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Model Theoretical Aspects of Normal Polyadic
Modal Logic: An Exposition®

Jixin Liu

Abstract. In this paper, we give an exposition on the model theoretical aspects of normal
polyadic modal logic (PML), which is a modal logic with n-ary modalities generalizing the
basic normal modal logic K. Compared to the basic normal modal logic K, PML is much less
studied. Basic results about PML scattered in the literature are often stated without proofs,
except in certain algebraic setting, as they are considered as straightforward generalizations of
the results of K. Besides the missing details, the very limited available expositions are error-
prone even in well-known textbooks and papers, since the generalization to the polyadic setting
from the monadic one is sometimes non-trivial, which requires different techniques. Therefore,
we think there is a need for a detailed exposition of the basic model theoretical results of PML
proved in the modal logic setting, to provide a unified reference for further studies of PML, and
this is the goal of the paper. In this paper, we review the definition of filtration and ultrafilter
extension for polyadic language and give proofs for some basic theorems including the satura-
tion theorem of ultrafilter extension in a purely model theoretical way other than algebraic one.
Then we give a clarification on proving van-Benthem characterization theorem of PML in or-
der to exhibit differences in the proof from the monadic cases. Finally, we also give a model
theoretical proof for the Craig Interpolation Theorem of PML while the theorem was treated
as a corollary of some algebraic results in the literature.

1 Introduction

A polyadic modality is a modality with more than one propositional arguments.
In [29] and [30], Jonsson and Tarski first considered the polyadic modal operators in
an algebraic context, where they proved a deep theorem about the relation between
additive Boolean Algebra and relational structures. As in [42], some views it as the
origin of the relational semantics not only for monadic modal logic but also for the
polyadic one. So in some sense, the relational semantics is born to be polyadic.

Polyadic modalities are often used in the literature of philosophical logic, such
as the since-until operators in temporal logic ([31]), the relativized knowledge oper-
ators in epistemic logic ([6, 23]), and the conditional obligation operators in deontic

Received 2018-12-04

JixinLiu Department of Philosophy, Peking University
xuetianxuanxu@pku.edu.cn

*The author thanks Prof. Yanjing Wang for his advice on this topic, thanks Guozhen Shen for giving
suggestions in the saturation proof for ultrafilter extensions, and thanks Yifeng Ding for revising the
paper. The author also thanks Prof. Johan van Benthem, Prof. Robert Goldblatt and Prof. Yde Venema
for their answering questions, which helps much on developing the references of this paper.



80 Studies in Logic, Vol. 12, No. 3 (2019)

logic([13]). Various strict implications studied since the beginning of modal logic can
also be viewed as binary modalities. In [42], the author introduced a special kind of
PML-rough polyadic modal logic, which is related to rough set theory and has some
applications in fuzzy theory and artificial intelligence.

Compared to monadic modal logic, the polyadic modal logic is less studied.
However, we do know some deep connection between monadic modal logic and poly-
adic modal logic. For example, the simulation theorem in [16] shows that a lot of
properties can transfer from one to another, but there still remains many differences
between the monadic modal language and polyadic modal languages. A significant
one is the Sahlqvist Theorem which can be used to decide whether a modal formula
has a first order correspondence. In [36], de Rijke showed that we cannot easily gener-
alize Sahlqvist formula for polyadic modal languages. However, in [21], the authors
showed that by representing polyadic languages in a combinatorial PDL style, one
can still get a generalized Sahlqvist Theorem!.

In [37], De Rijke gave an unravelling model construction for getting tree-like
models of polyadic modal logic, which is useful on finite model theory of PML.
In [11], Demri and Gabbay had some model theoretical considerations for polyadic
modal logic (under the name of polymodal logic?) from the algebraic perspective.
Moreover, in [19], Goldblatt provided a very good survey for algebraic PML, where
he discussed ultrafilter extension and ultraproduct in the polyadic setting. Moreover,
Hoogland had a deep observation between the amalgamation on algebras and the in-
terpolation on logic in [26], which includes the Craig Interpolation Theorem for PML
as a consequence. Some interesting philosophical applications of polyadic modal lo-
gic are discussed in [33].

As we have seen in [9] and other modal logic textbooks, basic results about
PML are often stated without proofs, as they are considered as generalizations of
the results of the monadic modal logic. Moreover, some results are scattered in the
literature of algebraic logic, which are not very accessible to the general audience of
modal logic. Moreover, the available expositions are sometimes error-prone, since
the generalization to the polyadic setting from the monadic one is sometimes non-
trivial, which requires different techniques and some more care. Therefore, we think
there is a need for a detailed exposition of the basic model theoretical results of PML
proved in the modal logic setting, in order to invite further studies of PML, and this
is the goal of the paper.

In this paper, we start with filtration and ultrafilter extension in the polyadic
setting, generalizing the monadic ones. It is worth mentioning that there are some
non-trivial differences between polyadic logics and monadic logics in proving the

'See [22] for similar results in the hybrid polyadic setting.

Notice that the word “polymodal” in different literatures has two different meanings: One indeed
means “polyadic” while the other means “multi-modal”, and readers should be careful about that.
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saturation theorem for ultrafilter extensions. Next, we give a simple examination
on the proof of the van-Benthem Characterization theorem stated in [9] with crucial
details in the general case. Finally we use a model theoretical strategy to show the
Craig Interpolation Theorem for normal polyadic modal logic. The result itself is not
new and can be derived from some algebraic results in [35], but our proof is purely
modal as in [3].

All the results can be found in the literature, but some of them just have state-
ments without a complete proof, and some of the proofs only consider the monadic
case, while some other proofs used algebraic tools to get a result which can actually
be derived by pure modal techniques. For clarification, we summarize the results
mentioned above in the following table. We cite those references where the theorems
come from as we know, use @ to mean that the content is omitted, and use [*](a) to
mean the proof in * is algebraic.

FT UET SUE vBC CIP
ML-statement | [32] [12],[17] [12],[17] (4] [3]
PML-statement | [9] [19] [9] [9] [3]
ML-proof [32] | [12],[170,[5] | [12],[17],[25] | [4]1.[38] [3]
PML-proof 0 [19](a) %] %] [26](a)
* ML: Monadic modal logic PML: Polyadic modal logic
 FT: Filtration Theorem UET: Ultrafilter Extension(UE)? Theorem
» SUE: Saturation Theorem of UE vBC: van-Benthem Characterization

Theorem
* CIT: Craig Interpolation Theorem

Basically our paper is guided by the following three books [9], [20], and [10],
all of which are important for people to learn more about model theory on polyadic
modal logic.

2 Normal polyadic modal logic

First we introduce the basic syntax and semantics for PML, which can be found
in [9].

Definition 1 (Polyadic Modal Language (PML)) Given a countable set ¢ of basic
propositional letters and a natural number n > 1, the language ML"(®) is defined
by:
pi=p| Lol (@Ae)[V(p...0)
——

n

where p € ©.

3Some logicians use “canonical extension” instead of “ultrafilter extension”, such as Goldblatt
in [19].
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Intuitively, V is the n-ary version of the J in monadic modal logic. We define
eV, o — 1, and A(p, ..., p,) as the abbreviations of =(—p A 1)), —¢ V 9 and
=V (=1, ..., @, ) respectively.

Definition 2 (Semantics) A frame F for the modal language ML"(®) (call it n-
frame) is a pair (W, R,) where W is an nonempty set and R, is an (n + 1)-ary
relation over W. An n-model M for ML"(®) is a pair (F, V') where the valuation
function V' assigns each w € W a subset of ®. The semantics of V is defined by:

M,w = V(p1,...,p,) iff foreachwvi,...v, € W with Rywv; ..., vp,
M, v; = @; for some i < n.

It is then clear that the semantics for A is as follows:

Mow = A1, ..., pn) iff  thereare vy, ...v, € W with Rywvy ..., v, ,
such that M, v; |= ¢; forall i < n.

Now we give the axioms for normal polyadic modal logics.

Definition 3 (Normal polyadic modal logic) Given a language ML"(®), a modal
logic A is a set of formulas containing all tautologies that is closed under modus
ponens and uniform substitution. A modal logic A is normal if it contains the axiom
K% and is closed under N, for each i € [1,n].

Kiv V(T e P13 = Qs Tig1 - -5 Th) —
‘ (V(ry e o1, DT o3 Tn) = V(T o T 1, @5 Tig 1 -+ 5 T)
Nt from Fp @infer Fpo V(1 ... 01,0, Yig1, .. Un)

We call the resulting minimal normal modal logic K,,.

Remark 1 In [28], the author used the following axiom G, instead of K%,* and
besides N, a monotonicity rule RMY, is also used.

Gy V(ri,. T, D Tig1 -, TR) —

‘ (V(rise e ric1, @5 Pig1 s Tn) = VI, e, DA G Tig1 -, Tn)
RMY, from Fp ¢ — 9 infer

I_A V(Tbl .. '7¢’i—17§07 wi-‘rlﬂ" . 71/}71) — (wl R 71/}i—171/}7¢i+17' .. 71/}71)

It is not hard to show the resulting logic is equivalent to our exposition. On the
other hand, in [9], the following rule is used instead of N&,:

N¥  from Fp pinfer Fp V(L..., Ly, L,..., 1)

*The name GY is in recognition of the contribution of Goldblatt.
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Unfortunately, the resulting logic based on N7 instead of N, is strictly weaker
than K,,, and a proof can be found in the following. Also note that the following
axiom mentioned in the definition of normal polyadic modal logics from [16] is not
valid:®

v(pl —q1,---yPn — QTL) — (v(pb' . apk> — v(Ql?"'?Qn))

Proposition 4 N, is not admissible in the logic K* where N, is replaced by N%,.

Proof We define a new semantics |- w.r.t. the Kripke model to show the independ-
ence. The truth definitions for the propositional letters and Boolean cases are the same
as [=. For the modal case:

wlk V(p1,...,ey) iff one of the followings hold:

e wisadeadend,i.e. thereisno vy,...,v, s.t. Rwvq,...,v,.
* There are some vy, ..., v, s.t. Rwvy, ..., v, and 3k € [1, n]
Yy, ..., wp(Rwwy, ..., w, —

(wg Ik @p AVYmM # kJwl, ... w), (Rww), ... w, ANwl, IF=on))).

The above statement says that there is a unique argument which is true at the cor-
responding position of every sequence of successors, and we call this argument the
unique truth.

Now we verify that IF is valid w.r.t. K*. Since we don’t change any definition
of the propositional connectives, each tautology is still valid. The case for dual and
US are trivial and it is also easy to show that |- preserves truth under N%. For the
axioms K¢, suppose that M, w is a pointed model and the two premises are satisfied
at M, w. We may assume that w is not a dead end, and otherwise the case is trivial.
Then we know that p; is the unique true argument for some ¢, and if ¢ = n + 1, ¢ 41

must be the unique true argument, which means V(p1, ... ¢n+1, - - ., Pm) IS true at w,
since other p; must be wrong at some successors of w. If ¢ # n + 1, it follows that
(n+1 must be wrong somewhere and hence we also have V(p1,...Gnt1,.-.,Pm) 18

true at w. As a result, I- K&,

Let M, w be a point model where w is not a dead end. Trivially, IF T, but w
- =(T,...,T,..., T), which means N, cannot preserve truth. Thus we know that
NY is independent in the logic K*. |

3 Filtration

Now we come to consider the filtration construction, which is first from [32], but
the name seems to be given by Segerberg in [40], who further developed this method
in [41]. Gabbay had some important researches in [14] and [15], too. But all of those

>In [16], A is used as the polyadic box.
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works are considering the monadic modal language, and there are few references for
polyadic modal languages.

The basic content of this section is also from the chapter of filtration in [9], but
we add those proofs for polyadic cases that the book omits. The following definition
is also from [9].

Definition 5 (Filtration) Let M = (W, R, V') be an n+1-ary model and X be a sub-
formula closed set of formulas. Let «~+x; be the relation on the states of M defined by:
w ey viffforall p € B: (M,w = ¢ < M,v = p)

Note thate«~y; is an equivalence relation. We denote the equivalence class of a
state w of M with respect to«wy, by |w|s, or simply by |w| if the content is clear.
The mapping w — |w| that sends a state to its equivalence class is called the natural
map.

Let Wy, = {Jw|y | w € W}. If any model ML = (W/ Rf V) satisfies the
followings:

() W/ =Ws;

(i) wRwr, ..., wy, implies |w| R |w1], ..., |wy];

(iii) If |w| RS |wy], ..., |wy| then for all A(p1, ..., 0n) € B: (M, w; = ; for all
i<n= M,wE A1, ¢n));

iv) V£ (p) = {|w| | M,w = p}, for all proposition letters p € 3,

then Mé is called a filtration of M through ¥..

We also have the following fact like the one for the monadic modal language.

Proposition 6 Let 3 be a finite sub-closed formula set. For any model M, if Mé
is a filtration of M through ¥, then Mé contains at most 2¢*74(>) nodes.

Proof The proof for the monadic modal language also works here: the mapping g
defined by g(|w|) = {p € ¥ | M,w |= ¢} is an injection from W to P(X). O

The proof for the following filtration theorem is also similar to the monadic one
in [9].

Proposition 7 (Filtration Theorem) Let Mg = (W', RS, Vf) be a filtration of M
through a subformula closed set . Then for all ¢ € 3, and all w € W/, we have
Mw = piff M7 |w| |

There is only a proof for basic modal language in [9], while the authors omit the
polyadic case, so here we give a complete proof for polyadic language.

Proof We prove by induction on ¢, and the only non-trivial case is that
© = A1, ..., n). So we first assume that ¢ € X.
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(=) Suppose that M, w | ¢, from which it follows that there are some
V1, ...Up s.t. wR vy, ...v, and for each i < n, M, v; = ;. By the fact that ¥ is
subformula closed, we have 1); € ¥, and hence by [.H. we know that M, |v;| |= 1), for
each i. But the condition (ii) in the definition of filtration shows that |w| R/ |vy], ..., [vn],
which means M, |w| = .

(<=) Suppose that M, |w| = ¢. Thus there are are some vy, ...v, € W7 s.t.

|w|Rf|v1], ..., |vn| and M, |v;| |= 1; for each i < n. Since each v; € %, it follows
that Vi < n(M,v; = ;) by LH. So the condition (iii) is applicable, and hence we
can conclude that M, w = ¢. O

Like the case for basic modal language, We have the smallest and largest filtra-
tion due to our definition.
Define R*® and R' as follows:

o |w|R%|v1], ..., Jvp| iff Fu' € |w|Vi < nJv) € |v;|(w' Rvy, ..., v),);
o Jw|R v, ..., |vn] iff for all A(p1,...,0n) € B (M,v; | @; foralli <
n= M,w k= A(¢1,..., n))-

The following fact shows that R* and R' are indeed the smallest and largest
filtration relations, which is a simple generalization of the monadic case in [9].

Proposition 8 Let M be any model and > any sub formula closed set. Then both
M = <W£, R*, V') and Mfy = (Wg, R!, V1) are filtrations. Furthermore, for any
filtration (W, Rf, V') of M though ¥, R* C Rf C R!.

Proof First we show that R® satisfies the condition (iii), and condition (ii) is trivial.

Suppose that |w|R*|w;|, ..., |wy|. By our definition, there must be w’ € |w| s.t.
Vi < nJw; € |w;|(w'Rw}, ..., wy,). Thus, for any A(py, ..., o) € X, if M5 w; |=
p; for all i < n, then /\/l;;,w; = ; forall i < n by w, € |w;|. Therefore M, w'
A(#1, -5 n), Which means M3, w = A(p1, ..., pn) by w' € |w].

Now we need to show that R;f) satisfies condition (ii).

Suppose that w Rwy, ..., wy,. we need to prove that |w|R'|wi], ..., [wy]:

foreach A(p1, ..., o) € X, ifforalli < n, (Mé, w; = ¢;), then by our assump-
tion, Mé,w = A(g1, ..., pn). Hence by our definition of R/, |w\R§,\w1|, ooy [
holds.

Suppose that |w|R*|v1], ..., |vn|, from which it follows that that Jw’ € |w|Vi <

n] € |vi|(w'RvY, ...,v",), and hence for any filtration relation R/, |w'|R/|v]|, ...,

w9y Up

|v!,| by condition (ii). But |w’| = |w|and |v;| = |v}| for all i, which means |w|R7 |v1], ..., |vn].

As aresult, R° C RY.
Suppose that =|w|R!|v1 |, ..., |v,|, which means there is some A (1, ..., ¢,) € 2
st. (M,v; = @i foralli < nand M,w | —A(p1,...,¢n)). So for any R/,
—|w| R |v1], ..., |vn| by condition (iii), and hence R/ C R! as a conclusion.
U
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We say a logic L admits filtration iff for any frame F of L, any subformula
closed set 3, and any model M on F, there is some filtration Mé s.t. the frame F7f
of MY, is still a frame of L.

A standard canonical model method in [9] shows that each K,, is complete with
respect to all n-frame, and by the filtration method we give above, it directly follows
that KK, admits filtration and hence has the finite model property.

4 Ultrafilter Extension

Now we consider a more complex construction—ultrafilter extension. The name
is first from [5], but the idea is earlier in [17], which is about modal duality theory,
and independently in [12], where Fine proved the Canonicity theorem for first-order
definable classes. Fine and Van Benthem’s works are basicly on the monadic modal
language. Goldblatt’s original work is also monadic but he has a further research from
the algebraic view, which is polyadic, in [19], and he talks about ultraproduct in that
paper too.

In this section we will prove two important theorems for polyadic language: the
ultrafilter extension (UE) theorem and the saturation theorem of UE. Both proofs are
in pure modal method without using algebra.

We use the notation in [9] as follows.

Definition9 Let§ = (W, R,) be an n-frame. For each n+1-ary R, we define the
following two operations 1, and m3 on the power set P(W) of V.

e mp(Xy,..., Xp) := {w € W | there are wy, ..., w, s.t. wRw1, ..., w, and
w; € X; forall i}

. mi(Xl,...,Xn) ={w e W |forall wy, ..., wy,: ifwRw1, ..., wy,, then there
is an ¢ with w; € X;}

There is a duality for m, and mS.
Proposition 10 mS(Xy,..., X,) =W —m,(W — X1,..., W — X,,).

Proof =« ¢ mi(Xl, vy X)) Mff Vwr, ooy wp (zRAw1, ooy wy, — Ji(w; € X)), © €
ma(W — X1, ..., W = X,,) iff Jwf, ..., w), (zRpwl, ..., w, AVi(w, € W — X;)). So
we have 2 € md (X1, ..., X)) iffx € W —m, (W — X1,..., W — X,). O

Now we can give the definition of ultrafilter extension for polyadic modal lan-
guages, which is also from [9].

Definition 11 (ultrafilter extension) Let§ = (W, R, ) be an n-frame. The ultrafilter
extension ueF of F is defined as the frame (U f(W), R%€):

« U f(W) is the set of all ultrafilters over W;
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o upRYCuy, ..., up iff ma (X1, ..., X5) € up whenever X; € u; forall i < n.

The ultrafilter extension of an n-model M = (F,V) is the model ueM =
(ueF, V") where V¥€(p;) = {w is an ultrafilter on W | V(p;) € u}.

The following lemma is important in dealing with the ultrafilter extension the-
orem for PML, which is very different from the situation for the monadic modal
language. Since [9] omits proofs for polyadic languages, we cannot find a similar
lemma in that book. But actually it is a corollary of a classical model theory result,
and Guozhen Shen helps us on finding the power of it here.

Lemma 1 Suppose v is an ultrafilter on W". Let [[, : W™ — W be the i-th
coordinate projection and b; = {[[,(z) | = € b} be the projection of b € P(W™).
Then u; = {b; | b € u} is an ultrafilter on .

Proof First we define a function’ : P(W) — P(W™) as follows:

foreacha € P(W), d' = {(a1,...,ai-1,2,ait1,...,0,) | T €aand aj € W
foreach j < n} = {& € W" | [[;(x) € a}. Obviously, a C bonly ifa’ C b and
one can check that (a'); = a.

Now we verify the four conditions for ultrafilter.

1. Firstsince u is an ultrafilter on W™, W™ € u, whichmeans W = (W"); € u;.

2. Ifa Db € u;, then de € us.t. b = ¢;. To get a € u;, we only need to show
a’ Dc Ifz € c then [[,(x) € band hence [[,(z) € a, which means z € d'.

3. Ifa,b € u;,thena = z; and b = y; for z,y € u. We know thata Nb =
x; Ny; 2 (zNy);, which means a N b € u; since z Ny € u and we already showed
that 2 holds.

4. ifa ¢ u;, thena’ ¢ u, whichmeans W"—a’ € w. It follows that (W™ —d); €
ui, but (W" —a’); = {[[;(z) | « € W™ —d’}. Assume that y € {[[,(z) | = €
W™ —a'}, theny = [[,(x) for some z € W™ — a'. If y € a, then [[;(x) € a which
means z € a, a contradiction. So (W"™ —a’); C W —a. By 2 again, W —a € u;. O

Before showing the ultrafilter extension theorem, we will first prove the satur-
ation theorem because that proof is more general and the key point for both is the
above lemma. Recall that we do have a modal saturation notion for PML in [9], as
follows.

Definition 12 (m-saturated) Let M = (W, R,, V') be an model where R, is n+1-
ary. M is called m-saturated if for every state w € W and every sequence X1, ..., >y,
of sets of PML formulas we have the following.

If for every sequence of finite subsets A; C ¥q,..., A, C X, there are states
V1y..., Uy 8.t Rywvs, ..., v, and for each i, v; = A,. then there are wy, . .., wy, s.t.
Rywwy, ..., w, and for each i, w; = ;.
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The name ‘m-saturation’ stems from [43], but actually the notion is older: its
first occurrence is in [12]. In those original papers, the notion is monadic, while the
polyadic case is a direct generalization.

The following theorem is introduced in several books, like [9], without being
given a complete proof for polyadic cases. Here we will give a model theoretical
proof with the help of the above lemma.

Proposition 13 Let M be an n-model. Then ue M is m-saturated.

Proof Let M = (W, R, V); we will show that its ultrafilter extension ueM is m-
saturated.

Let w € W" and Aq,...,A, be a sequence of sets of formulas. Assume
that for every sequence of finite subsets X1 C Aq,..., %, C A,, there are states
Viy...,Up s.t. wRYy, ..., v, and for each i, v; = X;. We need to construct ultra-
filters u, . . ., uy, s.t. WR"uq, ..., uy, and u; = %;.

Let A; = {Wlx-"xWi_le(go)xWHl X W, ‘ P E Aiande = W for
allg}, A= UISiSnAi and B = {Ulgign(WI XX Wiy XY, X Wigq -+ X Wn> ’
md (Y1,...,Y,) € wand W; = W for all 5}.

Let A = AU B and it is easy to see that A C P(W™).

Claim: A has the finite intersection property.

If the claim is true, let u be the ultrafilter on W™ extended A, and by the above
lemma we know that u; is an ultrafilter on W. By the definition of w;, we know
that V(¢) € w; for each p € A,, thatis w; = A;. Forany Y3,...,Y, C W, if
md (Y1,...,Y,) € w, then Ut<icn (W1 X oo X Wisy X Yy X Wiy --- x W) € u
and hence (W7 x -+- x Wi_1 x Y; X W1 -+ x Wy,) € u for some ¢ since u is an
ultrafilter. It follows that Y; € u; for some ¢ < n, which means wR"uq, ..., u,.

Now we come to prove the claim.

First we pick finitely many members of A, as a!, . .. ,azi € A;foreachi < n
and by, ..., b, € B. By definition, ﬂjskiaz- =Wy x - x Wiy x (V(gh)n---nN
V((p}%)) X Wiy1--- x W, for cpé. € Ay, and Ni<p, Nj<g, a;'» = (V(ph)n---n
Vg, ) x - x (Ve NNV (e} ) for % € A Let 3y = {¢} | 1 < j < ki),
and we know that 3J; is a finite subset of A;. Using the assumption, it follows that
there are vy, ..., v, s.t. wR"vy,...,v, and for each i, v; = X;, which means if
Y; € v; for all 4, then m,(Y1,...,Y,) € w. Since Nyex, V(p) € v;, we know that
ma(Npex, V (@), .., Nyex, V(p)) € w.

Consider b1, ..., by,. Foreach j <m, b; = Ut<i<n (W7 X -+« x W1 x Y, X
Wit1 -+ x Wy,) for some Ylj,...,ny' C W st mi(Ylj,...,YE) € w. Thus we
have

ma(Npesy V(9 - - s Npex, V(9) N (Nj<mmd (Y, ... YI)) € w



Jixin Liu / Model Theoretical Aspects of PML 89

since w 1s an ultrafilter. It follows that there is
z € ma(Npes,V(9), - -, Npex, V() N (Nj<mmi (Y], ..., V)

which means the followings hold for x by the definition of mi and ma:

1. There are wy,...,w, st. Rxwy,...,w, s.t. w; € Neex, V() for each
1 < n.

2. Foreach j < m,forallty,...,t, € W,if Rxty,...,t,, thendist. ¢; € YZJ

As a consequence, for V5 < m di s.t. w; € Y;j N Uges, V (¢), which means
(w1, ..., wy) € Ni<y Nj<k, aé- N Nj<mbj. As aresult, A has the finite intersection
property. ]

Now we come to deal with the ultrafilter extension theorem, which can be found
in [19], where Goldblatt had already considered the polyadic languages, but the proof
there is algebraic. However, the saturation theorem is in some sense a special version
of the UE-theorem, so we can use a same strategy to give a modal proof here by using
the above lemma about ultrafilters.

Proposition 14 (ultrafilter extension theorem) Let M be an n-model. Then, for any
formula ¢ and any ultrafilter v over W, V(¢) € w iff ueM,u = ¢.

Hence, for each state w in M we have w «~ [],,, where [],, is the principal
ultrafilter generated by {w}.

Proof We prove by induction on ¢, and the only nontrivial case is that of the poly-
adic modal operator. So suppose ¢ = A(¢1, ..., Pn)-

(<) Assume ueM, u = . It follows that there are uy, ..., up s.t. uR¥uq, ..., up,
and ue M, u; |= ¢;. By induction hypothesis, V' (¢;) € u; for all i, and hence by the
definition of RY®, ma(V (41), ..., V(¢n)) € u. Now the conclusion follows directly
from the fact that m (V (1), ..., V(pn)) = V(p), which can be easily checked.

(=) Assume V' (¢) € u. weneed to find ultrafilters uy, ..., up s.t. uR¥uq, ..., up
and ue M, u; = p; for all 4, but this is just a special case of the A construction in the
above proof, where each Y; is a singleton. The only thing we need to check again is
the claim:

A has the finite intersection property.

For finitely many arbitrary members of A, as a; € A; for each i < n and
bi,..., by € B. By definition, Nj<,a; = V(1) x - -+ X V(). Using the assump-
tion, we also know that m, (V' (¢1), ..., V(en)) € u.

Consider by, ..., by,. Foreach j < m, bj = Ui<j<n (Wi X -+ X W1 X Yij X
Wig1 - xWy) forsomeYlj, LY CWost m‘Z(Ylj, s ,er) € u. Thus we have

ma(V (@), -, Vign) N (Njgmmy (Y, ..., Y)) € u

since v 1s an ultrafilter. It follows that there is



90 Studies in Logic, Vol. 12, No. 3 (2019)

zema(V(e1), ..., V(en)) N (ﬂjgmmi(Yj, LYY

which means the followings hold for z by the definition of m% and m:
1. There are wy, ..., wy, s.t. Rxws, ..., w, s.t. w; € V(p;) foreach i < n.
2. Foreach j < m, forallty,...,t, € W,if Raty, ... t,, then Jist. t; € Y7
As a consequence, for Vj < m i s.t. w; € Y;j NV (p;), which means
(w1, ..., wn) € Ni<na; N Nj<mb;. As a result, A has the finite intersection
property. (I

5 Characterization via bisimulation

In this section, we give a proof for the van-Benthem Characteristic Theorem on
PML by using a bisimulation invariant method. The bisimulation notion for modal
logic is first from [4], where van Benthem proved the characterization theorem. But he
used different names in [7], where the zigzag relation came from. But the saturation-
based strategy we will use is due to [38]. Note, though, that their works are all dealing
with only the monadic modal language. The basic structure of our proof in this section
is guided by [9], where the authors only gave a proof for the basic modal language,
and omit the polyadic cases, so we will focus on the polyadic cases here. Notice that
in [9], all the statements in this section has already been mentioned, but if we give a
proof here, it means that the book omits such a detailed proof.

First we introduce polyadic bisimulation notions as follows.([9])

Definition 15 ((P-)pm-bisimulation) Let M = (W,R,,V)and M' = (W', R/,,
V') be two models. A non-empty binary relation Z C W x W' is called a pm-
bisimulation between M and M’ if the following conditions are satisfied:

i If wZw', then w and w’ satisfy the same propositional letters (in P).

ii fwZw'and Rywuy, ..., v, thenthereare vy, ... v, inW’s.t. R w'v],... v,
and v; Zv, for all i < n; (the forth condition).
iii IfwZw’'and R, w'v}, ..., v} thenthereare vy, ..., v, inWs.t. Rywuy, ..., v,

and v; Zv, for all i < n. (the back condition)

When Z is a bisimulation linking two states w in M and w’ in M’ we say that
w and w' are bisimilar, and we write Z : M, w < M’,w’. If there is a bisimulation
Z such that Z : M, w €& M’ w', we sometimes write M, w <& M’ w'; likewise, if
there is some bisimulation between M and M’, we write M < M’ saying M and
M'are bisimilar.

We already know that PML is a fragment of first order logic, and hence we
will show that it is exactly the fragment closed under the bisimulation above. The
standard translation also works for PML as in [9], and for instance we can translate
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A(p1y -y Pn) 88 Y1, s Yn(TRaY1, s Yn A Nj<,, Pyi). In the following we show
that this bisimulation is indeed sound w.r.t. the PML-equivalence.

Proposition 16 Let M = (W,R,,V) and M’ = (W', R}, V') be two models.
Then for every w € W and w’ € W/, w © w' implies w «~ w’. In words, PML
formulas are invariant under pm-bisimulation.

Proof We use induction on formulas, and we focus on the modality case, since oth-
ers are trivial. Suppose that w €< w’ and w = A(p1, ..., ). Then we know that
there are vy, ..., v, s.t. Rywvy,..., vy, and each v; |= ;. By the forth condition,
there are v}, ..., v}, in W’ s.t. Ryw'v), ..., v}, and v; < v} for each i. From the L.H.
we have each v} |= ¢;. Asaresult, w’ = A(g1, ..., pp). For the converse direction
just use the back condition. O

The bisimulation notion for PML is similar with that of the monadic modal lan-
guage, and it is possible to prove a restricted converse to the above theorem, namely
the Hennessy-Milner Theorem forPML as follows, which can be found in [9]. How-
ever, The key reference for this theorem is [24].

Theorem 17 (Hennessy-Milner Theorem). Let M = (W, R,, V') and
M = (W' R, V") be two image-finite models. Then for every w € W and w' €
Wow e wiffw e w'

Proof A direct generalization of the monadic proof will work here. O

So there remains a question: is there any generalization of the above theorem, or
in which situation can we treat modal equivalence and bisimularity as the same thing.
This question leads to the following definition.

Definition 18 (Hennessy-Milner Classes) K is a Hennessy-Milner class, if for every
two pointed models M, w and M’ w’ in K, w < w' iff w «~ w'.

The concept of a Hennessy-Milner class is first from [18] and [25], but those
works are mostly on monadic cases. In [25], Hollenberg proved that equivalence
of models implies bisimilarity between their ultrafilter extensions, and the following
theorem is a generalization, which can be found in [9]. Even though they only dealt
with the monadic operator, the polyadic cases are similar.

Proposition 19 The class of m-saturated models has the Hennessy-Milner property.

Proof Let M = (W,R,V)and M’ = (W', R', V') be two m-saturated models. It
is sufficient to show that the modal equivalence relation «~» is indeed a bisimulation.
We focus on the forth condition, and the back condition is similar.

Suppose that w «~ w’ forw € W and w’ € W’, and for some vy, ...,v, €
W, wRiv1,...,v,. Let 3; be the truth set at v;. It is clear that for each sequence
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(Aq,..., A,) s.t. each A; is a finite subset of 3J;, we know that M, v; = AA;, hence
M,w | A(AAq, ..., ANAy). Since w «~ w', we have M’ w' |= A(AA1, ..., NAy).
Thus there are v, ..., v, s.t. w'R'v},...,v), and M’ v} = AA;. Therefore by m-
saturation, there are ug, ..., u, s.t.w'R'uq, ..., u, and M, u; = 3; for each i, that is,
w; e~ u;. As a consequence, the forth condition holds for «~. O

Actually m-saturation is a special case of the saturation property in classical
model theory, as the following theorem says, and For more on saturated models, see
[10].

Proposition 20 Any countably saturated model is m-saturated. It follows that the
class of countably saturated models has the Hennessy-Milner property.

Proof Suppose that M = (W, R,, V) is a countably saturated model. Let w € W
and Xq,...,%, be a sequence of sets of PML formulas s.t. for every sequence of
finite subsets A; C ¥q,..., A, C X, there are states vy, ..., v, s.t. Rawv,...,vn
and for each i v; = A,.

Define ¥ = {Rwz1, ..., 2} U U, {575 (0) | ¢ € i}

Claim: ¥ is consistent with T'h((M, w)), the first-order theory of (M, w).

If we prove the Claim, we know that Y itself'is realized in some vy, . . . , v, € W, since
Y is a n-type with just one parameter and M is countably saturated. By (M, w) =
Rwxy, ..., xplv1,. .., vy] it follows that Rwuy, . .., v, and by (M, w)
UicntSTe;(9) | ¢ € Bitvr, ..o vn) vi = {STe,(9) | i € i} Thus, v; = %
for each i.

Now we prove the Claim: Suppose that ¥ is not consistent with the first-order
theory of (M, w). Hence there is a sequence of finite subsets A; C ¥5,..., A, C
En st U {970 (@) | ¢ € Aj} U{Rwzq, ..., x5} UTh((M,w)) is inconsistent.
But that is impossible since we already know that for every sequence of finite subsets
Ay CYy,..., A, C %, there are states vy, ..., vy s.t. Rywuvy, ..., v, andv; = Ay

O

Notice that in the above proof, we only need to assume that the model is 2-
saturated instead of w-saturated, even though we deal with polyadic language, because
the parameter set is still a singleton. In [9], the author said that when dealing with
polyadic case we need a stronger saturation property, but it is a misunderstanding.

Here we also need to use the finite k-bisimulation notion on PML, which can be
found in [9].

Definition 21 ((P)-k-pm-bisimulation) LetM = (W, R,,V)and M’ = (W', R},
V') be two models. We say that w and w’ are k-bisimular (notation: w < w') if
there is a sequence of binary relations Z; C ... C Z; with the following properties
(fori+1 < kandanyv € W' € W'):
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1 wZw';
ii IfvZyv', then v and v’ agree on all propositional letters (in P);
iii IfvZ;41v and Ryvvy, ..., v, thenthereare o), ... v, inW's.t. Riv'vl, ... v,
and v; Z;v} for all i < n; (the forth condition).
iv IfvZ;1v" and R, v'v], ..., v), thenthereare vy, . .., vy, in Ws.t. Ryvvy, ..., v,

and v; Z;v] for all i < n. (the back condition)
The following proposition is just like the one in the monadic modal language.

Proposition 22 Let ® be a finite set of proposition letters, M = (W, R,, V') and
M = (W', R/, V') be two models of the correspondent language under ®. Then the
following are equivalent.

1w e,
ii w and w’ agree on all PML formulas of degree at most k.

Proof By aninduction on k with a similar strategy for proving the Hennessy-Milner
theorem. ]

Like the van-Benthem Characterization Theorem for monadic modal logics, the
proof for PML is based on a Detour Lemma.

Theorem 23 (Characterization Theorem). Let @ be a first order formula. o is invari-
ant for PML-bisimulations iff it is equivalent to the standard translation of a PML
formula.

Proof A standard detour strategy for the van Benthem theorem suffices.

M, w N,v
= 1=
M*w* & N* o*

Where the * model construction need to preserve first order truth and get satur-
ated models. So we cannot just use the ultrafilter extension. Asin [9], the construction
could be taking the ultrapower of M under a w-incomplete ultrafilter u. So now we
need to use some properties about ultrapower to complete our proof. (I

[10] is a classic reference for the ultraproduct construction on the first order lan-
guage, which can directly apply to polyadic modal models, while Doets and Van Ben-
them [8] gave an intuitive explanation of the ultraproduct construction. We Recall the
definition of Ultraproduct and Ultrapower for modal models in [9] as the following.

Let C = [],c; Wi be the Cartesian product of {W};c; and u be an ultrafilter
on the index set I. For two functions f, g € C' we say that f and g are u-equivalent
(f ~u g)if{i € I'| f(i) = g(i)} € u. One can easily check this is indeed an
equivalence relation.
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Let f, = {9 € C | g ~u f}. The ultraproduct of {W };c; modulo u is define
as follows:

[Twi=A{rul re]]ws

i€l
Definition 24 (ultraproduct) Let M; = (W;, Rp;, V;)(i € I) be n-models. The
ultraproduct [ [, M modulo u is describled as follows.

* (i) The universe Wy is the set [[, Wi = {fu | f € [L;c; Wi}
* (ii) The valuation V,, is defined by

fu € Vu(p)iff{i € I'| f(i) € Vi(p)} € u.
* (iil) The n-ary relation R,,, is given by
FORsufbe fAR (i € T | f(0)Roif (). f" (D)} € u.
If all the M; are the same model M, we say [ [,, M the ultrapower of M modulo w.

Now there are just two things we need to show. The first one is a classical fact in
model theory as follows, and on can find proofs in model theory textbooks like [10].
The book [9] claims that there is a proof in its appendix, but actually it only state the
following proposition without giving a proof.

Lemma 2 (cf. Thm 6.1.1 in [10]) Let £ be a countable first-order language, u a
countably incomplete unltrafilter over a non-empty set [, and M an £-model. Then
the ultrapower [ [, M is countably saturated.

The second one is the fact that ultrapower can preserve local modal truth, which
is actually a special case of L.0s’s theorem. One can find the following theorem in [9],
but the authors leaves the proof as an exercise, so we give a proof here.

Lemma 3 Let [[, M be an ultrapower of M. Then for all PML formulas ¢,
we have M, w = ¢ iff [[, M, (fw)u = ¢, where f,, is the constant function s.t.
fuw(i) =wforalli € I.

Proof We do an induction on ¢ to show a strong result: forany f € [[ W,

ful=iff{i € TI M, f(i) = ¢} €u

So first we fix an f. The basic case is directly followed from our definition for V,,(p)
by I € u since u is an ultrafilter on I, and the Boolean connective cases are easy to
check. We give the negation case here:
Fu B~ IfE ff (i € 1| M, [(i) E v} ¢ u
ift I—{iecl|M,f(i)=v¢}eu
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iff {iel | M,f(i)Ev}eu
iff {icl | M, f(i)E=-}ecu

Here one can see why we need « to be an ultrafilter, and it is not sufficient to just
assume that u is a filter.

Now we focus on the modal operator and assume that ¢ = A(p1, ..., ©n).

(=)Suppose that f,, = ¢ and hence there are f1,..., f,, € [[W s.t. (fj)u =
; for each j and fy,Rpu(f1)u, .-, (fn)u, which means the following two conditions
hold:

1. A;={iel|M,f;(i) = ¢;} €uforeachj < n;(by LH.)

2.B={iel| f(i)Rauf1(7),..., fu(i)} € u. (by definition of Ry,,)

Therefore we know that ();,, A; N B € u, which means

{i € I | foreachj < n: M,f;(i) = ¢jand f(i)Raufi(i),..., fn(i)} is in
u and hence its superset {i € I | f(i) = A(p1,...,on)} belong to u by w is an
ultrafilter.

(«<=) Suppose that {i € I | M, f(i) = ¢} € u, which means

C={iel|3x,...2n € WVj<nM,zj = 0; \ f(i)RauZ1, ..., xn)} €1

It is sufficient to find f1, ..., fn s.t.

{i € I|Vj<uM, (i) = ¢j and f(i)Rau f1(4), ..., fu(i)} € u, because then
we can use the fact that u is closed under taking supersets to get the result. (just like
a converse procedure of the = part)

To find such fy, ..., fy,, first we need to use the Axiom of Choice as follows:

1. For each i € C, select (ai, ..., a%) as a sequence of witnesses.

2. Foreach i ¢ C, select (al, ...,a’) as a sequence of arbitrary members of W.

For each j < n, define f; as f;(i) = aj-, and then one can check that each f;
satisfies our requirement. ]

One should be careful about the using of AC in our proof and see how strong we
need the “choice” to be, compared with the case in proving £.6s’s theorem.

6 Craig Interpolation Theorem

There is a standard model theoretical method of proving the Craig Interpoaltion
Theorem (CIT) for monadic normal modal logics as in [2] and [3]. Rosen gave an-
other proof which can work within finite models in [39]. In [3], the author also says
that the general version of this interpolation theorem for minimal modal logics with
an arbitrary number of polyadic modalities follows from the results in [35], which is
about some amalgamation properties for Boolean Algebra, and actually it’s a more
general result than the one we will deal with. Moreover, in [26], there is a deep con-
nection between the amalgamation on algebras and the interpolation on logic, which
includes the theorem we will talk about in this section—CIT for PML.
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Even though there are already algebraic proofs of CIT for PML, we find that
both the proofs in [39] and [3] can direcly apply to PML, and those proofs are purely
model theoretical on modal logic, which is much more easier than the algebraic one
in [26]. We choose to give a proof using the method in [3], since Rosen’s proof
requires an “unravelling” model construction to get “tree-like” models, which is more
complicated and for our purpose, we don’t need to limit us on finite models. But one
should notice that Rosen’s method is very important in proving CIT for some other
special logics, where the finitary method is essential. The result here is not new, but
we use a new simple proof by using a similar method in [34].

Theorem 25. Each normal polyadic modal logic K,, has the Craig Interpolation
Theorem. More precisely, Let atom(«) = {p | p occurs in o}, and ¢ Fg,, 1, then
there is a formula a s.t. ¢ Fg, o by, ¥ and atom(a) C atom(p) N atom(1)).

Proof First we fix an n and just use I without a subscript. Since we already know
that K,, is strongly complete w.r.t to all n-frames, we could freely switch between
= and . For convenience, let P = atom(y), Q@ = atom(y) and R = atom(w).
We show that the set consg(¢) of all consequences of ¢ in R language satisfies the
following claim:

consr(p) k.

By a standard compactness argument, we can find the interpolant. To prove the claim,
let M = (W, Ry, V) be an n-model s.t. (M, a) |= consgr(y) for some a € W, and
we need to show that (M, a) = 1. By a routine argument, the R-theory Thr(M, a)
is consistent with {}, and by compactness again, there is a P-model (NV,b) = ¢ s.t.
(M,a) =r (N,b). Suppose that (NV,b) = (W', R),,V'). We have already shown
that there are m-saturated models which can preserve modal truth in this paper before,
so without loss of generality we assume that both (M, a) and (N, b) are m-saturated.
It follows that the =g is indeed an R-bisimulation. Next we construct a product
model MW, (a,b) s.t. (M, a) £o9 MN, (a,b) and (N,b) < p MN, (a,b), which

is sufficient for our proof:
(Nab) ):(,0:>MN,(CL,[)) ):wiMNv(aab) ):¢:> (M,CL) |:¢

Now we come to the construction. Let Z = {(z,y) € W x W' | 2 €5 y}, and
define MN = (Z, R, V*) as follows:

(2, y)RE(21,91)5 oy (T, yn) iff xRATY, ooy 2 and YR Y1, oy Y

For each (z,y) € Z,

zxeV(p) if pe@
(z,y) € V*(p) &= q yeV'(p) if peP
never if otherwise
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Notice that V* is well-defined since every (x,y) € Z satisfies z < y. Now it is
sufficient to check that our construction satisfies the requirement.

Let By = {(z,(21,22)) | * £¢ 21 and z2 € W'} be a relation on W x
Z and By = {(y,(21,22)) | y ©p 22 and 21 € W} be a relation on W’ x Z.
Obviously, aBj(a,b) and bBs(a,b). We show that B is a -bisimulation and By is
a P-bisimulation. The propositional letters case is directly from the definition of V*.
We give a verification for Bj, and the By case is similar.

Forth condition:

Suppose that B; (w, v) and there are z1, ..., z, s.t. TR 21, ...,z By z €
w, there are wi, ..., w, s.t. wR w1, ...,w, and x; <¢q w; for each . Again, by
w € R v, there are vy, ..., v, s.t. VR, vy, ..., v, and w; € g v; for each i, and hence
(wi,v;) € Z. But then by the definition of B; and R}, we know that z; By (w;, v;)
for each ¢ and (w, v) R} (w1, v1), ..., (Wn, vp).

Back condition:

Suppose that x B (w, v) and there are (w1, v1), ..., (wp, v,) such that
(w,v) R} (wi,v1), ..., (Wn, vy). By the definition of R}, we have wR wy, ..., wy,.
Thus, by x < ¢ w, there are x1, ..., x, s.t. xRx21, ..., 2, and z; £ w; for each i.
It follows that x; By (w;, v;) for each i by the definition of Bj. O

7 Conclusion and Further Work

This paper considered some basic model theoretical properties for PML. Even
though we can see all of those results in existing literatures, they always only gave
proof details for the monadic modal language and omitted the polyadic cases. More-
over, we can also see some mistakes in existing literatures when dealing with normal
polyadic modal logics. So we tried to fix and make up those lacks in our paper by giv-
ing complete proofs for polyadic cases. Mainly, we did a model theoretical exposition
work for PML in this paper.

First we clarified some notable mistakes in axiomatizing normal polyadic modal
logics, where one could also see some differences between the monadic modal logic
and polyadic modal logics. Then we considered two important model constructions:
filtration and ultrafilter extension. For filtration, the basic theory is similar to the
monadic case, but for ultrafilter extension, we need to use a much more complicate
strategy to get the results. The key point there is that we used a “big” ultrafilter on a
product to get “small” unltrafilters by projections.

In the second part we first stated the van-Benthem Characterization theorem for
polyadic modal logics, and gave detailed proofs for those we only found monadic ones
in textbooks. Even though the method is standard, we tried to exhibit the differences
between monadic case and polyadic cases. Next we gave a proof for the Craig Inter-
polation Theorem of normal polyadic modal logics K,,, by a standard modal model
theoretical method which was used in proving the case for normal modal logic K.
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For further works, first we know that there is a special kind of modal logic called
the weakly aggregative modal logic(WAML), which introduced in [27], and we can
see that the modal operator there is unary but the relational models are n-ary. So we
may consider whether WAML has some basic properties which both monadic and
polyadic modal logic have—such as those we discussed in this paper: van-Benthem
Characterization theorem and the Craig Interpolation Theorem.

Another point is about a general semantics for PML. As we know, modal logics
have some alternative semantics, such as the neighborhood semantics and the possib-
ility semantics, and both are more general than the relational one. But those semantics
can only work for monadic modal language. So it’s natural to think about a general
version of those semantics for polyadic modal languages. The work in [1] may give
us some hints, where the author uses topological-like models as a variant of some
given n-ary relational models. But the problem is that we cannot treat those models
as a generalization of neighborhood models, and the semantics there is not “stand-
ard”. Hence there still remains some work to do—finding a neighborhood semantics
for polyadic modal logics.
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