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On f-generic types in Presburger Arithmetic*

Ningyuan Yao

Abstract. We study the f-generics of ordered additive group G of any model of Presburger
Arithmetic, and give a classification for the f-generic types of G™ for any n € N*. As an
application of this classification theorem, we conclude that every f-generic type of G™ is -
definable. We also consider the multiplicative group H of the p-adic field Q,, and prove that
every f-generic type of H™ is also ()-definable.

1 Introduction and Preliminaries

1.1 Introduction

In model theory, we study a group G definable in a structure M and the action
of G on its type space S (M), which is the collection of all types over M containing
the formula defining G. The space of generic types, introduced by Poizat as a gen-
eralization of the notation of generic points in an algebraic group, plays a heart role
when Th(M) is stable. But, for unstable case, the generic types may not exist. So
various of weakenings of the generic were introduced to unstable enviroment to gen-
eralize the properties of stables groups to unstable context. The notation of weakly
generic types introduced by Newelski in [9], which exists in any context, is a suitable
substitution for generic types. In [6], f-generic was introduced, and nice result of
[2] shows that f-generic coincides with weakly generic when G is a NI P definably
aminable group.

In [11], Marcin Petrykowski gave a nice description of f-generic types in groups
(R,+) x (R,+) with (R, <,+, -) an o-minimal expansion of real closed field. An
analogs question is: What are the f-generic types of G, the product of n copies of
ordered additive groups (Z, +, <) of integers (or models of Presburger arithmetic)?
In [4], Conant and Vojdani gave a couple of nice equivalent characterization for f-
generic types of G™. But they didn’t give a classification for the space of f-generic

types.
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This paper is inspired by the ideas of [11], and provides a full classification for
the space of f-generic types of the product of n copies of ordered groups of any
models of Presburger arithmetic. As an application, the main results of [4] spring
readily from the classification theorem.

Let M be an elementary extension of (Z, +, <,0), M > M a monster model.
G denotes the additive group (M, +), S (M) the space of complete types over M
extending the formula ‘z € G’. GY is the definable connected component of G.
Namely, G the is the intersection of all definable subgroups of G with finite index.
Let L,, denote the space of homogeneous n-nary Q-linear functions. For f,g € L,
and o, 8 € M" such that « € dom(f) and 8 € dom(g), by f(a) < g(8) we mean
that for all a,b € M and k,l € N*, kf(a) + a < lg(8) + b. By f(a) ~ar g(B), we
mean that neither f(a) < g(8) nor g(8) <ar f(). Let fo, ..., fmn € Ly, we say
0 <y fila) <o ... € fm (@) is a maximal positive chain of a over M if for any
g € Ly, with g(a)) > 0, neither f,,(a) < g(a) nor g(a) <pr fola).

Now we highlight our main result as follows:

Theorem 1 Let M > Z, a = (i, ...,a,) € (G™)°. Then there exists a finite
subset { fo, ..., fm } of Ly, such that fo(o) = 0 <ar fi(a) s ... Kur frm () is the
maximal positive chain of o over M. If « realizes an f-generic type p € Sgn (M)
then for every 8 € G% p = tp(a, /M) € Sgn+1(M) is an f-generic type if and
only if one of the following holds:

° fm(a) <M B Orﬁ <m _fm(ﬁ)a

* there is ¢ with 0 < ¢ < mand g € L,, such that f;(a) < €(8 — g(a)) <mr
fir1(), where e = +1;

e thereis ¢ with 1 < i < mand g € L, such that for all h € L,, with h(a) ~ps
fi(a), there is an irrational number 7, € R\Q such that g1h(a) < 8 —g(a) <
g2h(«) forall ¢1, g2 € Q with g1 < r, < go.

The paper is organized as follows. In the rest of this introduction we recall some
definitions and results , from earlier papers, relevant to our results. In Section 2.1 we
will give a characterization for the f-generic types of G2. In section 2.2, we study the
space of n-nary QQ-linear function, and conclude that, modulo an equivalence relation,
there are at most finitely many Q-linear functions. Section 2.3 contains the main result
of the paper, we also discuss the application of our results. In Section 2.4, we consider
the multiplicative group H(Q,) = (Q,\{0}, x) of the p-adic field Q,, and prove that
every f-generic type of H" is also ()-definable.

1.2 Preliminaries

We will assume a basic knowledge of model theory. Good references are [12]
and [8]. Let 7" be a complete theory with infinite models. Its language is L and M
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is the monster model, in which every type over a small model M > M is realized.
By x,y, z we mean arbitrary n-variables and a,b,c € M the n-tuples in M with
n € N. every formula is an Ly-formula. For an Ljy,-formula ¢(z), ¢(M) denote
the definable subset of M ?! defined by ¢, and a set X C M is definable if there
is an Ljs-formula ¢(z) such that X = ¢(M). For any subset A of M, by acl(A)
we mean the algebraic closure of A. Namely, b € acl(A) if and only if there is a
formula ¢(x) with parameters from A such that b € ¢(M) and ¢(M) is finite. By
dcl(A) we mean the definable closure of A, which is the collection of all f(a) with f
an ()-definable function and a € A™. For any n-tuple (a1, ..., a,) € M", we denote
acl(AU{aq,...,an}) by acl(A, «). Similarly for dcl(A, ).

Assume that G C M™ is a group ()-definable in M defined by the formula G(x).
Forany M < M, G(M) = {g € M"|g € G} is a subgroup of G. By S¢(M), we
mean the space of all complete types over M concentrating on G(x). From now on,
we will, through out this paper, assume that every formula ¢(z), with parameters in
M, is contained in G(z), namely, the subset ¢(M) defined by ¢ is contained in G.
Suppose that ¢ is an Ljy/-formula and g € G(M), then the left translate g¢(x) is
defined to be ¢(g~'x). It is easy to check that (g¢)(M) = gX with X = ¢(M).

Definition 1.1 Let notations be as above.

» A definable subset X C (G is generic if finitely many left translates of X covers
G. Namely, there are g1, ..., gn, € G such that G = U;<;<ng: X.

* A definable subset X C G is weakly generic if there is a non-generic definable
subset Y such that X U'Y is generic

* A definable subset X C G is f-generic if for some/any model M over which
X is defined and any g € G, gX does not divide over M. Namely, for any
M-indiscernible sequence (g; : i < w), with g = go, {¢: X : 71 < w} is
consistent.

+ A formula ¢(x) is generic if the definable set ¢(M) is generic. Similarly for
weakly generic and f-generic formulas.

* Atype p € Sg(M) is generic if every formula ¢(x) € p is generic. Similarly
for weakly generic and f-generic types.

Remark 1.2 It is easy to see that the class of all non-weakly generic formulas forms
an ideal. So any weakly generic type p € Si(M ) has a global extension p € S (M)
which weakly generic

T is said to be (or have) NIP if for any indiscernible sequence (b; : i < w),
formula ¢ (x, y), and a € M, there is an eventual truth value of ¥)(a, b;) as ¢ — oc.

Recall that a type definable over A subgroup H < G has bounded index if
|G/H| < 21141 For groups definable in NIP structures, the smallest type-
definable subgroup G exist (See [5]). Namely, the intersection of all type-definable
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subgroup of bounded index still has bounded index. We call G the type-definable
connected component of . Another model theoretic invariant is G, called the
definably-connected component of ¢, which is the intersection all definable subgroup
of GG of finite index. Clearly, G < @GO,

Recall also that the Keisler measure over M on X. with X a definable set over
M, is a finitely additive measure on the Boolean algebra of definable, over M, subsets
of X. When we take the monster model, M = M, we call it a global Keisler measure.
A definable group G is said to be definably amenable if it admits a global (left) G-
invariant probability Keisler measure.

Fact 1.3 [2] Assuming NIP. A definable group G is definably amenable if and
only if it admits a global type p € S (M) with bounded G-orbit.

Moreover,

Fact 1.4 [2] For a definable amenable NI P group GG, we have

* Weakly generic definable subsets, formulas, and types coincide with f-generic
definable subsets, formulas, and types, respectively

* p € Sg(M) is f-generic if and only if it has bounded G-orbit.

« p € Sg(M) is f-generic if and only if it is G?°-invariant.

* A type-definable subgroup H fixing a global f-generic type is exactly G

Remark 1.5 Assuming that G is a definable amenable N 1P group. By Remark
1.2, we see that any f-generic type p € Si(M) has an f-generic global extension

p € Sg(M).

We now turn to Presburger arithmetic. For now on, we will, throughout this pa-
per, assume that 7' = Th(Z,+,{ Dy } nen+, <, 0) is the first order theroy of integers
in Presburger language Lpyes = (+, {Dn}nen+, <,0), where each D, is a unary
predicate symbol for the set of elements divisible by n, M is the monster model of T,
M is some small elementary submodel of M.

It is well know that T" has quantifier elimination [13]. Moreover, a nice result of
Cluckers [3] indicated that models of 7" has cell decomposition, which will mention
later. We recall some definitions first.

Definition 1.6 We call a function f : X C M"™ — M linear if there is a constant
v € M and integers a;, 0 < ¢; < n; fori = 1, ..., m such that D, (x; — ¢;) and

fo) = 3 a1y

- n;
1<i<m

forallz = (x1,...,x,) € X. We call f piecewise linear if there is a finite partition P
of X such that all restriction f|4, A € P are linear. We speak analogously of linear



Ningyuan Yao /On f-generic types in Presburger Arithmetic 61

and piecewise linear maps g : X — M™.
Another important notation is the Presburger cells.

Definition 1.7

+ A (0)-cell is a point {a} C M.
* An (1)-cell is a set with infinite cardinality of the form

{:L’ S M‘Q51$D2ba Dn(x - C)}v

with a,b € M, integers 0 < ¢ < n and [J; either < or no condition.
* Letij € {0,1} forj =1,....,mand z = (21, ..., Zm). A (i1, ..., im,1)-cell is a
set A of the form

{(.’E,t) € Mm+1’ (S Dv f(.’IJ)DltDQQ(J}), Dn(t - C)}a

with D = 7, (A) an (iy, ..., im,)-cell. f,g : D — M linear functions, [J;
either < or no condition and integers 0 < ¢ < n such that the cardinality of the
fibers A, = {t € M| (x,t) € A} can not be bounded uniformly in z € D by
an integer.

e An (i1, ..., im,0)-cell is a set A of the form

{(,H) € M™|z € D, t = g(a)},
with g : D — M a linear function and D € M™ an (i1, ..., i, )-cell.

Fact 1.8 [3](Cell Decomposition Theorem). Let X € M™ and f : X — G be
definable. Then there exists a finite partition P of X into cells, such that the restriction
fla : A — M is linear for each cell A € P. Moreover, if X and f are S-definable,
then the parts A can be taken S-definable.

By the Cell Decomposition Theorem, we conclude directly that every definable
subset of M" is a finite union of cells. So every definable subset X C M is a finite
union of points and intervals mod some n € N. This implies that 7" has N1 P.

From now on, we assume that G = (M, +) is the additive group of the Pres-
burger arithmetic. Namely, GG is defined by the formula “x = z”, G = M as a set,
and G(M) = M for any M < M. For any n-tuple x = (x1, .., Zy), by Dp,(z) we
mean /\;,«,, Dm(x;). Forany o« € M, and A C M, by & > A we mean o > a
for all a € acl(A). It is easy to see that dcl(A) = acl(A) since M is a linear order
structure.

Fact1.9 Foreveryn € N,

* (" is definably amenable;
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* The type-definable connected component of G™ is [, cy+ D (M").

Proof Letx = (x1,...,x,) be an n-tuple variable. Let II(x) be the partial type of
form
{z1 > M} A {x2 > dcl(M,z1)}
N o Axn > dd(M, 21, ..., xn,)} N\ {Dm(z): m € NT}

By the Cell Decomposition Theorem, and induction on n, it is easy to see that IT
determines a unique type p € Sgn (M). Moreover, Il is invariant under (), e+ Dm
(M™). Since D,,(M") is a definable subgroup of G™ of finite index, we see that
G < N,nen+ Dm(M™). Thus p is G®-invariant and hence has a bounded orbit.
By Fact 1.3, G" is definably amenable and G*° = (), .+ D (M™). O

Corollary 1.10  G"° = G"% forall n € N*.

Remark 1.11

+ GV is a densely linear ordered divisible abelian group, hence isomorphic to an
ordered vector space over Q.
« Forevery n € N*, (G%)" = (G")°.

Fact 1.12 Suppose that f is an function M-definable function from X C M" to
Y C M. Then for any o € (G°)" there are q1,...,q, € Q and @ € M such that
fla) =qai + ... + ghoy + a.

Proof By Fact 1.8, we may assume that f is linear. Then apply Remark 1.11. [

Definition 1.13 We call the function f of the form q;z1 + ... + ¢,x, + a with
qi,---,qn € Qand a € M an n-nary Q-linear function over M. If a = 0, we call f a
homogeneous n-nary Q-linear function. By L,,(M) we mean the space of all n-nary
Q-linear functions over M, and L, the space of all homogeneous n-nary Q-linear
functions.

Itis easy to see thatany f € L, (M) is M-definable, and there is a nature number
m such that D,,,(M™) C dom(f). In particularly, (G°)" C dom(f). By Fact 1.8 and
Fact 1.12, we conclude that:

Corollary 1.14  Ifa = (ay,...,a) € (G°)". Thenforany ¢(z1,...7,,) € tp(a/ M),
there is a formula ¢ (21, ..., x,) € tp(a/ M) of the form

O(x1y .oy 1) A Dpp(xn) A (f1(x1, .oy p—1) D120 fo (21, ..oy 2p—1)),

withm € N §(M) acell,, f; € L,_1(M), and [J; either < or no condition, such
that M = Vx(¢(x) — ¢(x)).
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Remark 1.15 There are only 2 f-generic types contained in every coset of GY.
More precisely, for any model M,

pT(x) ={Dy(z)|n e NT}U{z > a|la € M},

and
p (z) = {Dp(z)|n e NTYU{z < a| a € M}.

Then every f-generic type over M is one of G(M)-translates of p™ or p~.

2 Main results

2.1 The f-generics of G

Let M be the saturated model of Th(Z, +, Dy,, <,0,1),,cn+, T the theory of the
Presburger Arithmetic.

Proposition 2.1 Forany M > Z, the f-generic type tp(«, /M) € Sg2(M) , with
a, 3 in GY, has one of the following forms:

e 8> dcl(M,a) (we call it +oo-type);

B < del(M, o) (we call it —oo-type);

« there is some ¢ € Q such that g + m < 5 < (¢ + %)a for all m € M and
n € N (we call it ¢ -type);

* there is some ¢ € Q such that (¢ — %)oz < B < qa+mforallm € M and
n € N (we call it g~ -type);

* there is some r € R such that g < 5 < o forall ¢1,q2 € Qwith gy <7 <
q2 (we call it r9-type).

Proof Letp = tp(«, 3/M)bea f-generic type which contained in a2, By the cell
decomposition, we may assume that every formula ¢(x, y) in p is of the form

Dy () A (a < x) A Dp(y) A (f1(2)D1yOz f2()),

withn € N,a € M, f; : D,,(M) — M linear, and [J; either < or no condition.

If every formula in p contains a cell of the form D,,(z) A Dy, (y) A fi(z) < v,
then it is easy to see that p is a +oo-type.

Similarly, if every formula in p contains a cell of the form D,,(z) A Dy, (y) Ay <
fa(x), then p is a —oo-type.

Otherwise, there are linear functions fi(z) = g1 + by and fo(x) = gaz + bo,
with q1, g2 € Q and by, by € M, such that the cell

Dy(z) A(a <) A Dn(y) A (fi(z) <y < fol))

is contained in p, where both ng; are ng; are some integers. We call the above cell a
(n7 a,qi, QQ)'CeH-
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Let

Q1 = {t € Q: there is an (n, a, t, g2)-cell which is contained in p(z, y)}
and

Q2 = {t € Q: there is an (n, a, q1, t)-cell which is contained in p(x, y)}.

Then both )1 and ()2 are nonempty.
Claim (Q1,Q2) isacut of Q

Proof Clearly, g1 < g2 whenever ¢1 € Q1 and g2 € ()2. Otherwise, p is inconsis-
tent.

By Remark 1.5, let p € Sz (M) be any global f-generic type containing p. Now
pis G2%-invariant. If there are q1 € Q1 and g2 € Q)2 such that ¢ = g9, take g € G2°
such that g > M, we see that the partial type (gp) Up is inconsistent, but (gp) Up C p.
A contradiction. So ¢; < g2 forall ¢; € Q1 and g2 € Q3.

Suppose that there is ¢ € Q such that q; < ¢ for all ¢; € @)1. Then for some
n € Nand any a € M, any (n, a, q1, q)-cell is consistent with p and hence contained
inp. So g € Q2. Similarly, if ¢, g, for all g2 € Q2, then ¢ € Q1. So (Q1,Q2) is a cut
of Q. O

Let 7 € R be the real number determined by the cut (Q1,Q2). By the G2°-
invariance of p, we have

e Ifr =q € Q,thenpisaqt-type;
o Ifr =gq € @Qo, then pis a ¢~ -type;
« Ifr ¢ Q, then pis a r-type.

This completes the proof. O

Definition 2.2 We say that « € M is bounded over M if there are a,b € M such
that ¢ < a < b, and unbounded if otherwise.

Remark 2.3 By the above argument, it is easy to conclude that for any «, 3 € G°,
if both tp(ar/ M) and tp(/3/ M) are f-generic. Then either tp(a, 3/ M) is f-generic,
or there is q1, g2 € Q such that g1« + g23 is bouned over M.

Corollary 2.4 Let tp(cr, 3/ M) be a f-generic type which contained in G2°. Then
tp(qrax, g28/ M) is f-generic for all g1, g2 € Q\{0}.

By Remark 2.3 and Corollary 2.4, we immediately have:

Corollary 2.5 Let o, 3 € G°. Then tp(a, 3/M) is an f-generic type if and only
if for all ¢1, g2 € Q, g1 + go/3 is unbounded over M whenever ¢1% + ¢22 # 0. In
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particular, both v and /3 are unbounded over M, and {«, B} is algebraic independent
over M.

Remark 2.6 As we stated in Remark 1.15, every f-generic type of G2 over M is
0
one of G?(M)-translate of some f-generic type contained in G2 . So it suffices to
0
study the f-generic types contained in G2 .

Corollary 2.7 Every global f-generic type of G2 contained in GZO is ()-definable.

Proof Let ¢(z,vy,2) be a formula. Then we may assume that ¢ is a finitely many
union of the following cells:

Ci(z,y,2) = Dy, (2 — c1i) A Dpy, (2 — ¢2i) A Dy, (y — c3i) A (a1; O 2 O ag;)
A (h1i(z) Ogi @ Oygg hoi(2)) A (fri(z, 2) Os y O foi(z, 2)),

where ¢ = 1, ..., m, integers cy;, co; ¢3; a1 a1, 14, --., Lg; either < or no condition,
hh(.%') = bh(z;i“) + Yiis and fli(a:, Z) = dh(z;;%) + 6[1'('2;;”) + gli forl = 1, 2
and by, dii, €1y iy &i € Z.

Let p = tp(a, 3/M)be a global f-generic type of G? contained in a2’ We
assume that, for example, « > M, and p is a ¢"-type for some ¢ € Q. Then

¢(z,y,b) € piff there is some i < m such that
(i) M 'Z Dnzi(CQi) A DTLQi(C3i>;
(i1) [y, is no condition;
(i) 4 < qif O is <, and 2t > gif Og; is <.
(iV) M |: Dnu(b — Ch') A (ali Oy, b Oy, agi).
Let E C {1,...,m} be the set of all 7 such that (i), (ii), and (iii) hold. Then

¢(x,y,b) € p <= M= \/ Dy, (b= c15) A (ari Ori b O agy).
icE

This implies that p is (}-definable. O
Actually, a slight modification of the above proof would conclude that

Corollary 2.8 Every global f-generic type of G? is ()-definable.

Proof Let¢(z,y, 2)and C;(x,y, 2) be as stated above. Let p’ be a global f-generic

0
type of G2. Then there is ¢ = (g1,92) € G such that gp’ € G? . Similarly, as
mentioned above, we assume that gp’ is a ¢ -type for some g € Q. Now

(z,y,b) € p' <= go(z,y,b) € gp'.
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It is easy to see that g¢(x, y, z) is the union the

gC’i(x,y.z) = Dnli(z - Cli) A Dn2i(x — g1 — ch) A Dnsi(y — g2 — C3i)
A (a1; O 2 Oz agi) A (h1i(2) Oz @ — g1 Oas hoi(2))
A (fri(x = g1,2) Os y — g2 Ogi foi(x — g1, 2)).

Foreachi < mand b € M, gC;(x,y, 2) € gp’ iff

(1) M ': Dnzi (91 + CQz‘) A Dnm‘ (92 + C3i);
(i) Oy, is no condition;
(ii)) & < qif O is <, and 22t > gif Og; is <.
(IV) M |: Dnli (b — Cli) A\ (au Oy; b0 agi).
Lete;, = (612', 621) € 72 such that M ): D, (91 — 617;) A Dy, (92 — 621'). Then
9Ci(x,y,b) € gp' iff €,C;(x,y,b) € gp’ iff

(i) M = Dp,,(e1; + c2i) A Dy, (€2i + c3i);

(i1’) [y, is no condition;
(iii") 2 < gif Oy is <, and 2 > g if Og; is <.

(iV) M |: Dnu(b — Ch') A (ah- Oy, b 0oy GQZ‘).

Let £/ C {1,...,m} be the set of all i such that (i’), (ii’), and (iii’) hold. Then
¢(x,y,b) € pifand only if Ml |= A\, v Dy, (b—c1i) A (a1 O3 b Oa; ag;), and thus
p is (-definable. O

Definition 2.9 Let p = tp(a.8/M) € Si2(M) be any f-generic type.

* We call p an co-TYPE if p is a —oo-type or a +oo-type;
s Letr € Q, We call p an »-TYPE if r p is an r*-type or an r " -type;
* Letr € R\Q, We call p an »-TYPE if r p is an 7-type;

We call p a rational-TYPE if p is an r-TYPE and r € Q, and irrational-TYPE if p is
anr-TYPE andr € R — Q.

Lemma 2.10 Suppose that « = (aq,...a,) € G™" and tp(aa, ..., /M) is f-
generic. Then for all n-nary definable f over M, either f(a) > M or f(a) < M,
whenever f is nonconstant.

Proof By Remark 1.5, let p = tp(o/ /M) be an f-generic global extension of tp(c/
M). Then p is G -invariant. By cell decomposition, we may assume that f is of
form f(z) = ¢+ q1x1 + ...qnxy, With ¢1, ..., ¢, € Qand c € M. If ¢; # 0 for some
1 < i < n, then for any a € G°,

a
c+qal + . qa+ .t gal, a=c+aqal+ ..+ ai(—+ al) + .+ gnadl,.

)
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So f(e)+a = f(ay, ..., £+, ...ap). Sincepis G -invariantand (0, ..., oe-0) €

G”O, we have a
tp(o! /M) = tp(a} . (0] + L), .., 0l /M),

7

Now we see that
a
tp(f () +a/M) = tp(f(af, ..., — + af, ...ap,) /M) = tp(f(a/) /M).
This conclude that tp( f(a’) /M) is G°-invariant, thus f-generic, so either f(a’) > M
or f(a) < M, and hence f(a) > M or f(a) < M. O

2.2 An equivalence relation on homogeneous linear functions

Recall that L,, = {q1z1 + ... + gnn| q1,...qgn € Q} is the space of all homo-
geneous n-nary Q-linear functions, and by L,,(M) = {f +a| f € L, a € M} the
space of all n-nary Q-linear functions definable over M for any M < M. For each
f € L,(M), there is m € N such that f is a ()-definable function from D,,,(G™)
to G.

Definition 2.11 Let M <M, f, g € L, (M) and o € (G™)°.
+ We say that f(a) < g(a) (or g(a) > f(a)) if
nf(a)+a<mg(a)+b

forallm,m € NT and a,b € M.
* We say that f ~ g (or f(a) ~n g(e)) if neither f(a) < g(a) nor
g(a) <um f(a).

Clearly, for any M < M and o € (G”)O, ~o is an equivalence relation on
L,,(M). We denote the equivalence class of f by | f]Ma. For any f € L, (M), there
is g € L suchthat f € [g] . Forf,g€Lyby[f] ~<[g] wemean thatthere
exist (or for all) f/ € ], and g € [£],,. such that Fa) < g ().

Remark 2.12 Ifboth f(«) and g(«) are positive (or negative), then f(a) < s g(«)
if and only if del(M, f(a)) < g(a) (or f(a) < decl(M, g()), respectively).

Lemma 2.13  Suppose that a1, ag € GY. Then {[f1,,.1 f € La(M)} has at most 5
elements.

Proof Letp = tp(ay,a/M). We first suppose that p is not f-generic. Then, by
Corollary 2.5, g1v1 + gavg is bounded over M for some ¢1, g2 € Q. If g1 # 0, then
for each f € Lo, there is g € L1 (M) such that f(ay, as) ~ar g(ag). Assume that
ag > 0. It is easy to see that

{lal,,., 19 € L)} = {[0],,. }



68

Studies in Logic, Vol. 12, No. 3 (2019)

if a9 1s bounded over M, and

(o), |9 € i)} = ([l 0, o), }

if o 1s unbounded over M.

Now suppose that p is an f-generic type. Without lose of generality, we assume

that oy > 0.

Suppose that p is a ¢-TYPE with ¢ € Q, say a g™ -type.
Let h(x1,22) = axy + brg € Ly and g(x1,22) = a'zq + baxg € Ly with
a,b,a’, b € Q, such that h(aq,as) > 0, g(a1, a2) > 0, and h(a) > g(@).
Then we have

aaq + bag > n(d' aj + b as)

foralln € NT.
If & = 0, we conclude that either oy < dcl(M, «1) or ag > del(M, o), and
hence p should be an co-TYPE. A contradiction.
IfY < 0,thena’ > —b/'qasa’ay+b as > 0. For any sufficiently large n € N*
we have

(a —na)ay + (b —nb)ag > 0.
We now assume that b — nb’ > 0. Since ap < (¢ + %)al for all m € NT, we
have

1
(a —na")ar + (b—nb')(qg+ E)al > 0,

which implies that for all sufficiently large m,n € NT,
1 1
b —)) — "+ —)) > 0.
(a+bla+ ) —n(a +V(g+ )

Sod +b(qg+ L) <0forall0 < m € N. Buta' > —bg, so for sufficiently
large m, a’ > —V/(q + 1). A contradiction. We conclude that b’ > 0. For
sufficiently large n, (b — nb’) < 0 and hence (b — nb’)gaq > (b — nb')as. So
we have

(@ —na')ay + (b —nb)ga; >0,

which implies that

(a+bg) —n(a +bq) >0

for all sufficiently large n € N, and hence o’ +b'q < 0. Since a’ay +b'ag > 0,
we have a’ +b'q > 0. Soa’ +'q = 0. Forany h(x1,z2) = a’z1 + bz with
b” > 0and a” + b"q = 0, there is some n € N such that A = ng or g = nh.
So in this case,

{1 f € Lo} =A{[-H,, . [-d],,.00,.,ld,.. [0, }
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* Suppose that p is an co-TYPE.
Clearly, p is an co-TYPE if and only if tp(a, oy /M) is a 0-TYPE.

» Suppose that p is an r-TYPE with » € R\Q, and let h(z1,z2) = axy + bzs
and g(z1,x2) = a'xq + b'zy as above.
If b’ < 0, then o’ greater than —0'r. Let r < ¢ € Q such that a’ > —bq. For
all sufficiently large n € N, we have

(a —na')ay + (b —nb)ga; > (a —na')ay + (b —nb)ay > 0,
which implies that
(a+bq) —n(d +bq) > 0.

This is a contradiction as a’ + b'q > 0.

If & > 0, then a’ay + b'ay > 0 implies that there is some ¢ € Q such that
a +bg>0andq<r.

For all sufficiently large n € N, we have

(a —na')ay + (b —nb)ga; > (a —na')ay + (b —nb)ay > 0,

which implies that
(a+bq) —n(d +bq) > 0.

This is a contradiction since a’ +b'q > 0. So [h]
0, g(a) > 0,and f, g € Lo, and hance

{(N,,.1 f e La(M)} ={[=R], . [0], (K, }-

= [g],,. whenever h(a) >

This completes our proof. 0

The proof of Lemma 2.13 also concludes that

Corollary 2.14  Suppose that p = tp(a, a2/ M) is a f-generic with g, as € GY.
Let f1(z1,22) = axy + bxe and fo(x1,x2) = @’x1 + b'x2 be linear functions such
that fi(a1,ag) > 0. If fi(on, a2) <ar fa(ai, a2) then pis a ¢-TYPE with g € Q
and a + bg = 0.

Lemma 2.15 Forany a = (a1, ...,a,) € G and B € G, {[f]
finite.

|f € Ln-‘rl} is

Maf

Proof Induction on n € N. By Lemma 2.13, the Lemma holds for n = 1. By
induction hypothesis, there are finitely many n-nary linear functions hq, ..., hy € L,
such that 0 <y hy(a) <as ... K pr hi(a) and

{In,, 10 <hla) € Ln} ={[ll,, - [, }
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Claiml Foreache € {1,..., k}, theredonotexistu; € [h] ,c; € Q,andy € G°,

with ¢ € NT, such that

Mo’

ur(a, .o, o) + 1y Lar ua(@y ooy ) + c2y L op -
is an infinite chain.
Proof We prove the following Claim first.

Claim2 Iftherearee € {1,....k}, u; € [h]
such that

c; € Q,and vy € G°, withi € NT,

Ma’

ur(a, .o, o) + 1y Lar ua(@y vy ) + c2y Lo -
is an infinite chain. Then tp(u;(«),v/M) is a ¢;-TYPE with ¢; € Q\{0} for all
i e NT.

Proof Ifthereare j € NT, dy,ds € Q such that dyuj(aq, ..., ) + doy is bounded
over M, then

d d
——1Uj(a1, vnQp) Fa <y < ——1Uj(a1, vy ap) +b
d2 d2
for some a,b € M. So we conclude that
(ui(alu‘"aaTb)_}_Ci’Y) ~M (ui(alv"'van)+_Ciiuj(alu"'uan))‘

Let
dq

vi(aq, ooy ) = i, .o, ) + —cid—2uj(oq, ey Qi)

then we have an infinite chain of

’1)1(061, ceey Oén) <M Ug(()q, ceey Ocn) LM ey

which contradicts our induction hypothesis.

We now assume that dju;(asq, ..., ) + doy is unbounded over M for all i €
N+, and di,d> € Q such that d% + d% # 0. By Remark 2.3 and Lemma 2.10,
tp(u;(a),y/M) is f-generic for each i € N*. As u; 1 ~prq Ui, there exists ¢ € Q
such that for all m € NT,

qui(a) + cip1y > uir1(a) + cip1y > m(ui(e) + 7).

By Corollary 2.14, tp(u;(a), /M) is either non- f-generic, or a —ci_l—TYPE. O

We now turn to Claim 1. For a contradiction, let 1 < t < k be the least number
such that there exist u; € [hy], ,¢; € Q,andy € GO, with i € N7, such that

U (@1, ey ) + 01y Lar u2(Qq, ooey ) + 27y Lpf e
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is an infinite chain. By the Claim 2, we may assume that tp(u;(«),v/M) is a g;-
TYPE for each i € N*, with ¢; € Q. Moreover, we assume that each u; € L,,. Itis

easy to see that tp(u1 (a), ui(a) /M) is either a Z--TYPE, or u; = Ltu;.

* Ift=1,thenforalli € N*, u; = Lu;. Otherwise, tp(ui(a), u;(a) /M) will

be a %—TYPE, and this implies that either 0 <5/ (o) — %ui(a) < up (@)
or 0 <ur Lui(a) — ui(e) <ar ur(e). Butug ~pnq by is the least one, a
contradiction. So u; = g—lul forall i € NT. Let ug (o) = 6. Then we have the

infinity chain of

O+cy <m ... <m 29 +ciy <m (:Il

qi di+1

0+ civ1y <u ooy

and which contradicts to the Lemma 2.13.
« Ift > 1, then for each i € NT, there is d; € Un<t[hn]Ma such that u;(a) =
Buy(a) + dia). Sofori < j € NT, we have

%ulgl(a) +dj(o) + ¢jy > n(%ul (@) + di(@) + ¢7y)
J %

for all sufficiently large n € N. By Lemma 2.14, we see that % + ¢; = 0 for
alli € NT. Lety' = uj(a) + ¢17. Then Lui(a) + iy = Ly and

a1

f?’/)

dj(a) + LEONEN n(d;(a) +
q; qi

foralli < j € Nand n € N*. So we have an infinity chain of

di(@) +7 <ar e <ar di(@) + Lo <pp dia (@) + -2

v <
qi qi+1

It’s no harm to assume that d; ~, d; foralli, j € NT. Since d; € Un<tlhal,, >
there is 1 < 1y < ¢ such that d; ~ o hyy, forall j € N, and this contradicts
to the minimality of ¢.

O

Suppose for a contradiction that

0 < filaB) <ar f2(af) <o ...

is an infinity chain, where

f’i(xl) ooy Ty Jjn—&-l) — gi(xh )xn) + bixn-‘rl)

with g; € L,, foreach 1 < i < m. Then there is ¢t € {1, ..., k} such that infinitely

many g;’s are in [h] . But this contradicts Claim 1. O
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Definition 2.16 Let p = tp(ay, ..., /M) with aq,...,c, € G°. By maximal
positive chain of p we mean a finite ascending chain of form 0 < fi(a) <ar
. €01 fm(a), with each f; € L, such that

{[f],,.1h(e) >0 € Ln} ={[A],, - [fml,,. -
Remark 2.17

 Letp = tp(ay, ..., /M) with g, ..., a, € GO. Suppose that 0 < s f1(a) <ar
... €y fm(a@) is a maximal positive chain of p. Then for every h € L, (M),
either there is ¢ < m such that h ~ s, fi or b ~pq (= fi), 0r h ~p14 0.

* The maximal positive chain of p is independent of the choice of the realizations
of p. Namely, for any o/ € M" realizes p, 0 < s f1(o) <pp . Kpr frn()
is also a maximal positive chain of p.

2.3 The f-generics of G™

Theorem 2.18 Let M > Z, a = (o, ...,a,,) € (G™)° realizes an f-generic in
San(M). Let fo(a) =0 <pr fi(a) <ar ... €ur fm(a) be the maximal positive
chain of tp(ar/M). Then for every 3 € G°, p = tp(a, B/ M) € Sgn+1(M) is an
f-generic type if and only one of the following cases holds:

Case I tp(fm(«), /M) is an co-TYPE. In this case p is determined by the partial
type
tp(a/ M) Utp(fm(a), 8/ M);
Case II There are ¢ with 0 < ¢ < mand g € L,, such that tp(fi(«), 5 — g(a)/ M)
is an co-TYPE and tp(fi11(e), 8 — g(a)/M) is a O-TYPE. In this case p is
determined by the partial type

tp(a/M) Utp(fi(e), B = g(@)/ M) Utp(fiy1(@), B = g(@)/M);

Case III There are i with 1 < ¢ < mand g € L, such that for all b € | f,-]Ma,
tp(h(a), B — g(a)/M) is an irrational-TYPE. In this case p is determined by
the partial type

tp(e/ M) Utp(fi(e), B = g(a)/M).

Proof If3 > M, or 5 < M,, then Case I holds.

Now Suppose that neither 5 > M, nor 8 < M,,. Foreach h € [f,]
that tp(h(«), 5) is an r,-TYPE, with r, € R.

Ifr, € R\Qforall h € [fn], . Letz = (21,..7,). By cell decomposition,

M
we may assume that every formula in tp(c, 3) is of form

Y(z,y) = Dn(2,y) A d(z) A gi(z) <y < ga(w)

where ¢(z) € tp(ar/ M), g1 and g are n-nary linear functions, and N € N. We claim
that

1> SUPpOSE
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Claim Foranyh € [f,,] M and any n-nary linear functions h1, he such that by (x) <
y < ha(z) € tp(a, §), we have

tp(a/ M) Utp(h(a), B/ M) |= ha(z) <y < ha(z).
Proof There are q1, ¢ € Q, with ¢; < 7, < @9, such that
hi(a) < qih(o) + M < gah(a) + M < ha(a).

Otherwise, we have either tp(h1(«), 5/M) is an 1-TYPE or tp(ha(«), 5/M) is an
1-TYPE, which contradicts our assumption. Now

tp(a/M) E hi(x) < gih(z) < gah(z) < ho(x),
and
p/(l'/, y) - tp(h‘(a)vﬁ/M) l: QIm/ <y< 6123?/ .
So
tp(a/M) Utp(h(a), B/M) = hi(z) <y < ha(z).
|

Since tp(a/M) = Dn(z) A ¢(z) and tp(h(«), 5/ M) = Dn(y), we conclude
that tp(«, 5/ M) is determined by the partial type

tp(e/ M) Utp(h(e), B/ M)

by our Claim.

Now suppose that there is &’ € [fm]  such that tp(h'(«), 3/ M) is a rational-
TYPE, say, a ¢,,°"-type, with ¢,,, € Qand e,,, € {4, —}.

Let g(z) = gl (x). Then M < e, (8 — g(a)) < h'(a)/k for all k € N* and
thus tp(fm (), 8 — g(a)/M) is a O-TYPE.

 Ifforallh € [fin—1],, ,tp(h(a), B—g(a)/M)isanirrational-TYPE, then the
above argument concludes that tp(«, /M) is determined by the partial type

tp(a/ M) Utp(h(e), B — g(a)/ M).

o Iftp(fn—1(a), B — g(a)/M) is an co-TYPE. As we claimed above, it is easy
to show that for any n-nary linear functions h1, ho such that hi(z) < y <
ha(z) € tp(a, 5), we have

tp()Utp(fm (), B—g(c)/ M)Utp(fm (), B—g() /M) |= ha(x) <y < ha().

So p is determined by

tp(a) Utp(fm(a), B — g(a)/M) Utp(fm(e), B — g(a)/M).
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* Ifthereis h € [fm—1],, suchthattp(h(a), 8 — g(a)/M) is arational-TYPE,

M
we could iterate the above steps until we meet a 0 < j < m such that there is

9 € Uj<i<mlfil,,, such that

tp(f(), (8 — g()) /M)
is a 0-TYPE, and for each g;_1 € [fj_1]

Ma’

tp(gj—1(a), (8 — g(e)) /M)

is NOT a rational-TYPE. So either tp(f;_1(«), 5 — g(a))/M) is an co-TYPE
and p is determined by

tp(a/ M) Utp(fi-1(a), B — g(a)/M) Utp(fj(e), B — g(a)/ M),

and Case I holds, or tp(f;—1(«), B — g(«)/ M) is an irrational-TYPE and p is
determined by the partial type

tp(a/ M) Utp(fj-1(a), B — g(a)/ M),
and Case III holds.
O

The following two Corollaries are main results of [4]. By Theorem 2.18, we
could prove them directly by induction on n € N*.

Corollary 2.19  Every global f-generic type of G™ is ()-definable for all n € N*.

Proof Induction onn € N, and applying Corollary 2.8. O

Corollary 2.20 A global type tp(«, ..., @p—1/M) € Sgn(M) is f-generic iff
qoco + ... + gn—10p—1

is unbounded over M for all qq, ..., g,—1 € Q with Z?;ol q? # 0.

Proof Induction on n € N*, and applying Corollary 2.5. O

2.4 The f-generics of (Q,"", x)

We now consider the structure of p-adic field QQ, in the language of rings L.,y =
{+, x,0,1}. By [1], the valuation ring Z,, is a definable subset of Q,, in the language
of rings. Let Z,” = {a € Zyla~' € Z,} be the definable subgroup of Q,* =
Qp\{0}, then the map v : (Q,*/Z,*, x) — (Z,+) is a group isomorphism. Let
m:Qp* — Q" /Z,™ be the nature projection. The valuation map v = vo is group
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homomorphism from (Q,*, x) onto (Z,+). Moreover, we see that v(z) < v(y) if
andonly if v(£) € Z, forall 2,y € Q,". So the structure (Z, +, <, 0) is interpretable
in the structure (Q,, %, +,0, 1).

Fact2.21 Letv: Q) — Z as above. Then we have

1. v(zy) = v(z)+v(y) forall z,y € Qp;

2. v(z +y) > min{v(z),v(y)}, and v(z + y) = min{v(z),v(y)} if v(z) #
v(y);

3. d(z,y) = p~"(*¥) defines a metric on Q,,.

For each k € N, let P, be a unary predicate symbol for the set of k-th power.
Then P;(Q,) < Q% is definable subgroup of finite index. Moreover, each P;(Q})
is an open subgroup of @, and every coset P;,(Qj) is an open subset of Q*. By [7],
the structure Q,, has quantifier elimination in the language L,ing U {P;| k € NT}. It
is easy to see from quantifier elimination that

Fact2.22 Forany M |= Th(Q), A C M, any ay, ..., an, b1, ..., b, € M, we have
tp(ay,...,an/A) = tp(b1,...,bn/A)

if and only if

M = Pu(f(a1,...,an)) <= M = Pu(f(b1,...,bn))

forall k € NT and f € Alzy,...,x,], where A is the subfield generted by A and
Alw1, ..., 1] is the n-nary polynominal ring over A.

Let K be a very saturated model of Th(Q),). The valuation map v can be naturally
extended to a homomorphism from K\ {0} onto the saturated model I" = Th(Z). Let
H denote the multiplication group (K*, x), where K* = K\{0}. Then we have

Fact 2.23 ([10])H is definably amenable, and

+ A global 1-type tp(a/K) € S;(K) is an f-generic type of H if and only if
either v(a) < y forally € I'or v(a) > v forall y € I'.
« HY = H(K)? = Njen+ Pe(K¥).

Let K = Kand I' = v(K) = I'. Let G be the additive group of the Presburger
arithmetic (T, +).

Proposition 2.24 Let a = (ag,...,a,—1) € K" Then tp(ap, ..., v,—1/K) is an
f-generic type of H™ if and only if tp(v(ayg), ..., v(an—1)/T’) is an f-generic type of
G™. Moreover, every f-generic type of H™ is ()-definable.
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Proof Since H is definably amenable, we see that if p(z) = tp(ao, ..., an—1/K)
is f-generic, then for every g € HY = (", .y+ Pr(K*), gp = p. So tp(v(a), ...,
v(an—1)/T) is invariant under G% and hence f-generic, as v((\yen+ Pr(K*)) =
Nien+ Dr(K*) = GU..

Conversely, suppose that tp(v(ay), ..., v(an—1)/I") is an f-generic type of G™.
By quantifier elimination, we may assume that each formulain p(z) = tp(ay, ..., p—1
/K) is of form Py(f(xq,...,2n—1)) with k& € Nt and f € Klzg,...,zp_1]. Let
f € K[z, ..., zn—1] be a polynomial of form ¥,cp,d,z", where 0 # d, € K, Dy
is a finite subset of N™, and " = z{°...z;;" ' for T € Dy. By Corollary 2.20, every
nontrivial Q-linear combination of {v(«ayp), ..., v(a,—1)} is unbounded over I'. We
see that there is 7* € Dy such that

*

Z/(OZT ) = Eogignfl’r;l/(ai) < V(OéT) +I' = Eogign,ﬂ'@'v(ai) +T

forall 7 € Do\{r*}. So ({2 — d,-) > T, and hence L2 is infinitesimal close to

aT” a™”

d,~ over K. Since Py (K*) is a definable subgroup of H of finite index, there exists
A € Qp such that ™" € AP (K*), then

fla)

fl@) € P(E) = 22 e ATR(E).

f (Oi)

- Is infinitesimal close to

Since each coset of Py (K*) is a clopen subset of H, and
d,~ over K, we see that

fla)

a™

€ VNP (K*) <= d € \TIP,(KY).
Thus, we conclude that
K Pi(f(e)) <= K = A Py(dr) (%)

where A € @, and a” A~ € P(K*). Now forany 3 € (H™)", it is easy to see that
B € Pp(K*). So

" A te P(KY) <= (Ba)” A7!e P (K",
where Sa = (o, ..., fn—10m—1). S0 we have shown that
K | Pi(f(a)) <= K E Py(f(Ba)).

So p is invariant under the (H ”)Oo-translate, and hence an f-generic type of H™

By (*), we see that P,(f(z)) € p(z) if and only if K = A~'Py(d,+). So
A"1Py(y) is the formula defines “P;,(f(Z)) € p”. Since Py defines a finite index
subgroup of H, {\} is (-definable. So p is ()-definable as required. O
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