The Finite Axiomatization of Transitive Pretabular Logics of Finite Depths*

Shanshan Du

Abstract. This paper attempts to resolve the problem of how to axiomatize transitive pretabular logics of finite depth. It is the follow-up work on transitive pretabular logics after the crieria for transitive pretabular logics. This paper uses canonical formulas to axiomatize each pretabular logic of finite depth in *NExtK4*.

1 Introduction

This paper attempts to resolve the problem—how to axiomatize transitive pretabular logics of finite depth. It is the follow-up work on transitive pretabular logics after the crieria for transitive pretabular logics in [6] and [5]. We use canonical formulas in [11], [12] and [13] to axiomatize each pretabular logic of finite depth in *NExtK4*.

First let's retrospect the history of the work on pretabular logics in *NExtK4*. In 1970s, [9] and [7] independently proves that there are only 5 pretabular logics in *NExtS4*. Later, [1] establishes that *NExtD4* contains only 10 pretabular logics and that *NExtGL* contains \aleph_0 pretabular logics (some discrepancies in his proof were corrected in [3]). [1] also proves that *NExtK4* contains 2^{\aleph_0} pretabular logics but only denumerably many pretabular logics of finite depth. [4] proves that every pretabular logic of finite depth in *NExtK4* is finitely axiomatizable and decidable. [2] shows how to axiomatize the pretabular logics in *NExtS4* and *NExtGL* by finite sets of canonical formulas.

The paper consists of three sections. Section 1 is Introduction Part offering some historical notes on pretabular logics in *NExtK4*. Section 2 is Background Part offering some symbols and known results on pretabular logics in *NExtK4* that will be used later in this paper. Section 3 is the main result of the paper, offering the way how to axiomatize the pretabular logics of finite depth in *NExtK4*.

Received 2022-08-29

Shanshan Du School of Philosophy, Wuhan University 547415276@qq.com

^{*}This paper is supported by "The Fundamental Research Funds for the Central Universities (No.410500139)".

2 Background

A set of modal formulas is a *normal modal logic* (a *normal logic* or simply a *logic*) if it contains all classical tautologies and $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$, and is closed under Detachment, Substitution and Necessitation. The smallest normal logic is K, the largest is *For*, i.e., the set of all modal formulas, and

$$K4 = K \oplus \Box p \to \Box \Box p$$

Let L be any normal logic. L' is a normal extension of L if L' is a normal modal logic and $L \subseteq L'$. When L' is a normal extension of L and $L \neq L'$, L' is said to be a proper normal extension of L. Let *NExtL* stands for the set of all normal extensions of L, such as *NExtK* for the set of all normal logics and *NExtK4* for the set of all normal extensions of K4.

A (Kripke) frame and a (Kripke) model are pairs $\mathfrak{F} = \langle W, R \rangle$ and $\mathfrak{M} = \langle \mathfrak{F}, \mathfrak{V} \rangle$ repectively, where W is a non-empty set, R is a binary relation on W, and \mathfrak{V} is a valuation of all propositional variables in \mathfrak{F} . For each modal formula φ , the validity of φ in \mathfrak{F} (or the truth in \mathfrak{M}) is defined in the usual way, written as $\mathfrak{F} \models \varphi$ (or $\mathfrak{M} \models \varphi$).

For each frame \mathfrak{F} , $Log\mathfrak{F} = \{\varphi \in For : \mathfrak{F} \models \varphi\}$ is called *the logic characterized* by \mathfrak{F} . When \mathfrak{F} is a finite frame, $Log\mathfrak{F}$ is called a *tabular logic*. Similarly, for each class C of frames, $LogC = \cap \{Log\mathfrak{F} : \mathfrak{F} \in C\}$ is called *the logic characterized by* C. When C is a class of finite frames, LogC is said to be *finitely approximable*.

For each normal modal logic L_0 and each $L \in NExtL_0$, L is a *pretabular logic in* $NExtL_0$ if L is not a tabular logic but all of its proper extensions in $NExtL_0$ are tabular logics.

Readers are assumed to be familiar with the following operations and their related theorems: Generation (including Generation by a point), Reduction (also known as p-morphism) and Disjoint Union.

Following the notation in [2], for each frame $\mathfrak{F} = \langle W, R \rangle$ and $X \subseteq W$, let

$$X\uparrow = \{y \in W : \exists x \in X (xRy)\}$$
$$X\downarrow = \{y \in W : \exists x \in X (yRx)\}$$

and the designations are introduced as follows:

$$\begin{split} X\uparrow^- &= X\uparrow\smallsetminus X, \qquad X\uparrow^+ &= X\uparrow\cup X, \\ X\downarrow^- &= X\downarrow\smallsetminus X, \qquad X\downarrow^+ &= X\downarrow\cup X. \end{split}$$

When X is a singleton $\{x\}$, we will use $x\uparrow (x\downarrow)$, $x\uparrow^- (x\downarrow^-)$ and $x\uparrow^+ (x\downarrow^+)$ to denote $\{x\}\uparrow (\{x\}\downarrow)$, $\{x\}\uparrow^- (\{x\}\downarrow^-)$ and $\{x\}\uparrow^+ (\{x\}\downarrow^+)$ respectively. Each point in $x\uparrow (x\downarrow)$ is called a *successor* (*predecessor*) of x, each point in $x\uparrow^- (x\downarrow^-)$ a *proper successor* (*predecessor*) of x, and each point $y \in x\uparrow^- (x\downarrow^-)$ an *immediate successor*

(predecessor) of x if for each $z \in W$, $x \vec{R} z \vec{R} y$ ($y \vec{R} z \vec{R} x$) implies x = z or y = z, and $x \notin y \uparrow (x \notin y \downarrow)$, where $u_1 \vec{R} u_2$ are designations of $u_1 R u_2 \land \neg u_2 R u_1$.

We will repeatedly appeal to Zakharyaschev's results in [11], [12] and [13] concerning "normal modal canonical formulas". Let $\mathfrak{F} = \langle W, R \rangle$ be a finite rooted transitive frame, where $W = \{x_1, \ldots, x_n\}$ and x_1 is the root of \mathfrak{F} . Let \mathfrak{D} be a set of antichains¹ in \mathfrak{F} that are not reflexive singletons. *The normal modal canonical formula* $\alpha(\mathfrak{F}, \mathfrak{D}, \bot)$ associated with \mathfrak{F} and \mathfrak{D} is as follows:

$$\alpha(\mathfrak{F},\mathfrak{D},\bot) = \bigwedge_{x_i R x_j} \varphi_{ij} \wedge \bigwedge_{i=0}^n \varphi_i \wedge \bigwedge_{\mathfrak{d} \in \mathfrak{D}} \varphi_{\mathfrak{d}} \wedge \varphi_\bot \to p_0$$

where

$$\begin{split} \varphi_{ij} &= \Box^+ (\Box p_j \to p_i), \\ \varphi_i &= \Box^+ ((\bigwedge_{\neg x_i R x_k} \Box p_k \land \bigwedge_{j=0, j \neq i}^n p_j \to p_i) \to p_i), \\ \varphi_{\mathfrak{d}} &= \Box^+ (\bigwedge_{x_i \in W \smallsetminus \mathfrak{d}^{\uparrow^-}} \Box p_i \land \bigwedge_{i=0}^n p_i \to \bigvee_{x_j \in \mathfrak{d}} \Box p_j), \\ \varphi_{\bot} &= \Box^+ (\bigwedge_{i=0}^n \Box^+ p_i \to \bot). \end{split}$$

Here $\Box^+ \varphi$ abbreviates $\Box \varphi \land \varphi$ and $i, j \in \{1, \ldots, n\}$.

Let \mathfrak{D}^{\sharp} be the set of all antichains in \mathfrak{F} that are not reflexive singletons. Then the canonical formula $\alpha(\mathfrak{F}, \mathfrak{D}^{\sharp}, \bot)$ is called the *frame formula* for \mathfrak{F} and is abbreviated by $\alpha^{\sharp}(\mathfrak{F}, \bot)$. $\alpha^{\sharp}(\mathfrak{F}, \bot)$ is equivalent to Fine's frame formula in [8]. A refutability criterion for a frame formula in [8] and [2] is formulated as follows:

Theorem 1 (Fine). Let \mathfrak{F} be a finite rooted transitive frame and \mathfrak{G} be a transitive frame. Then $\mathfrak{G} \nvDash \alpha^{\sharp}(\mathfrak{F}, \bot)$ iff a generated subframe of \mathfrak{G} is reducible to \mathfrak{F} .

Let $\mathfrak{F} = \langle W, R \rangle$ be a transitive frame. A \vec{R} -chain of the length n in \mathfrak{F} is a sequence x_1, x_2, \dots, x_n of n distinct points in W such that

$$x_1 \vec{R} x_2 \vec{R} x_3 \vec{R} \cdots \vec{R} x_n$$

If the supremum of lengths of \vec{R} -chains in \mathfrak{F} is n, the depth of \mathfrak{F} is n, in symbols, $Dep(\mathfrak{F}) = n$. \mathfrak{F} is of finite depth if $Dep(\mathfrak{F}) = n$ for some $n \in \omega$, and is of infinite

¹A set of points $X \subseteq W$ is an antichain in a frame $\mathfrak{F} = \langle W, R \rangle$ if xRy implies x = y for every $x, y \in X$.

depth otherwise. A transitive frame \mathfrak{F} validates bd_n iff $Dep(\mathfrak{F}) \leq n$, where bd_n is defined inductively as follows:

$$bd_1 = \Diamond \Box p_1 \longrightarrow p_1,$$

$$bd_{n+1} = \Diamond (\Box p_{n+1} \land \neg bd_n) \longrightarrow p_{n+1}.$$

A transitive logic $L \in NExtK4$ is of finite depth if $bd_n \in L$ for some $n \in \omega$.

We need to introduce a pointwise reduction and its related theorem in [6].

Definition 1 (Pointwise Reduction). A reduction f of $\mathfrak{F} = \langle W, R \rangle$ to $\mathfrak{G} = \langle U, S \rangle$ is a *pointwise reduction*, if there are at most two distinct points $a, b \in W$ —referred as *chosen points for f*—such that f(a) = f(b), and for other points $x, x' \in W$ at least one of which is not a or b,

$$f(x) = f(x')$$
 only if $x = x'$.

In the nontrivial case (i.e., $a \neq b$), it is called a *proper pointwise reduction* ("proper" may be omitted if there is no danger of confusion).

The following theorem in [6] shows that the five types P_1-P_5 constitute an exhaustive classification of proper pointwise reductions of transitive frames.

Theorem 2 (Theorem 2.3 in [6]). There are exactly five types P_1-P_5 of proper pointwise reductions of transitive frames.

- Type P_1 (*Proper-cluster-contracting*): $f \in P_1$ iff aRb and bRa (obviously both a and b are reflexive)(see Figure 1).
- Type P_2 (*Reflexive-copy-merging*): $f \in P_2$ iff $a\uparrow^- = b\uparrow^-$, neither aRb nor bRa, and a, b are both reflexive(see Figure 1).
- Type P_3 (*Irreflexive-copy-merging*): $f \in P_3$ iff $a\uparrow^- = b\uparrow^-$, neither aRb nor bRa, and a, b are both irreflexive(see Figure 1).
- Type P_4 (*Reflexive-predecessor-eliminating*): $f \in P_4$ iff $a\uparrow^- = b\uparrow$ and a, b are both reflexive(see Figure 2).
- Type P_5 (Irreflexive-predecessor-eliminating): $f \in P_5$ iff $a\uparrow^- = b\uparrow$, a is irreflexive and b is reflexive(see Figure 2).

Figure 1

It has been proved in [6] that each pretaublar logic L of finite depth in NExtK4 is characterized by a pseudo-tack (see Figure 3 (a) and (b)) or a pseudo-top (see Figure 3 (c) and (d)). A pseudo-tack or a pseudo-top is called the *norm form* of L. In Figure 3, f represents a finite reduced² frame, (b) represents an infinite cluster and S is their common set of successors of those $\triangle s$.³

[6] proves that each pseudo-tack or a pseudo-top satisfies Condition C1, i.e.,

for each frame $\mathfrak{F}' \in R(G(\mathfrak{F}))$, there is a frame $\mathfrak{G} \in E(\mathfrak{F})$ such that $\mathfrak{F}' \cong \mathfrak{G}$.⁴

Here

$$\begin{split} R(C) &= \{\mathfrak{F}': \mathfrak{F}' \text{ is a reduct of } \mathfrak{G} \in C\}.\\ R(\mathfrak{F}) &= R(\{\mathfrak{F}\}).\\ G(\mathfrak{F}) &= \{\mathfrak{F}': \mathfrak{F}' \text{ is a generated subframe of } \mathfrak{F}\}.\\ Su(\mathfrak{F}) &= \{\mathfrak{F}': \mathfrak{F}' \text{ is a subframe of } \mathfrak{F}\}.\\ R^{Su}(\mathfrak{F}) &= R(\mathfrak{F}) \cap Su(\mathfrak{F}).\\ E(\mathfrak{F}) &= G(\mathfrak{F}) \cup R^{Su}(\mathfrak{F}). \end{split}$$

Theorem 4.10 in [6] says that each pseudo-tack or a pseudo-top satisfies Condition C1. It is listed as the following Proposition 1.

²A frame \mathfrak{F} is *invariant under reductions* iff each reduct of \mathfrak{F} is isomorphic to \mathfrak{F} under any reduction. A frame *invariant under reductions* is called a *reduced* frame.

³Each \triangle or \square represents a reflexive or an irreflexive point. (b) is the special case of (a) as its f doesn't exist and (d) is the special case of (c) as its $S = \emptyset$.

⁴Condition C1 says that if a frame \mathfrak{F}' is a reduct of some generated subframe of a frame \mathfrak{F} , then there is a generated subframe \mathfrak{G} of \mathfrak{F} or a subframe \mathfrak{G} of \mathfrak{F} to which \mathfrak{F} can be reduced satisfying that $\mathfrak{F}' \cong \mathfrak{G}$.

Proposition 1 (Theorem 4.10 in [6]). If a frame \mathfrak{F} is a pseudo-tack or a pseudo-top, then \mathfrak{F} satisfies Condition C1.

3 The Finite Axiomatization of Transitive Pretabular Logics of Finite Depth

Let $L \in NExtK4$ be a pretabular logic of finite depth. Proposition 2 shows that each finite transitive frame \mathfrak{G} with $\mathfrak{G} \models L$ share some common characteristics with the norm form of L.

Proposition 2. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a transitive pretabular logic of finite depth and \mathfrak{F}^* be the norm form of L, i.e., a pseudo-tack or a pseudo-top. Then for each finite transitive frame $\mathfrak{G}, \mathfrak{G} \models L$ iff each subframe of \mathfrak{G} generated by a point is isomorphic to a reduct of \mathfrak{F}^* or a subframe of \mathfrak{F}^* generated by a point.

Proof. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a transitive pretabular logic of finite depth and \mathfrak{F}^* be the norm form of L. (\Leftarrow) Assume that \mathfrak{G} is a finite transitive frame such that $\mathfrak{G} \not\models L$. Then there exists a formula $\varphi \in L$ and $\mathfrak{G} \not\models \varphi$. So there is a subframe \mathfrak{G}' of \mathfrak{G} generated by a point such that $\mathfrak{G}' \not\models \varphi$. By $L = Log\mathfrak{F}^*$, $\mathfrak{F}^* \models \varphi$. Thus \mathfrak{G}' is not isomorphic to any reduct of \mathfrak{F}^* or any subframe of \mathfrak{F}^* generated by point. Otherwise, $\mathfrak{F}^* \not\models \varphi$ holds. (\Rightarrow) Let \mathfrak{H} be a finite transitive frame and there exists a subframe \mathfrak{H}' of \mathfrak{H} generated by a point such that it is not isomorphic to any reduct of \mathfrak{F}^* or any subframe of \mathfrak{F}^* generated by a point. By Proposition 1, \mathfrak{F}^* satisfies the following condition:

C1 for each $\mathfrak{F}' \in R(G(\mathfrak{F}^*))$, there is a $\mathfrak{G} \in E(\mathfrak{F}^*)$ such that $\mathfrak{F}' \cong \mathfrak{G}$.

Since \mathfrak{H}' is rooted, our assumption shows that no frame in $E(\mathfrak{F}^*)$ is isomorphic to \mathfrak{H}' . Since \mathfrak{F}^* satisfies C1, it means that $\mathfrak{H}' \notin R(G(\mathfrak{F}^*))$, i.e., no generated subframe of \mathfrak{F}^* can be reducible to \mathfrak{H}' . So by Theorem 1, $\mathfrak{F}^* \models \alpha^{\sharp}(\mathfrak{H}', \bot)$, i.e., $\alpha^{\sharp}(\mathfrak{H}', \bot) \in Log\mathfrak{F}^* = L$. Obviously, according to Theorem 1, $\mathfrak{H}' \nvDash \alpha^{\sharp}(\mathfrak{H}', \bot)$, i.e., $\mathfrak{H}' \nvDash L$. Then we have that $\mathfrak{H} \nvDash L$.

Proposition 3 offers the first step of the finite axiomatization of a transitive pretabular logic of finite depth.

Proposition 3. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a pretabular logic of finite depth and \mathfrak{F}^* be the norm form of L. Let $L^* = K4 \oplus \{\alpha^{\sharp}(\mathfrak{G}, \bot) : \mathfrak{G} \in \Delta\}$, where Δ is a set of finite, rooted transitive frames which are not isomorphic to any reduct of \mathfrak{F}^* or any subframe of \mathfrak{F}^* generated by a point. Then for each finite transitive frame \mathfrak{H} ,

$$\mathfrak{H} \models L iff \mathfrak{H} \models L^*.$$

Proof. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a pretabular logic of finite depth and \mathfrak{F}^* be the norm form of L. Let $L^* = K4 \oplus \{\alpha^{\sharp}(\mathfrak{G}, \bot) : \mathfrak{G} \in \Delta\}$, where Δ is defined as the one in Proposition 3. Let \mathfrak{H} be a finite transitive frame. (\Leftarrow) Assume that $\mathfrak{H} \models L^*$. From the definition of L^* , any subframe of \mathfrak{H} generated by a point is isomorphic to a reduct or \mathfrak{F}^* or a subframe of \mathfrak{F}^* generated by a point. Otherwise, there exists a subframe \mathfrak{H}' of \mathfrak{H} generated by a point. Now from the definition of L^* ,

$$\alpha^{\sharp}(\mathfrak{H}', \bot) \in L^*$$

By Theorem 1, $\mathfrak{H} \not\models \alpha^{\sharp}(\mathfrak{H}', \bot)$. So we have that

$$\mathfrak{H} \not\models L^*.$$

This is contrary to our assumption. Therefore, any subframe of \mathfrak{H} generated by a point is isomorphic to a reduct of \mathfrak{F}^* or a subframe of \mathfrak{F}^* generated by a point. Thus by Proposition 2,

$$\mathfrak{H} \models L.$$

 (\Rightarrow) Assume that $\mathfrak{H} \models L$ and $\mathfrak{H} \not\models L^*$. Since \mathfrak{H} is a finite transitive frame, by Proposition 2, from $\mathfrak{H} \models L$ we have that

(1) any subframe of \mathfrak{H} generated by a point is isomorphic to a reduct of \mathfrak{F}^* or a subframe of \mathfrak{F}^* generated by a point .

According to the definition of L^* , from $\mathfrak{H} \not\models L^*$ we have that there is a frame formula $\alpha^{\sharp}(\mathfrak{G}, \bot)$ such that

$$\alpha^{\sharp}(\mathfrak{G},\perp) \in L^*, \mathfrak{G} \in \Delta \text{ and } \mathfrak{H} \not\models \alpha^{\sharp}(\mathfrak{G},\perp).$$

From $\mathfrak{H} \not\models \alpha^{\sharp}(\mathfrak{G}, \bot)$ we have that there is a subframe \mathfrak{H}' of \mathfrak{H} generated by a point such that

$$\mathfrak{H}' \not\models \alpha^{\sharp}(\mathfrak{G}, \perp).$$

Since \mathfrak{H}' is a subframe of \mathfrak{H} generated by a point, by (1), \mathfrak{H}' is isomorphic to a reduct of \mathfrak{F}^* or a subframe of \mathfrak{F}^* generated a point. Therefore, from $\mathfrak{H}' \not\models \alpha^{\sharp}(\mathfrak{G}, \bot)$ we have that

$$\mathfrak{F}^* \not\models \alpha^{\sharp}(\mathfrak{G}, \bot).$$

So by Theorem 1, a generated subframe of \mathfrak{F}^* is reducible to \mathfrak{G} . Since \mathfrak{F}^* is the norm form of L, \mathfrak{F}^* satisfies Condition C1, i.e.,

for each $\mathfrak{F}' \in R(G(\mathfrak{F}^*))$, there exists a $\mathfrak{G}' \in E(\mathfrak{F}^*)$ satisfying that $\mathfrak{F}' \cong \mathfrak{G}'$. It means that \mathfrak{G} is isomorphic to a reduct of \mathfrak{F}^* or a subframe of \mathfrak{F}^* generated by a point. So from the definition of Δ , we have that $\mathfrak{G} \notin \Delta$. This is contrary to our assumption that $\mathfrak{G} \in \Delta$. Therefore, $\mathfrak{H} \models L$ implies $\mathfrak{H} \models L^*$. \Box By Theorem 12.6 in $[2]^5$ and Exercise 12.10 in $[2]^6$, we have that each transitive pretabular logic of finite depth is a finite union-splitting⁷. Then by Theorem 10.51 in $[2]^8$ and Corollary 12.12 in $[2]^9$, we have Theorem 3.

Theorem 3. Each transitive pretabular logic of finite depth is strictly Kripke complete and strictly finitely approximable.¹⁰

By Proposition 3 and Theorem 3, we can prove that $L = L^*$, which is the second step of the finite axiomatization of a transitive pretabular logic of finite depth.

Proposition 4. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a pretabular logic of finite depth and \mathfrak{F}^* be the norm form of L. Let $L^* = K4 \oplus \{\alpha^{\sharp}(\mathfrak{G}, \bot) : \mathfrak{G} \in \Delta\}$, where Δ is defined as the one in Proposition 3. Then $L = L^*$.

Proof. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a pretabular logic of finite depth and \mathfrak{F}^* is the norm form of L. Let $L^* = K4 \oplus \{\alpha^{\sharp}(\mathfrak{G}, \bot) : \mathfrak{G} \in \Delta\}$, where Δ is defined as the one in Proposition 3. From Theorem 3 we have that L is strictly finitely approximable. By Proposition 3, for each finite transitive frame \mathfrak{H} ,

$$\mathfrak{H} \models L \text{ iff } \mathfrak{H} \models L^*.$$

Therefore, $L = L^*$.

Let $L = Log\mathfrak{F}^*$ be a pretabular logic of finite depth, \mathfrak{F}^* be the norm form of Land L^* be defined as the one in Proposition 4. Since $L = L^*$, by Segberg's Theorem in [10], L^* is characterized by a class of finite transitive frames with their depths $\leq Dep(\mathfrak{F}^*)$.

Let Δ be a set of frames defined in Proposition 3. Let $\Delta_1 \subset \Delta$ and each $\mathfrak{G} \in \Delta_1$ is reduced with its depth $\leq Dep(\mathfrak{F}^*)$. Let $\Delta_2 \subset \Delta$ and each $\mathfrak{G} \in \Delta_2$ is not reduced but can be completely reducible to the reduced reduct of \mathfrak{F}^* or a reduced subframe of \mathfrak{F}^* generated by a point by using a proper pointwise reduction only once.

⁵Theorem 12.6 in [2] says that each finitely axiomatizable logic $L \in NExtK4$ of finite depth is a finite union-splitting.

⁶Exercise 12.10 in [2] says that the set of pretabular logics in (N)ExtK4BD_n is finite for every $n < \omega$ and that all of them are finitely axiomatizable.

⁷For reference, see the definition of a union-splitting in Page 360 in [2].

⁸Theorem 10.51 says that every Kripke complete (finitely approximable) union-splitting $L = L_0/F$ is strictly Kripke complete (respectively, strictly finitely approximable) in *NExtL*₀.

⁹Corollary 12.12 says that every pretabular logic in *NExtK4* is finitely approximable, i.e., the finite frame (model) property.

¹⁰A Kripke complete (finitely approximable) logic L is strictly Kripke complete (respectively, strictly finitely approximable) in a lattice of logics \mathfrak{L} if no other logic in \mathfrak{L} has the same Kripke (finite) frames as L. For reference, see Page 361 in [2].

By Theorem 2 and the fact that each reduction from a finite frame to a finite frame is a composition of several pointwise reductions¹¹, there are only finitely many frames in Δ_1 and Δ_2 up to isomorphism.

Theorem 4 is the final step of the finite axiomatization of a transitive pretabular logic of finite depth.

Theorem 4. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a pretabular logic of finite depth and \mathfrak{F}^* be the norm form of L. Then $L = K4 \oplus \{\alpha^{\sharp}(\mathfrak{G}, \bot) : \mathfrak{G} \in \Delta_1 \cup \Delta_2\}.$

Proof. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a pretabular logic of finite depth and \mathfrak{F}^* is the norm form of L. Let $L^{\Delta_1 \cup \Delta_2} = K4 \oplus \{\alpha^{\sharp}(\mathfrak{G}, \bot) : \mathfrak{G} \in \Delta_1 \cup \Delta_2\}$. Let $L^* = K4 \oplus \{\alpha^{\sharp}(\mathfrak{G}, \bot) : \mathfrak{G} \in \Delta\}$, where Δ is defined as the one in Proposition 3. By Proposition 4, we have that $L = L^*$. By the fact that $\Delta_1 \subset \Delta$ and $\Delta_2 \subset \Delta$,

$$L^{\Delta_1 \cup \Delta_2} \subseteq L^*.$$

Now we prove that for each finite rooted transitive frame \mathfrak{H} with its depth $\leq Dep(\mathfrak{F}^*)$,

$$\mathfrak{H}\models L^{\Delta_1\cup\Delta_2}$$
 iff $\mathfrak{H}\models L^*$.

Assume the contrary, i.e., there is a finite rooted transitive frame \mathfrak{H}' with $Dep(\mathfrak{H}') \leq Dep(\mathfrak{F}^*)$ such that $\mathfrak{H}' \models L^{\Delta_1 \cup \Delta_2}$ but $\mathfrak{H}' \not\models L^*$. Then there exists a finite rooted transitive frame \mathfrak{G}' such that $\alpha^{\sharp}(\mathfrak{G}', \bot) \in L^*$ with $\mathfrak{G}' \in \Delta$ but $\mathfrak{H}' \not\models \alpha^{\sharp}(\mathfrak{G}', \bot)$. So by Theorem 1, we have that

(1) there is a generated subframe of \mathfrak{H}' that is reducible to \mathfrak{G}' . By $Dep(\mathfrak{H}') \leq Dep(\mathfrak{F}^*)$ and (1), $Dep(\mathfrak{G}') \leq Dep(\mathfrak{F}^*)$. From $\mathfrak{G}' \in \Delta$, \mathfrak{G}' is a finite rooted transitive frame and is not isomorphic to any reduct of \mathfrak{F}^* or any subframe of \mathfrak{F}^* generated by a point. There are two cases for such a frame \mathfrak{G}' .

- 1) There is a generated subframe of \mathfrak{G}' that can be completely reduced¹² to a reduced frame in Δ_1 .
- 2) There is no generated subframe of 𝔅' that can be completely reduced to any frame in Δ₁. Since each frame can be reduced to a reduced frame, by the definition of Δ₁, we have that each generated subframe of 𝔅' is completely reducible to a reduct of 𝔅* or a subframe of 𝔅* generated by a point. Otherwise, there will be a generated subframe of 𝔅' that can be completely reduced to a frame belonging to Δ₁. Now We prove that 𝔅' is not reduced. Assume the conytrary, i.e., 𝔅' is reduced. Then 𝔅' itself, as one of generated subframes of 𝔅', is completely reducible to a reduct of 𝔅* or a subframe of 𝔅 is not reduced. Assume the conytrary, i.e., 𝔅' is reduced. Then 𝔅' itself, as one of generated subframes of 𝔅', is completely reducible to a reduct of 𝔅* or a subframe of 𝔅 is isomorphic to a frame that is isomorphic to itself, it means that 𝔅' is isomorphic to a reduct of 𝔅* or a subframe of 𝔅* or a su

¹¹For reference, see Example 2.4 in [6].

¹²A complete reduction is a reduction from a frame to a reduced frame.

 \mathfrak{F}^* generated by a point, which is contrary to the assumption that $\mathfrak{G}' \in \Delta$. Therefore, \mathfrak{G}' is not reduced. Since every reduction from a finite frame to a finite frame can be obtained by a composition of several pointwise reductions, by Theorem 2, there is a generated subframe of \mathfrak{G}' that can be reducible to a frame in Δ_2 .

Therefore, by (1), we have that

(2) one of generated subframes of \mathfrak{H}' is reducible to a frame in $\Delta_1 \cup \Delta_2$. Therefore, by Theorem 1, $\mathfrak{H}' \not\models L^{\Delta_1 \cup \Delta_2}$, which is contrary to our assumption that $\mathfrak{H}' \models L^{\Delta_1 \cup \Delta_2}$. Thus we have that for each finite rooted transitive frame \mathfrak{H} with its depth $\leq Dep(\mathfrak{F}^*)$,

if
$$\mathfrak{H} \models L^{\Delta_1 \cup \Delta_2}$$
, then $\mathfrak{H} \models L^*$.

Now we have completed the proof of the proposition that for each finite rooted transitive frame \mathfrak{H} with its depth $\leq Dep(\mathfrak{F}^*)$,

(3)
$$\mathfrak{H} \models L^{\Delta_1 \cup \Delta_2}$$
 iff $\mathfrak{H} \models L^*$.

From $L = L^*$ we have that L^* is a transitive pretabular logic of finite depth which is characterized by a class of finite transitive frames with their depths $\leq Dep(\mathfrak{F}^*)$. From Theorem 3 we have that L^* is strictly finitely approximable. Since $L^{\Delta_1 \cup \Delta_2} \subseteq L^*$ and (3) holds, by the fact that L^* is strictly finitely approximable, we have that

$$L^{\Delta_1 \cup \Delta_2} = L^*$$

Therefore, $L = L^{\Delta_1 \cup \Delta_2}$.

 $L^{\Delta_1\cup\Delta_2}$ is finitely axiomatizable since there are only finitely many frames in $\Delta_1\cup\Delta_2$ up to isomorphism and $\alpha^{\sharp}(\mathfrak{G}_1,\perp)=\alpha^{\sharp}(\mathfrak{G}_2,\perp)$ whenever $\mathfrak{G}_1\cong\mathfrak{G}_2$. So by Theorem 4, each transitive pretabular logic of finite depth can be finitely axiomatized as $L^{\Delta_1\cup\Delta_2}$.

Now we use the following example to show how to construct $L^{\Delta_1 \cup \Delta_2}$ for axiomatizing each transitive pretabular logic L of finite depth by canonical formulas. What we need to do is to determine the norm form of the transitive pretabular logic L of finite depth and its related Δ_1 and Δ_2 according to the norm form of L.

Example 1. Let $L = Log\mathfrak{F}^* \in NExtK4$ be a transitive pretabular logic of finite depth and \mathfrak{F}^* be its norm form given in Figure 4. Now by Theorem 4 we have that

$$L = K4 \oplus \alpha^{\sharp}(\circ, \bot) \oplus \alpha^{\sharp}(\mathfrak{F}_{1}, \bot) \oplus \alpha^{\sharp}(\mathfrak{F}_{2}, \bot) \oplus \alpha^{\sharp}(\mathfrak{F}_{3}, \bot) \oplus \alpha^{\sharp}(\mathfrak{F}_{4}, \bot)$$

while $\mathfrak{F}_1, \mathfrak{F}_2, \mathfrak{F}_3$ and \mathfrak{F}_4 are given in Figure 5. Each of the frames $\circ (= \langle x, \{\langle x, x \rangle \} \rangle)$, $\mathfrak{F}_1, \mathfrak{F}_2$ and \mathfrak{F}_3 belongs to Δ_1 and $\mathfrak{F}_4 \in \Delta_2$ according to the definitions of Δ_1 and Δ_2 .

References

- [1] W. J. Blok, 1980, "Pretabular varieties of modal logics", *Studia Logica*, **39**: 101–124.
- [2] A. Chagrov and M. Zakharyaschev, 1997, *Modal Logic*, Oxford: Oxford University Press.
- [3] A. V. Chagrov, 1989, "Nontabularity-pretabularity, antitabularity, coantitabularity", *Algebraic and Logical Constructions [Russian]*, pp. 105–111, Kalinin Univ., Kalinin.
- [4] A. V. Chagrov, 1998, Modelling of Computation Process by Means of Propositional Logic, phdthesis, Russian Academy of Science.
- [5] S. Du, 2014, "On pretabular logics in NExtK4 (Part II)", *Studia Logica*, **102**: 931–954.
- [6] S. Du and H. Kang, 2014, "On pretabular logics in NExtK4 (Part I)", *Studia Logica*, 102: 499–523.
- [7] L. L. Esakia and V. Y. Meskhi, 1977, "Five critical systems", *Theoria*, 40: 52–60.
- [8] K. Fine, 1974, "An ascending chain of S4 logics", *Theoria*, 40: 110–116.
- [9] L. L. Maksimova, 1975, "Pretabular extensions of Lewis S4", *Algebra and Logic*, 14: 16–33.
- [10] K. Segerberg, 1971, An Essay in Classical Modal Logic, Uppsala: Filosofiska Studier.
- [11] M. V. Zaharyaschev, 1992, "Canonical formulas for K4. Part I: basic results", *Journal of Symbolic Logic*, 57(4): 1377–1402.
- [12] M. V. Zaharyaschev, 1996, "Canonical formulas for K4. Part II: cofinal subframe logics", *Journal of Symbolic Logic*, 61(2): 421–449.
- [13] M. V. Zaharyaschev, 1997, "Canonical formulas for K4. Part III: the finite model property", *Journal of Symbolic Logic*, 62(3): 950–975.

有穷深度的传递濒表格逻辑的有穷公理化问题

杜珊珊

摘 要

本文试图解决有穷深度的传递的濒表格逻辑的公理化问题。这是作者之前所 解决的传递的濒表格逻辑判据工作的后继。本文使用了模态逻辑的先进技术典范 公式来解决 NExtK4 格(即传递逻辑格)中的每一个有穷深度濒表格逻辑的公理 化问题。我们所得到的结论不仅是它们的有穷可公理化,更是如何可公理化的可 操作性方法。这种可操作性方法是和模型密切相关的。