ⟩ ̸∈ H for any r, s, t ∈ Ec, then by the seman-
tics, ⟨Γ, F,G,H,L, f, g, h, l⟩ ̸� UDψ. If there exist t1 , t2 and t3with
⟨t3, t2, t1, ψ⟩ ∈ H , then we complete it with the help of Lemma 4.

For the case of UIψ,

• ⇐=: It is similar to the case of UDψ above.
• =⇒: Suppose UIψ ̸∈ Γ. Then only one case is checked according to the proof

for the case of UDψ.

– UDψ ∈ Γ. If ⟨c, r, s, t, ψ⟩ ̸∈ H for any r, s, t ∈ Ec, then clearly
⟨Γ, F,G,H,L, f, g, h, l⟩ ̸� UIψ. If there exist t1 , t2, t3with ⟨c, t3, t2, t1, ψ⟩
∈ H , then it is done by Lemma 5. �

Theorem 2. The system SCU is strongly complete over ELCU models.

Proof. Given a SCU-consistent set Σ−, it can be extended to a MCS Σ ∈ Ω. Then
there exist FΣ, GΣ,HΣ, LΣ, fΣ, gΣ, hΣ, lΣ such that ⟨Σ, FΣ, GΣ,HΣ, LΣ, fΣ, gΣ,

hΣ, lΣ⟩ ∈ W c by Proposition 3. Due to the Truth Lemma 6, we have a canonical
modelMc satisfying Σ and hence Σ−. �

5 Discussions

In this section, we explore the applications of the current logical framework to
some multi-agent scenarios.
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5.1 Comparative understanding

Given the framework described above, one might be tempted to extend it to
multi-agent scenarios, which would enable the expression of comparative statements
about the understanding among different agents, e.g., Alice understands why the sky
is blue better than Bob does. In such an extended framework, we could introduce new
modalities to compare the depth of understanding between various agents.

Below, focusing on comparing different people’s understanding, we define:

Definition 7 (Multi-agents epistemic language of comparative understanding). Fix
nonempty set P of propositional letters and nonempty set I of agent names, the lan-
guageMELCU is defined as (where p ∈ P , and i, j ∈ I):

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | Uiφ | Ui>jφ

Uiφ is read as agent i understands why φ. The comparative understanding be-
tween two agents denoted by Ui>jφ indicates that agent i understands why φ better
than agent j does.

Then modify the previous definition of ELCU model in Definition 2 to obtain a
new multi-agent model for the the languageMELCU.

Definition 8. An MELCU model M∗ is a tuple (W,E, {Ri | i ∈ I}, {Ei | i ∈
I}, V ) where:

• W is a non-empty set of possible worlds.
• E is a non-empty set of explanations equipped with operators ·, ! and c such
that:

1. If t, s ∈ E, then t · s ∈ E,
2. If t ∈ E, then !t ∈ E,
3. A special symbol c is in E.

• Ri ⊆W ×W is an equivalence relation for each i ∈ I .
• Ei : En × MELCU → 2W (n > 1) is an admissible explanation function
satisfying the following conditions:

Explanation Application: Ei(⟨tn, . . . , t1⟩, φ→ ψ)∩Ei(⟨sn, . . . , s1⟩, φ) ⊆ Ei(⟨tn·
sn, . . . , t1 · s1⟩, ψ).

Constant Specification: If φ ∈ Λ, then Ei(c, φ) =W .
Higher-level Explanation Factivity: Ei(⟨tn+1, tn, . . . , t1⟩, φ) ⊆ Ei(⟨tn, . . . , t1⟩, φ).
Epistemic Introspection: Ei(t,⃝iφ) ⊆ Ei(⟨!t, t⟩,⃝iφ) for⃝ = K,U.

• V : P → 2W is a valuation function.

Those conditions for ideal explanation are temporarily omitted. As discussed in
Sect. 2, explanations for epistemic claims are treated as justifications. Therefore, in
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the model, we need an admissible explanation function Ei relative to the set of indi-
viduals I . To consider the epistemic introspection condition, it is more reasonable
to say that w is a world where t is a justification of i for Kiφ. Adapting admissible
explanation function to be relative to I will also make the model more general, facil-
itating the discussion of meta-understanding statements, such as Alice understanding
Bob’s understanding. We will address this issue in the next subsection.

Below we omit the straightforward cases in the definition of the semantics.

Definition 9.
M∗, w 
 Uiφ ⇔ (1) there exist t1, . . . , tn ∈ E (n > 2) such that for all

v ∈W with wRiv, v ∈ Ei(⟨tn, . . . , t1⟩, φ) ;
(2) for all v ∈W with wRiv, M∗, v 
 φ.

M∗, w 
 Ui>jφ ⇔ (1) there are t1, . . . , tn, . . . , tm ∈ E (m > n > 2) such
that for all v ∈W with wRiv, v ∈ Ei(⟨tm, . . . , t1⟩, φ),
for all u ∈W with wRju, u ∈ Ej(⟨tn, . . . , t1⟩, φ) and
there is a u′ with wRju

′, u′ ̸∈ Ej(⟨tm, . . . , t1⟩, φ);
(2) for all v ∈W with wRiv or wRjv, M∗, v 
 φ.

While Uiφ involves grasping a demanding explanation, Ui>jφ says that agent i
has a deeper explanation than what agent j possesses. The formula Ui>jφ is roughly
∃t1 · · · ∃tn · · · ∃tm(Ki(tm : · · · : t1 : φ) ∧ Kj(tn : · · · : t1 : φ) ∧ ¬Kj(tm : · · · : t1 :

φ)) (m > n > 2). As mentioned earlier in Sect. 1.3, it is accepted in philosophical
literature that the depth of explanation can influence levels of understanding. When i
and j can both offer explanations for the φ-phenomenon, it indicates they have some
level of understanding of why it occurs, though the degree of their understanding may
vary. Accordingly, we have the following valid formulas concerning Ui>jφ:

• ⊢ ¬Ui>iφ.
• ⊢ Ui>jφ→ Uiφ ∧ Ujφ.

However, the formula Ui>jφ∧Uj>iφ can be satisfied in some pointedMELCU
models, that is, there exist two alternative explanations t1, . . . , tn, . . . , tm ∈ E (m >

n > 2) and s1, . . . , sn′ , . . . , sm′ ∈ E (m′ > n′ > 2) such that ∃t1 · · · ∃tn · · · ∃tm(Ki

(tm : · · · : t1 : φ) ∧ Kj(tn : · · · : t1 : φ) ∧ ¬Kj(tm : · · · : t1 : φ)) and
∃s1 · · · ∃sn′ · · · ∃sm′(Kj(sm′ : · · · : s1 : φ)∧Ki(sn′ : · · · : s1 : φ)∧¬Ki(sm′ : · · · :
s1 : φ)) hold simultaneously.

The formula appears to be counterintuitive. When comparing different individ-
uals’ understanding, we typically refer to an objective standard, like scientific expla-
nations. The problem is that the framework’s comparative measure of explanatory
power is limited to explanatory depth. Once we can further compare two alternative
explanations, such as stating that one is closer to the correct scientific explanation
than the other, we may get a total order among different explanations. In this context,
given a φ-phenomenon to be explained,
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• An explanation tn : · · · : t1 : φ is explanatory stronger than sm : · · · : s1 : φ

iff either tn : · · · : t1 : φ is deeper than sm : · · · : s1 : φ, or they are alternative
explanations of φ and tn : · · · : t1 : φ is more scientific than sm : · · · : s1 : φ.

Accordingly, the formulaUi>jφwill say that for every explanations j possessing
for φ, there is an explanatory stronger explanation than it that i has.

5.2 Meta-understanding

When the framework is applied to multi-agent situations, it sparks more inter-
esting discussions about understanding. Consider the formula UiUjφ, it is meant to
reflect one agent’s (i.e., i’s) understanding of another agent j’s understanding, which
could be termed asmeta-understanding. TheUiUjφ indicates i’s meta-understanding
from j’s perspective.

What does it mean to say that, for instance, Alice has an understanding of Bob’s
understanding of why the sky is blue? Basically, it involves several things. First,
Alice needs to have her own understanding of why the sky is blue. Second, she needs
to understand Bob’s explanation or perspective on why the sky is blue. This goes
beyond simply knowing that Bob understands the phenomenon; it involves grasping
the explanations that lead to his understanding. This requires a meta-cognitive layer
where Alice reflects on Bob’s reasoning process. Finally, Alice may also need to
identify any differences between her understanding and Bob’s, and understand why
these differences might exist.

Based on the analysis of meta-understanding, the formula KiUi>jφ → UiUjφ

should be valid, while the formula KjUi>jφ → UjUiφ should not. In order to em-
body such information in the model, we define M∗∗ be the MELCU∗ model with
meta-understanding, based on the above. It’s similar to the previously definedM∗ in
Definition 8, just with an additional condition added to Ei:

Meta-understanding: For any w, if v ∈ Ei(⟨tm, . . . , tn, . . . , t1⟩, φ) for each v with
wRiv and u ∈ Ej(⟨tn, . . . , t1⟩, φ) (m > n > 2) for each u with wRju, then
w ∈ Ei(⟨tn, . . . , t1⟩,Ujφ).

That is, if in a world w, agent i grasps an explanation ⟨tm, . . . , t1⟩ of φ, and j
grasps a lower-level explanation ⟨tn, . . . , t1⟩ ofφ, thenw is a worldwhere ⟨tn, . . . , t1⟩
is traceable by agent i to understand why j understands why φ. We do not use
⟨tm, . . . , t1⟩ or ⟨tm, . . . , tn+1⟩ as an explanation of Ujφ, since ⟨tm, . . . , tn+1⟩ may
not be involved in j’s perspective.

Hence, it is straightforward to check the following validity:

Proposition 7. KiUi>jφ→ UiUjφ is valid overMELCU∗ models.

Proof. For each MELCU∗ model M∗∗, suppose M∗∗, w 
 KiUi>jφ. Then for
all v with wRiv, there exist t1, . . . , tn, . . . , tm ∈ E (m > n > 2) such that for all
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u with vRiu, u ∈ Ei(⟨tm, . . . , t1⟩, φ), for all v′ with vRjv
′, v′ ∈ Ej(⟨tn, . . . , t1⟩, φ)

and there is a u′ with vRju
′, u′ ̸∈ Ej(⟨tm, . . . , t1⟩, φ). By the meta-understanding

condition of Ei, v ∈ Ei(⟨tn, . . . , t1⟩,Ujφ). Moreover,M∗∗, v 
 Ujφ, which implies
M∗∗, w 
 UiUjφ. �

We will leave the full logic over MELCU or MELCU∗ models to a future oc-
casion.

6 Conclusions and Future Work

This paper explores the logical structure of varying degrees of understanding.
We establish a partial order among different explanations within our models, which
facilitates comparative understanding. Our framework spans a spectrum that includes
minimal understanding, everyday understanding, demanding understanding, and ideal
understanding. We achieve a complete axiomatization of our logic, and discuss its ap-
plication in multi-agent systems.

Possible future studies include axiomatizations for multi-agent scenarios that in-
corporate more comparative measures of explanations and meta-understanding. Ad-
ditionally, our framework prepares us for future extensions involving the dynamics
of explanations, such as reasoning about multi-agent communication and explana-
tion acquisition, as studied in [18]. Furthermore, it is controversial whether groups
can properly be said to possess understanding, the interesting notion of group under-
standing discussed in [7] can be explored within this framework.
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理解与解释：一种知识逻辑的视角

魏宇

摘 要

知识逻辑学家很少关注“理解”这一概念，这与科学哲学和知识论领域的研

究现状形成了鲜明对比。本文提出了一种类似知识逻辑的框架来刻画“理解”。由

于“解释”帮助理解，该模型包含不同程度的解释概念，并在这些解释之间建立起

一种偏序关系。受哲学讨论的启发，本文在语形上包含了一系列理解的模态，从

最低限度的理解到日常的理解、高要求的理解、以及理想的理解。文中给出了一

个可靠完全的公理系统刻画这些理解概念，并讨论了这样的逻辑在多主体情境中

的应用，如探讨不同主体之间的理解比较以及主体之间的元理解等。

魏宇 华东师范大学哲学系

ywei@philo.ecnu.edu.cn
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