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The Finite Axiomatization of Transitive Pretabular
Logics of Finite Depths*

Shanshan Du

Abstract. This paper attempts to resolve the problem of how to axiomatize transitive pretab­
ular logics of finite depth. It is the follow­up work on transitive pretabular logics after the
crieria for transitive pretabular logics. This paper uses canonical formulas to axiomatize each
pretabular logic of finite depth in NExtK4.

1 Introduction

This paper attempts to resolve the problem—how to axiomatize transitive pretab­
ular logics of finite depth. It is the follow­up work on transitive pretabular logics after
the crieria for transitive pretabular logics in [6] and [5]. We use canonical formulas
in [11], [12] and [13] to axiomatize each pretabular logic of finite depth in NExtK4.

First let’s retrospect the history of the work on pretabular logics in NExtK4. In
1970s, [9] and [7] independently proves that there are only 5 pretabular logics in
NExtS4. Later, [1] establishes that NExtD4 contains only 10 pretabular logics and
that NExtGL contains ℵ0 pretabular logics (some discrepancies in his proof were cor­
rected in [3]). [1] also proves that NExtK4 contains 2ℵ0 pretabular logics but only
denumerably many pretabular logics of finite depth. [4] proves that every pretabular
logic of finite depth inNExtK4 is finitely axiomatizable and decidable. [2] shows how
to axiomatize the pretabular logics in NExtS4 and NExtGL by finite sets of canonical
formulas.

The paper consists of three sections. Section 1 is Introduction Part offering some
historical notes on pretabular logics inNExtK4. Section 2 is Background Part offering
some symbols and known results on pretabular logics in NExtK4 that will be used
later in this paper. Section 3 is the main result of the paper, offering the way how to
axiomatize the pretabular logics of finite depth in NExtK4.
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2 Background

A set of modal formulas is a normal modal logic (a normal logic or simply a
logic) if it contains all classical tautologies and □(p → q) → (□p → □q), and is
closed under Detachment, Substitution and Necessitation. The smallest normal logic
isK, the largest is For, i.e., the set of all modal formulas, and

K4 = K ⊕□p → □□p.

Let L be any normal logic. L′ is a normal extension of L if L′ is a normal modal
logic and L ⊆ L′. When L′ is a normal extension of L and L ̸= L′, L′ is said to be a
proper normal extension ofL. Let NExtL stands for the set of all normal extensions of
L, such as NExtK for the set of all normal logics and NExtK4 for the set of all normal
extensions ofK4.

A (Kripke) frame and a (Kripke) model are pairs F = ⟨W,R⟩ and M = ⟨F,V⟩
repectively, where W is a non­empty set, R is a binary relation on W , and V is a
valuation of all propositional variables in F. For each modal formula φ, the validity
of φ in F (or the truth inM) is defined in the usual way, written as F ⊨ φ (orM ⊨ φ).

For each frame F, LogF = {φ ∈ For : F ⊨ φ} is called the logic characterized
by F. When F is a finite frame, LogF is called a tabular logic. Similarly, for each
class C of frames, LogC = ∩{LogF : F ∈ C} is called the logic characterized by
C. When C is a class of finite frames, LogC is said to be finitely approximable.

For each normal modal logic L0 and each L ∈ NExtL0, L is a pretabular logic in
NExtL0 if L is not a tabular logic but all of its proper extensions in NExtL0 are tabular
logics.

Readers are assumed to be familiar with the following operations and their re­
lated theorems: Generation (including Generation by a point), Reduction (also known
as p­morphism) and Disjoint Union.

Following the notation in [2], for each frame F = ⟨W,R⟩ and X ⊆ W , let

X↑ = {y ∈ W : ∃x ∈ X (xRy)}
X↓ = {y ∈ W : ∃x ∈ X (yRx)}

and the designations are introduced as follows:

X↑− = X↑∖X, X↑+ = X↑ ∪X,

X↓− = X↓∖X, X↓+ = X↓ ∪X.

When X is a singleton {x}, we will use x↑ (x↓), x↑− (x↓−) and x↑+ (x↓+) to de­
note {x}↑ ({x}↓), {x}↑− ({x}↓−) and {x}↑+ ({x}↓+) respectively. Each point in
x↑ (x↓) is called a successor (predecessor) of x, each point in x↑− (x↓−) a proper
successor (predecessor) of x, and each point y ∈ x↑− (x↓−) an immediate successor
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(predecessor) of x if for each z ∈ W , xR⃗zR⃗y (yR⃗zR⃗x) implies x = z or y = z, and
x /∈ y↑ (x /∈ y↓), where u1R⃗u2 are designations of u1Ru2 ∧ ¬u2Ru1.

We will repeatedly appeal to Zakharyaschev’s results in [11], [12] and [13] con­
cerning “normal modal canonical formulas”. Let F = ⟨W,R⟩ be a finite rooted tran­
sitive frame, where W = {x1, . . . , xn} and x1 is the root of F. Let D be a set of
antichains1 in F that are not reflexive singletons. The normal modal canonical for­
mula α(F,D,⊥) associated with F and D is as follows:

α(F,D,⊥) =
∧

xiRxj

φij ∧
n∧

i=0

φi ∧
∧
d∈D

φd ∧ φ⊥ → p0

where

φij = □+(□pj → pi),

φi = □+((
∧

¬xiRxk

□pk ∧
n∧

j=0,j ̸=i

pj → pi) → pi),

φd = □+(
∧

xi∈W∖d↑−
□pi ∧

n∧
i=0

pi →
∨
xj∈d

□pj),

φ⊥ = □+(

n∧
i=0

□+pi → ⊥).

Here □+φ abbreviates □φ ∧ φ and i, j ∈ {1, . . . , n}.
LetD♯ be the set of all antichains in F that are not reflexive singletons. Then the

canonical formula α(F,D♯,⊥) is called the frame formula for F and is abbreviated
by α♯(F,⊥). α♯(F,⊥) is equivalent to Fine’s frame formula in [8]. A refutability
criterion for a frame formula in [8] and [2] is formulated as follows:

Theorem 1 (Fine). Let F be a finite rooted transitive frame and G be a transitive
frame. Then G ⊭ α♯(F,⊥) iff a generated subframe of G is reducible to F.

Let F = ⟨W,R⟩ be a transitive frame. A R⃗­chain of the length n in F is a
sequence x1, x2, · · · , xn of n distinct points inW such that

x1R⃗x2R⃗x3R⃗ · · · R⃗xn.

If the supremum of lengths of R⃗­chains in F is n, the depth of F is n, in symbols,
Dep(F) = n. F is of finite depth if Dep(F) = n for some n ∈ ω, and is of infinite

1A set of points X ⊆ W is an antichain in a frame F = ⟨W,R⟩ if xRy implies x = y for every
x, y ∈ X .
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depth otherwise. A transitive frame F validates bdn iff Dep(F) ≤ n, where bdn is
defined inductively as follows:

bd1 = 3□p1 −→ p1,

bdn+1 = 3(□pn+1 ∧ ¬bdn) −→ pn+1.

A transitive logic L ∈ NExtK4 is of finite depth if bdn ∈ L for some n ∈ ω.
We need to introduce a pointwise reduction and its related theorem in [6].

Definition 1 (Pointwise Reduction). A reduction f of F = ⟨W,R⟩ to G = ⟨U, S⟩
is a pointwise reduction, if there are at most two distinct points a, b ∈ W—referred
as chosen points for f—such that f (a) = f (b), and for other points x, x′ ∈ W at
least one of which is not a or b,

f (x) = f (x′) only if x = x′.

In the nontrivial case (i.e., a ̸= b), it is called a proper pointwise reduction (“proper”
may be omitted if there is no danger of confusion).

The following theorem in [6] shows that the five types P1–P5 constitute an ex­
haustive classification of proper pointwise reductions of transitive frames.

Theorem 2 (Theorem 2.3 in [6]). There are exactly five types P1–P5 of proper point­
wise reductions of transitive frames.

• Type P1 (Proper­cluster­contracting): f ∈ P1 iff aRb and bRa (obviously
both a and b are reflexive)(see Figure 1).

• Type P2 (Reflexive­copy­merging): f ∈ P2 iff a↑− = b↑−, neither aRb nor
bRa, and a, b are both reflexive(see Figure 1).

• Type P3 (Irreflexive­copy­merging): f ∈ P3 iff a↑− = b↑−, neither aRb nor
bRa, and a, b are both irreflexive(see Figure 1).

• Type P4 (Reflexive­predecessor­eliminating): f ∈ P4 iff a↑− = b↑ and a, b

are both reflexive(see Figure 2).
• Type P5 (Irreflexive­predecessor­eliminating): f ∈ P5 iff a↑− = b↑, a is
irreflexive and b is reflexive(see Figure 2).

Figure 1
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Figure 2

It has been proved in [6] that each pretaublar logic L of finite depth in NExtK4 is
characterized by a pseudo­tack (see Figure 3 (a) and (b)) or a pseudo­top (see Figure
3 (c) and (d)). A pseudo­tack or a pseudo­top is called the norm form of L. In Figure
3, f represents a finite reduced2 frame, (b) represents an infinite cluster and S is their
common set of successors of those△s.3

Figure 3

[6] proves that each pseudo­tack or a pseudo­top satisfies Condition C1, i.e.,

for each frame F′ ∈ R(G(F)), there is a frame G ∈ E(F) such that F′ ∼= G.4

Here

R(C) = {F′ : F′ is a reduct of G ∈ C}.
R(F) = R({F}).
G(F) = {F′ : F′ is a generated subframe of F}.
Su(F) = {F′ : F′ is a subframe of F}.
RSu(F) = R(F) ∩ Su(F).
E(F) = G(F) ∪RSu(F).

Theorem 4.10 in [6] says that each pseudo­tack or a pseudo­top satisfies Condition
C1. It is listed as the following Proposition 1.

2A frame F is invariant under reductions iff each reduct of F is isomorphic to F under any reduction.
A frame invariant under reductions is called a reduced frame.

3Each △ or □ represents a reflexive or an irreflexive point. (b) is the special case of (a) as its f
doesn’t exist and (d) is the special case of (c) as its S = ∅.

4ConditionC1 says that if a frame F′ is a reduct of some generated subframe of a frame F, then there
is a generated subframeG of F or a subframeG of F to which F can be reduced satisfying that F′ ∼= G.
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Proposition 1 (Theorem 4.10 in [6]). If a frame F is a pseudo­tack or a pseudo­top,
then F satisfies Condition C1.

3 The Finite Axiomatization of Transitive Pretabular Logics of Finite
Depth

Let L ∈ NExtK4 be a pretabular logic of finite depth. Proposition 2 shows that
each finite transitive frame G with G |= L share some common characteristics with
the norm form of L.

Proposition 2. Let L = LogF∗ ∈ NExtK4 be a transitive pretabular logic of finite
depth and F∗ be the norm form of L, i.e., a pseudo­tack or a pseudo­top. Then for
each finite transitive frame G, G |= L iff each subframe of G generated by a point is
isomorphic to a reduct of F∗ or a subframe of F∗ generated by a point.

Proof. Let L = LogF∗ ∈ NExtK4 be a transitive pretabular logic of finite depth
and F∗ be the norm form of L. (⇐) Assume that G is a finite transitive frame such
that G ̸|= L. Then there exists a formula φ ∈ L and G ̸|= φ. So there is a subframe
G′ of G generated by a point such that G′ ̸|= φ. By L = LogF∗, F∗ |= φ. Thus
G′ is not isomorphic to any reduct of F∗ or any subframe of F∗ generated by point.
Otherwise, F∗ ̸|= φ holds. (⇒) Let H be a finite transitive frame and there exists a
subframe H′ of H generated by a point such that it is not isomorphic to any reduct
of F∗ or any subframe of F∗ generated by a point. By Proposition 1, F∗ satisfies the
following condition:

C1 for each F′ ∈ R(G(F∗)), there is a G ∈ E(F∗) such that F′ ∼= G.

Since H′ is rooted, our assumption shows that no frame in E(F∗) is isomorphic to
H′. Since F∗ satisfies C1, it means that H′ ̸∈ R(G(F∗)), i.e., no generated subframe
of F∗ can be reducible to H′. So by Theorem 1, F∗ |= α♯(H′,⊥), i.e., α♯(H′,⊥) ∈
LogF∗ = L. Obviously, according to Theorem 1, H′ ̸|= α♯(H′,⊥), i.e., H′ ̸|= L.
Then we have that H ̸|= L. □

Proposition 3 offers the first step of the finite axiomatization of a transitive
pretabular logic of finite depth.

Proposition 3. Let L = LogF∗ ∈ NExtK4 be a pretabular logic of finite depth and
F∗ be the norm form of L. Let L∗ = K4⊕ {α♯(G,⊥) : G ∈ ∆}, where∆ is a set of
finite, rooted transitive frames which are not isomorphic to any reduct of F∗ or any
subframe of F∗ generated by a point. Then for each finite transitive frame H,

H |= L iff H |= L∗.
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Proof. LetL = LogF∗ ∈ NExtK4 be a pretabular logic of finite depth and F∗ be the
norm form of L. Let L∗ = K4⊕{α♯(G,⊥) : G ∈ ∆}, where∆ is defined as the one
in Proposition 3. Let H be a finite transitive frame. (⇐) Assume that H |= L∗. From
the definition of L∗, any subframe of H generated by a point is isomorphic to a reduct
or F∗or a subframe of F∗ generated by a point. Otherwise, there exists a subframe H′

of H generated by a point that is not isomorphic to any reduct of F∗ or any subframe
of F∗ generated by a point. Now from the definition of L∗,

α♯(H′,⊥) ∈ L∗.

By Theorem 1, H ̸|= α♯(H′,⊥). So we have that

H ̸|= L∗.

This is contrary to our assumption. Therefore, any subframe ofH generated by a point
is isomorphic to a reduct of F∗ or a subframe of F∗ generated by a point. Thus by
Proposition 2,

H |= L.

(⇒) Assume that H |= L and H ̸|= L∗. Since H is a finite transitive frame, by
Proposition 2, from H |= L we have that

(1) any subframe of H generated by a point is isomorphic to a reduct of F∗ or a
subframe of F∗ generated by a point .
According to the definition ofL∗, fromH ̸|= L∗ we have that there is a frame formula
α♯(G,⊥) such that

α♯(G,⊥) ∈ L∗,G ∈ ∆ and H ̸|= α♯(G,⊥).

From H ̸|= α♯(G,⊥) we have that there is a subframe H′ of H generated by a point
such that

H′ ̸|= α♯(G,⊥).

Since H′ is a subframe of H generated by a point, by (1), H′ is isomorphic to a reduct
of F∗ or a subframe of F∗ generated a point. Therefore, fromH′ ̸|= α♯(G,⊥)we have
that

F∗ ̸|= α♯(G,⊥).

So by Theorem 1, a generated subframe of F∗ is reducible toG. Since F∗ is the norm
form of L, F∗ satisfies Condition C1, i.e.,

for each F′ ∈ R(G(F∗)), there exists a G′ ∈ E(F∗) satisfying that F′ ∼= G′. It
means thatG is isomorphic to a reduct of F∗ or a subframe of F∗ generated by a point.
So from the definition of∆, we have that G ̸∈ ∆. This is contrary to our assumption
that G ∈ ∆. Therefore, H |= L implies H |= L∗. □
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By Theorem 12.6 in [2]5 and Exercise 12.10 in [2]6, we have that each transitive
pretabular logic of finite depth is a finite union­splitting7. Then by Theorem 10.51 in
[2]8 and Corollary 12.12 in [2]9, we have Theorem 3.

Theorem3. Each transitive pretabular logic of finite depth is strictly Kripke complete
and strictly finitely approximable.10

By Proposition 3 and Theorem 3, we can prove thatL = L∗, which is the second
step of the finite axiomatization of a transitive pretabular logic of finite depth.

Proposition 4. Let L = LogF∗ ∈ NExtK4 be a pretabular logic of finite depth and
F∗ be the norm form of L. Let L∗ = K4⊕ {α♯(G,⊥) : G ∈ ∆}, where∆ is defined
as the one in Proposition 3. Then L = L∗.

Proof. Let L = LogF∗ ∈ NExtK4 be a pretabular logic of finite depth and F∗ is the
norm form of L. Let L∗ = K4⊕{α♯(G,⊥) : G ∈ ∆}, where∆ is defined as the one
in Proposition 3. From Theorem 3 we have that L is strictly finitely approximable.
By Proposition 3, for each finite transitive frame H,

H |= L iff H |= L∗.

Therefore, L = L∗. □

Let L = LogF∗ be a pretabular logic of finite depth, F∗ be the norm form of L
and L∗ be defined as the one in Proposition 4. Since L = L∗, by Segberg’s Theorem
in [10], L∗ is characterized by a class of finite transitive frames with their depths
≤ Dep(F∗).

Let∆ be a set of frames defined in Proposition 3. Let∆1 ⊂ ∆ and eachG ∈ ∆1

is reduced with its depth ≤ Dep(F∗). Let ∆2 ⊂ ∆ and each G ∈ ∆2 is not reduced
but can be completely reducible to the reduced reduct of F∗ or a reduced subframe of
F∗ generated by a point by using a proper pointwise reduction only once.

5Theorem 12.6 in [2] says that each finitely axiomatizable logic L ∈ NExtK4 of finite depth is a
finite union­splitting.

6Exercise 12.10 in [2] says that the set of pretabular logics in (N)ExtK4BDn is finite for every n < ω

and that all of them are finitely axiomatizable.
7For reference, see the definition of a union­splitting in Page 360 in [2].
8Theorem 10.51 says that every Kripke complete (finitely approximable) union­splittingL = L0/F

is strictly Kripke complete (respectively, strictly finitely approximable) in NExtL0.
9Corollary 12.12 says that every pretabular logic in NExtK4 is finitely approximable, i.e., the finite

frame (model) property.
10AKripke complete (finitely approximable) logicL is strictly Kripke complete (respectively, strictly

finitely approximable) in a lattice of logics L if no other logic in L has the same Kripke (finite) frames
as L. For reference, see Page 361 in [2].
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By Theorem 2 and the fact that each reduction from a finite frame to a finite
frame is a composition of several pointwise reductions11, there are only finitely many
frames in∆1 and∆2 up to isomorphism.

Theorem 4 is the final step of the finite axiomatization of a transitive pretabular
logic of finite depth.

Theorem 4. Let L = LogF∗ ∈ NExtK4 be a pretabular logic of finite depth and F∗

be the norm form of L. Then L = K4⊕ {α♯(G,⊥) : G ∈ ∆1 ∪∆2}.

Proof. Let L = LogF∗ ∈ NExtK4 be a pretabular logic of finite depth and F∗

is the norm form of L. Let L∆1∪∆2 = K4 ⊕ {α♯(G,⊥) : G ∈ ∆1 ∪ ∆2}. Let
L∗ = K4 ⊕ {α♯(G,⊥) : G ∈ ∆}, where ∆ is defined as the one in Proposition 3.
By Proposition 4, we have that L = L∗. By the fact that∆1 ⊂ ∆ and∆2 ⊂ ∆,

L∆1∪∆2 ⊆ L∗.

Nowwe prove that for each finite rooted transitive frameHwith its depth≤ Dep(F∗),

H |= L∆1∪∆2 iff H |= L∗.

Assume the contrary, i.e., there is a finite rooted transitive frame H′ withDep(H′) ≤
Dep(F∗) such that H′ |= L∆1∪∆2 but H′ ̸|= L∗. Then there exists a finite rooted
transitive frame G′ such that α♯(G′,⊥) ∈ L∗ with G′ ∈ ∆ but H′ ̸|= α♯(G′,⊥). So
by Theorem 1, we have that

(1) there is a generated subframe of H′ that is reducible to G′.
ByDep(H′) ≤ Dep(F∗) and (1),Dep(G′) ≤ Dep(F∗). FromG′ ∈ ∆, G′ is a finite
rooted transitive frame and is not isomorphic to any reduct of F∗ or any subframe of
F∗ generated by a point. There are two cases for such a frame G′.

1) There is a generated subframe of G′ that can be completely reduced12 to a re­
duced frame in∆1.

2) There is no generated subframe of G′ that can be completely reduced to any
frame in ∆1. Since each frame can be reduced to a reduced frame, by the
definition of ∆1, we have that each generated subframe of G′ is completely
reducible to a reduct of F∗ or a subframe of F∗ generated by a point. Otherwise,
there will be a generated subframe of G′ that can be completely reduced to a
frame belonging to ∆1. Now We prove that G′ is not reduced. Assume the
conytrary, i.e., G′ is reduced. Then G′ itself, as one of generated subframes of
G′, is completely reducible to a reduct of F∗ or a subframe of F∗ generated by a
point. Since a reduced frame can only be reducible to a frame that is isomorphic
to itself, it means that G′ is isomorphic to a reduct of F∗ or a subframe of

11For reference, see Example 2.4 in [6].
12A complete reduction is a reduction from a frame to a reduced frame.
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F∗ generated by a point, which is contrary to the assumption that G′ ∈ ∆.
Therefore, G′ is not reduced. Since every reduction from a finite frame to a
finite frame can be obtained by a composition of several pointwise reductions,
by Theorem 2, there is a generated subframe of G′ that can be reducible to a
frame in∆2.

Therefore, by (1), we have that
(2) one of generated subframes of H′ is reducible to a frame in∆1 ∪∆2.

Therefore, by Theorem 1, H′ ̸|= L∆1∪∆2 , which is contrary to our assumption that
H′ |= L∆1∪∆2 . Thus we have that for each finite rooted transitive frame H with its
depth ≤ Dep(F∗),

if H |= L∆1∪∆2 , then H |= L∗.

Now we have completed the proof of the proposition that for each finite rooted tran­
sitive frame H with its depth ≤ Dep(F∗),

(3) H |= L∆1∪∆2 iff H |= L∗.

From L = L∗ we have that L∗ is a transitive pretabular logic of finite depth which is
characterized by a class of finite transitive frames with their depths≤ Dep(F∗). From
Theorem 3 we have thatL∗ is strictly finitely approximable. SinceL∆1∪∆2 ⊆ L∗ and
(3) holds, by the fact that L∗ is strictly finitely approximable, we have that

L∆1∪∆2 = L∗.

Therefore, L = L∆1∪∆2 . □

L∆1∪∆2 is finitely axiomatizable since there are only finitely many frames in
∆1∪∆2 up to isomorphism and α♯(G1,⊥) = α♯(G2,⊥) wheneverG1

∼= G2. So by
Theorem 4, each transitive pretabular logic of finite depth can be finitely axiomatized
as L∆1∪∆2 .

Now we use the following example to show how to construct L∆1∪∆2 for ax­
iomatizing each transitive pretabular logic L of finite depth by canonical formulas.
What we need to do is to determine the norm form of the transitive pretabular logic
L of finite depth and its related∆1 and∆2 according to the norm form of L.

Example 1. Let L = LogF∗ ∈ NExtK4 be a transitive pretabular logic of finite
depth and F∗ be its norm form given in Figure 4. Now by Theorem 4 we have that

L = K4⊕ α♯(◦,⊥)⊕ α♯(F1,⊥)⊕ α♯(F2,⊥)⊕ α♯(F3,⊥)⊕ α♯(F4,⊥)

while F1, F2, F3 and F4 are given in Figure 5. Each of the frames ◦(= ⟨x, {⟨x, x⟩}⟩),
F1, F2 and F3 belongs to∆1 and F4 ∈ ∆2 according to the definitions of∆1 and∆2.
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Figure 4

Figure 5
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有穷深度的传递濒表格逻辑的有穷公理化问题

杜珊珊

摘 要

本文试图解决有穷深度的传递的濒表格逻辑的公理化问题。这是作者之前所

解决的传递的濒表格逻辑判据工作的后继。本文使用了模态逻辑的先进技术典范

公式来解决 NExtK4格（即传递逻辑格）中的每一个有穷深度濒表格逻辑的公理
化问题。我们所得到的结论不仅是它们的有穷可公理化，更是如何可公理化的可

操作性方法。这种可操作性方法是和模型密切相关的。
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