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Finite Axiomatizability of Transitive Logics of Finite
Depth and of Finite Weak Width*

Yan Zhang

Abstract. This paper presents a study of finite axiomatizability of transitive logics of finite
depth and finite weak width. We prove the finite axiomatizability of each transitive logic of
finite depth and of weak width 1 that are characterized by rooted transitive frames in which all
antichains contain at most n irreflexive points. As to negative results, we show that there are
non-finitely-axiomatizble transitive logics of depth n and of weak width k for each n ⩾ 3 and
k ⩾ 2.

It is well known from [9] that all transitive logics of finite depth have the finite
model property(f.m.p.). In [11], the authors prove the finite axiomatizability of tran-
sitive logics of finite depth that are characterized by frames with an upper-bounded
number of equivalence classes modulo the relation of having the same proper succes-
sors. This result implies the finite axiomatizability of transitive logics of finite depth
and of finite width (in the sense of [5]), that of transitive logics of depth at most 2,
and that of weakly convergent transitive logics of depth at most 3, etc.

This paper presents a study of finite axiomatizability of transitive logics of fi-
nite depth and of finite weak width, i.e., containing a weak width formula Wid+

n for
some n ⩾ 1. These formulas are weaker forms of width formulas in [5], and each
Wid+

n (n ⩾ 1) corresponds to the condition within rooted transitive frames that all
subframes generated by some proper successor of a root are at most width n. As a
negative results, we show that there are non-finitely-axiomatizble transitive logics of
depth n and of weak width k for each n ⩾ 3 and k ⩾ 2, by a way of construct-
ing infinite irreducible sequences of frames. As a positive result, we prove the finite
axiomatizability of each transitive logic of finite depth and of weak width 1 that con-
tains Wid•

n for an n ⩾ 1, in which Wid•
n corresponds to the condition within rooted

transitive frames that each antichain in them contains at most n irreflexive points.
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Section 1 provides preliminary notions and facts, and section 2 gives criteria of
finite axiomatizability of transitive logics whose extensions all have the f.m.p. In
section 3, we introduce transitive logics of finite depth and of finite weak width, and
prove the non-finite-axiomatizability result. We then present in section 4 our main
result of finite axiomatizability of transitive logic of finite depth and of weak width
1, and concludes the paper in section 5.

1 Preliminaries

This section lists some standard preliminary notions and theorems, and a full
account can be found in standard modal logic textbooks (e.g., [1, 2]). Modal for-
mulas are built up from propositional variables, using truth-functional operators and
the necessity operator 2. We will simply call them formulas. A normal modal logic
(or simply modal logic) is a set of modal formulas that contains all truth-functional
tautologies and 2(p → q) → (2p → 2q), and is closed under modus ponens, sub-
stitution and necessitation. As usual, we use K (K4) for the smallest modal logic
(containing 2p → 22p). For each modal logic L, an extension of L is a modal logic
L′ such that L ⊆ L′. Let L be any modal logic and let ∆ be any set of formulas,
L ⊕∆ is the smallest modal logic including L ∪∆; and for each formula ϕ, we use
L⊕ϕ for L⊕{ϕ}. As usual, we use S4 forK4⊕2p → p. A modal logic L′ is finitely
axiomatizable over L if L′ = L⊕∆ for a finite ∆, and is finitely axiomatizable if it
is finitely axiomatizable over K.

Let F = ⟨W,R⟩ be any frame with w ∈ W , and let M be any model on F. For
each formula ϕ, we use M, w ⊨ ϕ for that M satisfies ϕ at w, use F, w ⊨ ϕ for that
M′, w ⊨ ϕ for each modelM′ on F, and use F ⊨ ϕ for that ϕ is valid in F (F is a frame
for ϕ). For any set ∆ of formulas, and any class C of frames, the validity-relation
⊨ between them are defined as usual, and we will use Log(C ) for the modal logic
{ϕ : C ⊨ ϕ}. For all u, v ∈ W , let R⃗uv iff Ruv but not Rvu, and let u ⊥R v

iff neither Ruv nor Rvu. For all u, v ∈ W , when Ruv, we say that u sees v, and
call v a successor of u; and when R⃗uv, we call v a proper successor of u, and u a
proper predecessor of v. For each X ⊆ W , let X↑R = {v : Ruv for a u ∈ X},
X↓R = {v : Rvu for a u ∈ X}, X↑−R = X↑R −X and X↓−R = X↓R −X . When
R is clear in the context, we drop “R” and use “X↑” and “X↓” instead. For each
w ∈ W , let w↑ = {w}↑, w↓ = {w}↓, w↑− = {w}↑− and w↓− = {w}↓−.

For each family {Fi}i∈I ({Mi}i∈I ) of pairwise disjoint frames (models), we
use

⊎
i∈I Fi (

⊎
i∈I Mi) for the disjoint union of {Fi}i∈I ({Mi}i∈I ). For each frame

F = ⟨W,R⟩ and each modelM on F, and for each nonemptyX ⊆ W , we use F ↾ X
(M ↾ X) for the restriction of F (M) to X , and use F|X (M|X ) for the subframe of
F (submodel of M) generated by X; and when X = {w}, we use F|w and M|w for
F|{w} andM|{w} respectively. For frames F and G (modelsM andM′), we say that
a function f reduces F (M) toG (M′) when f is a reduction of F (M) toG (M′); and
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that F (M) is reducible toG (M′) if a function reduces F (M) toG (M′). We assume
the reader’s familiarity with the related theorems on preservation of truth and validity
under these frame/model constructions.

Let F = ⟨W,R⟩ be a transitive frame. For all w, u ∈ W , w ∼R u iff either w =

u, orRwu andRuw. A cluster in F is an equivalence class modulo∼R. For eachw ∈
W , we use c(w) for the cluster containing w. For each cluster c in F, c is degenerate
if it is a singleton of an irreflexive point in F, otherwise, it is nondegenerate. Let
k ⩾ 1. A point u1 in F is of rank greater than k if there is an R⃗-chain {u1, . . . , un}
with n > k, and is of rank k if there is an R⃗-chain {u1, . . . , uk} and u1 is not of
rank greater than k. F is of rank k if it contains a point of rank k but no point of rank
greater than k, and is of finite rank if it is of rank k for some k ⩾ 1. The following
formulas are from [9], where i ⩾ 1:

B1 = 32p1 → p1,
Bi+1 = 3(2pi+1 ∧ ¬Bi) → pi+1.

We use K4Bn (S4Bn ) for K4⊕ Bn (S4⊕ Bn), where n ⩾ 1. A transitive logic is of
depth n (n ⩾ 1) if it contains Bn but not Bn−1 (it is assumed that B0 = ⊥), and is of
finite depth if it contains Bk for a k ⩾ 1. The following are established in [9]:

Proposition 1 For each transitive frame F and each n ⩾ 1, F ⊨ Bn iff F is of rank
at most n.

Theorem 2. All transitive logics of finite depth have the f.m.p.

An antichain in a transitive frame F = ⟨W,R⟩ is a nonempty A ⊆ W such
that for all u, v ∈ A, u ̸= v only if u ⊥R v. Whenever we speak of an antichain
{u0, . . . , un} in a frame, we presuppose that u0, . . . , un are distinct. A transitive
frame is of width at most n (n ⩾ 1) if |A| ⩽ n for each antichain A in the frame. The
following formulas are from [5], where n ⩾ 1:

Widn =
∧

i⩽n3pi →
∨

0⩽i ̸=j⩽n3(pi ∧ (pj ∨3pj)).

A transitive logic is of width n (n ⩾ 1) if it contains Widn but not Widn−1 (it is
assumed that Wid0 = ⊥), and is of finite width if it contains Widk for a k ⩾ 1. The
following proposition is from [5]:

Proposition 3 For each rooted transitive frame F and each n ⩾ 1, F ⊨ Widn iff F
is of width at most n.

2 Criteria of Finite Axiomatizability

In this section, we present necessary and sufficent conditions for all extensions
of a modal logic L to be finitely axiomatizable over L. For each family {Li}i∈I of
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modal logics,
⊕

i∈I Li is the smallest modal logic including
⋃

i∈I Li. The following
is a well-known theorem from Tarski (see, e.g., [2]):

Theorem 4. Let L and L′ be any modal logics such that L ⊆ L′. Then L′ is finitely
axiomatizable over L iff there is no infinite ascending ⊂-chain L0 ⊂ L1 ⊂ L2 ⊂ · · ·
of extensions of L such that L′ =

⊕
i∈ωLi.

Let {Fi}i∈ω be any infinite sequence of frames. {Fi}i∈ω is backward irreducible
(forward-backward irreducible, or simply irreducible) if for all i, j ∈ I with i < j

(i ̸= j), no point-generated subframe of Fj is reducible to Fi. For each class C

of frames, {Fi}i∈ω is a backward irreducible (or irreducible) sequence w.r.t. C if
{Fi}i∈ω is backward irreducible (or irreducible) and Fi ∈ C for each i ∈ ω. A modal
logic L is characterized by a class C of frames if L = Log(C ).

The following theorem provides a sufficient condition of finite axiomatizability
in terms of backward irreducible sequences, and is proved by applying Theorem 4.

Theorem 5. Let L be a modal logic, and let C be a class of frames for L such that
each extension of L is characterized by a subclass of C . Then all extensions of L are
finitely axiomatizable over L if there is no backward irreducible sequence w.r.t. C .

Proof Suppose that L′ extends L but is not finitely axiomatizable over L. By Theo-
rem 4, there is an infinite ascending ⊂-chain L0 ⊂ L1 ⊂ · · · of extensions of L, and
then for each i ∈ ω, there is a ϕi ∈ Li+1 − Li, and hence by hypothesis, Fi ⊭ ϕi for
a member Fi of C such that Fi ⊨ Li, which implies that for each i, j ∈ ω with i < j,
Fi ⊭ ϕi and Fj ⊭ ϕi. Therefore, {Fi}i∈ω is a backward irreducible sequence w.r.t.
C . □

From now on, whenever we speak of an backward irreducible (or irreducible)
sequence of such and such frames (for L), we mean an backward irreducible (or ir-
reducible) sequence w.r.t. the class of such and such frames (for L). The following
corollary is often applied in studies of finite axiomatizability of modal logics whose
extensions have the f.m.p. (see, e.g., [3], [7] and [10])

Corollary 1 Let L be any modal logic whose extensions all have the f.m.p. Then all
extensions of L are finitely axiomatizable over L if there is no backward irreducible
sequence of finite rooted frames for L.

Proof Let C be the class of finite rooted frames for L. It follows from hypothesis
that each extension of L is characterized by a subclass of C . Hence the conclusion
follows from Theorem 5. □

In the following, we prove the converse of Corollary 1, and combined it with
Corollary 1 to get our final criterion of finite axiomatizability in terms of (backward)
irreducible sequences. Let F = ⟨W,R⟩ be a finite rooted transitive frame, where
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W = {w0, . . . , wn} with w0 to be a root of F, and w0, . . . , wn to be all distinct. We
call ⟨w0, . . . , wn⟩ an ordering of points in F. Let p0, . . . , pn be distinct propositional
letters, and let us call a conjunction of the following formulas a frame formula for F
w.r.t. ⟨w0, . . . , wn⟩:

• p0,
• 2(p0 ∨ · · · ∨ pn),
•
∧
{(pi → ¬pj) ∧2(pi → ¬pj) : i, j ⩽ n and i ̸= j},

•
∧
{(pi → 3pj) ∧2(pi → 3pj) : i, j ⩽ n and Rwiwj},

•
∧
{(pi → ¬3pj) ∧2(pi → ¬3pj) : i, j ⩽ n and not Rwiwj}.

A frame formula1 for F is a frame formula for F w.r.t. an ordering ⟨u0, . . . , un⟩ of
points in F, where u0 is a root.

Lemma 1 Let F = ⟨W,R⟩ be a finite rooted transitive frame, for which ϕ is a frame
formula w.r.t. an ordering ⟨w0, . . . , wn⟩ of points in F. Then ϕ is satisfiable in F at its
root w0.

Proof Let M = ⟨F, V ⟩ where V (pi) = {wi} for each i ⩽ n. It is routine to check
thatM, w0 ⊨ ϕ. □

The following is Lemma 3.20 from [1], and the proof is left to the reader.

Lemma 2 Let F be a finite rooted transitive frame, for which ϕ is a frame formula,
and let G = ⟨U, S⟩ be any transitive frame with u ∈ U . Then ϕ is satisfiable in G at
u iff G|u is reducible to F.

Proposition 6 Let {Fi}i∈ω be an irreducible sequence of finite rooted transitive
frames. Then there is a continuum of extensions of L = Log({Fi}i∈ω).

Proof For each i ∈ ω, let ϕi be a frame formula for Fi; and for each I ⊆ ω, let
LI = Log({Fi}i∈I). Consider any I, J ⊆ ω such that there is an i ∈ I−J . For each
k ∈ J , because i ≠ k, ϕi is by hypothesis and Lemma 2 not satisfiable in Fk, and
hence Fk ⊨ ¬ϕi. It then follows that ¬ϕi ∈ LJ . By Lemma 1, Fi ⊭ ¬ϕi, and then
¬ϕi /∈ LI , and hence LI ̸= LJ . A similar argument shows that LI ̸= LJ if there is
a j ∈ J − I . Hence LI ̸= LJ for all I, J ⊆ ω such that I ̸= J . It then follows that
there is a continuum of extensions of L. □

For each frame F = ⟨W,R⟩, we use ∥F∥ for |W |. The following is easily veri-
fiable:

1A frame formula for F is also known as a Jankov-Fine formula for F (see [1]). The term “frame
formula” goes back to [4].



Yan Zhang / Finite Axiomatizability of Transitive Logics of Finite Depth and of Finite Weak Width 21

Fact 7 Let {Fi}i∈ω be an infinite sequence of frames such that for an m ⩾ 1,
∥Fi∥ ⩽ m for all i ∈ ω. Then there is an infinite I ⊆ ω such that all frames in
{Fi}i∈I are isomorphic.

Proposition 8 Each infinite backward irreducible sequence of finite frames has an
infinite irreducible subsequence.

Proof Let {Fi}i∈ω be a backward irreducible sequence of finite frames. By Fact 7,
there is no m ∈ ω such that ∥Fi∥ ⩽ m for all i ∈ ω. Then there is an infinite I ⊆ ω

such that for all i, j ∈ I with i < j, ∥Fi∥ < ∥Fj∥, and hence no point-generated
subframe of Fi is reducible to Fj . It then follows that {Fi}i∈I is irreducible. □

Theorem 9. Let L be a transitive logic whose extensions all have the f.m.p. Then the
following are equivalent:2

(i) all extensions of L are finitely axiomatizable over L;
(ii) there is no infinite backward irreducible sequence of finite rooted frames for L;
(iii) there is no infinite irreducible sequence of finite rooted frames for L.

Proof By definition of irreducible sequences and Proposition 8, (ii) is equivalent to
(iii). According to Corollary 1 and Proposition 6, we have that (ii) implies (i) and (i)
implies (iii), and hence (i) is equivalent to (ii). □

3 Transitive Logics of Finite Depth and of Finite Weak Width

In this section, we present weak width formulas Wid+
n (n ⩾ 1), discuss their

frame conditions, and then show that there are non-finitely-axiomatizble extensions
of K4Bn ⊕ Wid+

k whenever n ⩾ 3 and k ⩾ 2.
For each n ⩾ 1, let Wid+

n be the following formula:

Wid+
n = q ∧3(2¬q ∧ (

∧
i⩽n3pi)) →

∨
0⩽i ̸=j⩽n3(pi ∧ (pj ∨3pj)).

A transitive logic is of weak width n (n ⩾ 1) if it contains Wid+
n but not Wid+

n−1,
and is of finite weak width if it contains Wid+

k for a k ⩾ 1.

Proposition 10 Let F = ⟨W,R⟩ be a transitive frame, and let w ∈ W and n ⩾ 1.
Then F, w ⊨ Wid+

n iff for each u with R⃗wu, F|u is of width at most n.

Proof Suppose that M, w ⊭ Wid+
n for a model M on F. Because M, w ⊨ q ∧

3(2¬q ∧ (
∧

i⩽n3pi)), there is a u ∈ w↑ such that M, u ⊨ 2¬q ∧ (
∧

i⩽n3pi), and

2Since a continuum of extensions of L can be constructed from an infinite irreducible sequence of
finite rooted frames forL, we also have the following equivalences: there is a continuum of non-finitely-
axiomatizble extensions ofL iff there is an infinite backward irreducible sequence of finite rooted frames
for L iff there is an infinite irreducible sequence of finite rooted frames for L.
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then R⃗wu, and for each i ⩽ n, M, vi ⊨ pi for a vi ∈ u↑. Consider any i, j ⩽ n

such that i ̸= j. Because M, w ⊭
∨

0⩽i ̸=j⩽n3(pi ∧ (pj ∨3pj)), and because Rwvi
by the transitivity of R, it then follows that M, vi ⊨ pi and M, vi ⊭ pj ∨ 3pj , and
M, vj ⊨ pj and M, vj ⊭ pi ∨ 3pi, and then neither vi = vj nor Rvivj nor Rvjvi.
Hence {v0, . . . , vn} is an antichain, and then F|u is of width greater than n because
{v0, . . . , vn} ⊆ u↑.

Suppose that there is a u ∈ c(w)↑− such that F|u is of width greater than n. Then
there is an antichain {v0, . . . , vn} ⊆ u↑. Let M = ⟨F, V ⟩ where V (q) = {w}, and
V (pi) = vi for each i ⩽ n. Since R⃗wu and {v0, . . . , vn} ⊆ u↑, it is easy to see
that M, u ⊨ 2¬q ∧ (

∧
i⩽n3pi), and then M, w ⊨ q ∧ 3(2¬q ∧ (

∧
i⩽n3pi)). For

each v ∈ w↑ and each i ⩽ n, if M, v ⊨ pi, we know by definition of V that v = vi
and M, v ⊭ pj ∨ 3pj for each j ⩽ n with j ̸= i. Hence for each v ∈ w↑, M, v ⊭∨

0⩽i ̸=j⩽n(pi ∧ (pj ∨ 3pj)), from which it follows that M, w ⊭
∨

0⩽i ̸=j⩽n3(pi ∧
(pj ∨3pj)), and henceM, w ⊭ Wid+

n . □

In what follows, we show that there are non-finitely-axiomatizble extensions of
K4Bn ⊕ Wid+

k whenever n ⩾ 3 and k ⩾ 2, by way of constructing irreducible
sequences of finite rooted transitive frames of rank 3.

We now construct irreducible sequences of finite rooted transitive frames of rank
3, in each of which all points of rank 2 have exactly two proper successors. For each
n ∈ ω, let Bn = {X ∈ P(Cn) : |X| = 2}, where Cn = {k : k ⩽ n + 1}, and let
Hn = ⟨Wn, En⟩, where

Wn = {a} ∪Bn ∪ Cn,
En = {⟨a, u⟩ : u ∈ Bn ∪ Cn} ∪ {⟨b, c⟩ ∈ Bn × Cn : c ∈ b}.

It is easy to see that for each n ∈ ω and in each of Hn, a is of rank 3, and members
of Bn are of rank 2 while those of Cn are of rank 1. Note that for each n ∈ ω, Hn is
a finite strict partial order. Since all points of rank 2 in these frames have exactly two
proper successors, the following Fact holds:

Fact 11 For each n ⩾ 2, Wid+
n is valid in all members of {Hn}n∈ω.

In our proof of Lemma 3, we make use of the following simple fact about reduc-
tion:

Fact 12 Let f be a reduction of F to G, where both F and G are transitive, and let
w be a point in F. Then the following hold:

(i) w is a dead-end in F iff f(w) is a dead-end in G;
(ii) for each n ⩾ 1, if f(w) is of rank n in G, then w is of rank at least n in F.

Lemma 3 {Hn}n∈ω is irreducible.
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Proof Let k, n ∈ ω with k < n. We only show that Hn is not reducible to Hk, the
other direction is trivial because |Wk| < |Wn|. Let us useR forEn and S forEk. By
definition, b↑En

= b for each b ∈ Bn, and hence by hypothesis,

b↑R = b for each b ∈ Bn. (1)

Suppose for reductio that f reduces Hn to Hk. It follows from Fact 12 that f(a) = a,
f [Bn] = Bk and f [Cn] = Ck. Since k < n, Ck ⊂ Cn, and then there are distinct
c, c′ ∈ Cn such that f(c) = f(c′). Let b = {c, c′} ∈ Bn. Then f(b) = {v, v′} ∈ Bk

for some distinct v, v′ ∈ Ck. By definition,

Sf(b)v, Sf(b)v′ and f(b) ̸= v, v′. (2)

Since f(c) = f(c′), either v ̸= f(c), f(c′) or v′ ̸= f(c), f(c′). If v ̸= f(c), f(c′),
then by (1) and (2), Sf(b)v but f(u) ̸= v for each u ∈ b↑R = {c, c′}, contrary to
the supposition that f reduces Hn to Hk. By the same token, if v′ ̸= f(c), f(c′), then
Sf(b)v′ but f(u) ̸= v′ for each u ∈ b↑R, contrary to the supposition again. □

Theorem 13. Let n ⩾ 3 and k ⩾ 2. There are non-finitely-axiomatizble extensions
of K4Bn ⊕ Wid+

k .
3

Proof By Proposition 1 and Fact 11, we have that for each n ∈ ω, Hn is a frame for
K4Bn⊕Wid+

k . It then follows from Lemma 3 and Theorem 9, there are non-finitely-
axiomatizble extensions of K4Bn ⊕ Wid+

k . □

4 Finite Axiomatizability of Transitive Logics of Finite Depth and of
Weak Width 1

Consider the following formulas, where n ⩾ 1:

Wid•
n =

∧
i⩽n3(pi ∧2¬pi) →

∨
0⩽i ̸=j⩽n3(pi ∧ (pj ∨3pj)).

In this section, we discuss the frame conditions for Wid•
n with n ⩾ 1, provide a

study of well-quasi-orders on trees, and then prove the finite axiomatizability of each
transitive logic of finite depth and of weak width 1 that contains Wid•

n for an n ⩾ 1.

4.1 Transitive Frames for Wid•
n

Let F = ⟨W,R⟩ be any frame, and let A be an antichain in F. We say A is
irreflexive if for all w ∈ A, Rww fails.

3According to footnote 2, we can actually show that there is a continuum of extensions of K4Bn ⊕
Wid+

k whenever n ⩾ 3 and k ⩾ 2.
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Proposition 14 Let F = ⟨W,R⟩ be any transitive frame, and letw ∈ W and n ⩾ 1.
Then F, w ⊨ Wid•

n iff |A| ⩽ n for each irreflexive antichain A in F|w.

Proof Suppose thatM, w ⊭ Wid•
n for amodelM onF. BecauseM, w ⊨

∧
i⩽n3(pi

∧2¬pi), we have that for each i ⩽ n, M, ui ⊨ pi for an irreflexive point ui ∈ w↑.
Consider any i, j ⩽ n such that i ̸= j. BecauseM, w ⊭

∨
0⩽i ̸=j⩽n3(pi∧(pj∨3pj)),

it then follows from Rwui and M, ui ⊨ pi that M, ui ⊭ pj ∨3pj ; it further follows
from Rwuj andM, uj ⊨ pj thatM, uj ⊨ pj andM, uj ⊭ pi ∨3pi. So we have that
neither ui = uj norRuiuj norRujui. Hence {u0, . . . , un} is an irreflexive antichain
in F|w whose cardinality is greater than n.

Suppose that there is an irreflexive antichain {u0, . . . , un} in F|w. Let M =

⟨F, V ⟩ where V (pi) = ui for each i ⩽ n. It is easy to see thatM, ui ⊨ pi ∧2¬pi for
each i ⩽ n, and henceM, w ⊨

∧
i⩽n3(pi∧2¬pi). For each v ∈ w↑ and each i ⩽ n,

if M, v ⊨ pi, we know by definition of V that v = ui and M, v ⊭ pj ∨3pj for each
j ⩽ n with j ̸= i. Hence for each v ∈ w↑,M, v ⊭

∨
0⩽i ̸=j⩽n(pi ∧ (pj ∨3pj)), from

which it follows thatM, w ⊭
∨

0⩽i ̸=j⩽n3(pi∧(pj∨3pj)), and henceM, w ⊭ Wid•
n.
□

The following proposition is a direct consequence of Proposition 14.

Proposition 15 For each rooted transitive frame F and each n ⩾ 1, F ⊨ Wid•
n iff

|A| ⩽ n for each irreflexive antichain A in F.

4.2 Well-quasi-orders

Let A be any set. A binary relation R on A is a quasi-order iff it is reflexive
and transitive. Let ⪯ be a quasi-order on A. We say ⪯ is a well-quasi-order (in
short: wqo) iff every infinite sequence (ak)k∈ω of elements of A contains an infinite
subsequence (ak)k∈I⊆ω of it such that ai ⪯ aj for all i, j ∈ I with i < j.4 Note that
any quasi-order on A is wqo if A is finite, and that ⪯ is a wqo on any A′ ⊆ A if ⪯ is
a wqo on A. Let ⩽ be the usual less-than-order on ω. We fix a new order ≼ on ω as
follows: m ≼ n iff eitherm = n = 0 or 0 < m ⩽ n.

Fact 16 Both ⩽ and ≼ are wqo on ω.

The following lemma is from [8], and the reader can also refer to Lemma 2.6
in [6].

4Another well-known definition of well-quasi-order is as follows: ⪯ is a well-quasi-order iff every
infinite sequence (ak)k∈ω of elements of A contains two element ai, aj such that ai ⪯ aj with i < j.
These two definitions are equivalent, and a proof of their equivalence can be found in Lemma 2.5 in [6].
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Lemma 4 Let ⪯1 and ⪯2 be wqo on set A1 and A2 respectively, and let ⪯ be the
order onA1×A2 defined as follows: ⟨a1, a2⟩ ⪯ ⟨a′1, a′2⟩ iff a1 ⪯1 a

′
1 and a2 ⪯2 a

′
2.

Then ⪯ is a wqo on A1 ×A2.

Let A be any set. We use A∗ for set of all finite sequences (or strings) over A,
use ℓ(s) for the length of the sequence s, and for each i ⩽ k, we will use #i(s) for the
i-th member of s, starting from 0. For each n ⩾ 0, we fix Seq⩽n(A) = {s ∈ A∗ :

ℓ(s) ⩽ n}. Let ⪯ be a quasi-order on A. We define the orders ⊴ and ≪ on A∗ as
follows:

• for all s, t ∈ A∗, s ⊴ t iff ℓ(s) = ℓ(t), and for each i < ℓ(s), #i(s) ⪯ #i(t).
• for all s, t ∈ A∗ where s = (ai)i<k and t = (bi)i<n, t ≪ s iff eithern = k = 0,
or n ⩾ k > 0 and ak ⪯ bn and s ⊴ t′ for a subsequence t′ of t.

It is easy to see that both ⊴ and ≪ are quasi-orders on A∗. Furthermore, Lemma 4
can be applied to show the following Lemma by a trivial induction.

Lemma 5 If ⪯ is a wqo on A, then ⊴ is a wqo on Seq⩽n(A) for all n ⩾ 0.

The following theorem is a slightly stronger formulation of Theorem 3.2 in [6],
however the same proof can be applied here. A restricted version of the theorem,
where A is the set of natural number, is proved in [3] along the same line as [6].

Theorem 17. If ⪯ is a wqo on A, then ≪ is a wqo on A∗.

A tree is a pair ⟨T,≤⟩, in which T is a nonempty set and ≤ is a partial ordering
on T satisfying downward connectedness (∀m∀m′∃w(w ≤ m ∧ w ≤ m′)) and no
downward branching (∀m∀w∀w′(w ≤ m ∧w′ ≤ m → w ≤ w′ ∨w′ ≤ w)). w < u

is introduced as w ≤ u ∧ w ̸= u. Let T = ⟨T,≤⟩ be any tree. Note that the set
ancT(w) = {u ∈ T : u ≤ w} is a chain under ≤, and a finite tree always has a
unique root. We use dom(T) for the domain of T, and use root(T) for the root of T
when it exists. For any w ∈ T , the level of w in T is levT(w) = |ancT(w)|, the set of
immediate successors of w is sucT(w) = {u ∈ T : w < u∧¬∃v(w < v < u)}, and
the height of T is heit(T) = max{levT(w) : w ∈ T}. Given a set Σ of labels, a Σ-
tree is a pair ⟨T, τ⟩, whereT is a tree and τ is a labeling function onT from dom(T) to
Σ. Let t = ⟨T, τ⟩ be anyΣ-tree whereT = ⟨T,≤⟩. AΣ-tree t is finite if its underlying
treeT is finite, and the height (domain, root, etc.) can be level up toΣ-trees from their
underlying trees naturally. For each∆ ⊆ Σ, dom(t)∆ = {w ∈ dom(t) : τ(w) ∈ ∆},
and we use dom(t)l for dom(t){l}.

In the following, we consider only finite ω-trees, and use Tω for the set of all
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finite ω-trees. For eachm,n ⩾ 1, we fix

Tω
=m,<n = {t ∈ Tω : heit(t) = m ∧

∣∣dom(t)0
∣∣ < n},

Tω
⩽m,<n =

⋃
1⩽i⩽n

Tω
=m,<n.

Note that Tω
=1,<n = Tω

⩽1,<n and all ω-trees in them have only one node, i.e. the root.
It is convenient for our discussion to represent a Σ-tree t = ⟨T, τ⟩ as the following
triple:

t = ⟨(root(t), τ(root(t))) , (t1, . . . , tm) , (tm+1, . . . , tm+n)⟩ , (3)

where

• t1, . . . , tm are all subtrees of t generated by an element of
{w ∈ suct(root(t)) : τ(w) = 0},

• tm+1, . . . , tm+n are all subtrees of t generated by an element of
{w ∈ suct(root(t)) : τ(w) > 0},

• τm+n(root(tm+n)) = min{τi(root(ti)) : m ⩽ i ⩽ m+n}, in which τi is the
labeling function in ti.

We call the triple above a standard representation triple of t. Note that the last two
elements of a standard representation triple could be the empty sequence, such as
when the represented tree has only one-node. Recall thatm ≼ n iff eitherm = n = 0

or 0 < m ⩽ n. We define ⊑ on Tω inductively as follows:

(i) for any ω-tree t = ⟨(r, s) , () , ()⟩ and any ω-tree t′, t ⊑ t′ iff t′ is a one-node
tree and s ≼ τ ′(root(t′)), where τ ′ is the labeling function in t′;

(ii) for any ω-tree t = ⟨(r, s) , (t1, . . . , tm) , (tm+1, . . . , tm+n)⟩ and any ω-tree t′ =〈
(r′, s′) , (t′1, . . . , t

′
k) ,

(
t′k+1, . . . , t

′
k+l

)〉
, t ⊑ t′ iff s ≼ s′, and

(a) m = k and for each 1 ⩽ i ⩽ m, ti ⊑ t′i;
(b) either l = n = 0, or l ⩾ n > 0 and tm+n ⊑ t′k+l and there are

jm+1, . . . , jm+n such that k + 1 ⩽ jm+1 < · · · < jm+n ⩽ k + l,
and th ⊑ t′jh for each h withm+ 1 ⩽ h ⩽ m+ n.

Note that if we replace ⊑ with ⪯ in (a) and (b), then they become the exactly same
as definition of ⊴ and definition of≪ respectively.

Theorem 18. For all m,n ⩾ 1, ⊑ is a wqo on Tω
⩽m,<n.

Proof It suffices to show that for all m,n ⩾ 1, ⊑ is a wqo on Tω
=m,<n. We

prove it by induction on m. The base case (m = 1) holds because of Fact 16.
Consider m = k + 1. Suppose that for all n ⩾ 1, ⊑ is a wqo on Tω

=k,<n. Let
n ⩾ 1 and let (ti)i∈ω be any infinite sequence of elements from Tω

=k+1,<n, where
ti =

〈
(ri, si) ,

(
ti1, . . . , t

i
mi

)
,
(
timi+1, . . . , t

i
mi+ni

)〉
for each i ∈ ω. We have by

Fact 16 that there is an infinite subsequence (ti)i∈I1 of (ti)i∈ω such that (si)i∈I1
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is an infinite ≼-chain. Since
∣∣dom(ti)

0
∣∣ < n for each i ∈ ω, there is an infinite

subsequence (ti)i∈I2 of (ti)i∈I1 such that mi = mj for all i, j ∈ I2. It then fol-
lows from Lemma 16 and supposition that there is an infinite subsequence (ti)i∈I3
of (ti)i∈I2 such that for each i < j ∈ I3, mi = mj and for each 1 ⩽ h ⩽ mi,
tih ⊑ tjh. Apply Theorem 17 and supposition, we obtain that there is an infinite sub-
sequence (ti)i∈I4 of (ti)i∈I3 such that for each i < j ∈ I4, either ni = nj = 0,
or nj ⩾ ni > 0 and timi+ni

⊑ tjmj+nj
and there are jmi+1, . . . , jmi+ni such that

mj + 1 ⩽ jmi+1 < · · · < jmi+ni ⩽ mj + nj , and tih ⊑ tjjh for each h with
mi+1 ⩽ h ⩽ mi+ni. By definition of⊑, (ti)i∈I4 is an infinite⊑-chain, and hence
we have that for all n ⩾ 1, ⊑ is a wqo on Tω

=k+1,<n. □

4.3 Finite Axiomatizability

Recall that a transitive logic is of weak width 1 if it contains Wid+
1 . In the

subsection, we show the finite axiomatizability of all transitive logics of finite depth
and of finite weak width 1 that contains Wid•

n for an n ⩾ 1 (Theorem 20).
Let F = ⟨W,R⟩ be a transitive frame. Then sk(F) = ⟨sk(W ), sk(R)⟩ is the

skeleton of F, where sk(W ) is the set of clusters in F, and for all c,d ∈ sk(W ),
⟨c,d⟩ ∈ sk(R) iff Rwu for some w ∈ c and u ∈ d (in fact, iff Rwu for all w ∈ c and
u ∈ d). For any binary relationR on a setW , we useR∗ for the reflexive closure ofR,
i.e.,R∪{⟨w,w⟩ : w ∈ W}, and useR−1 for the inverse ofR, i.e., {⟨w, u⟩ : ⟨u,w⟩ ∈
R}. We fix sk(F)∗ = ⟨sk(W ), sk(R)∗⟩ and sk(F)−1 =

〈
sk(W ), (sk(R)∗)−1

〉
.

Let F = ⟨W,R⟩ be any finite transitive frame for Wid+
1 such that sk(F)−1 is a

finite tree. The representation tree of F is the following ω-tree:

rt(F) =
〈
sk(F)−1, τ

〉
, (4)

where for each c ∈ sk(W ), τ(c) = |c| if c is a nondegenerate cluster in F, otherwise
τ(c) = 0.

Lemma 6 For any finite transitive frames F andG for Wid+
1 such that sk(F)−1 and

sk(G)−1 are finite trees, if rt(F) ⊑ rt(G), then G is reducible to F.

Proof Weprove it by induction on the height of rt(F). Let rt(F) =
〈
sk(F)−1, τ

〉
and

rt(G) =
〈
sk(G)−1, σ

〉
, and suppose that rt(F) ⊑ rt(G). Consider heit(rt(F)) = 1.

By definition of ⊑, we have that

heit(rt(G)) = 1 and (5)
τ(root(sk(F)−1)) ≼ σ(root(sk(G)−1)). (6)

By (5), both F and G are universal frames, i.e., containing only one cluster. Assume
that c and d is the unique cluster in F and G, respectively. It follows from (6) that
τ(c) ≼ τ(d). By definition of ≼, either τ(c) = τ(d) = 0 or 0 < τ(c) ⩽ τ(d). If
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the former holds, then we have by (4) that both c and d are degenerate clusters; if
the latter holds, then we have by (4) that both c and d are nondegenerate clusters and
|c| < |d|. In either case, there is a function f from d onto c that reduces G to F.

Considerheit(rt(F)) = k. Let rt(F) = ⟨(r, s) , (t1, . . . , tm) , (tm+1, . . . , tm+n)⟩
and rt(G) =

〈
(r′, s′) , (t′1, . . . , t′k) ,

(
t′k+1, . . . , t

′
k+l

)〉
. Since rt(F) ⊑ rt(G), we have

that

(i) s ≼ s′,
(ii) m = k and for each 1 ⩽ i ⩽ m, ti ⊑ t′i,
(iii) either l = n = 0, or l ⩾ n > 0 and tm+n ⊑ t′k+l and there are jm+1, . . . , jm+n

such that k + 1 ⩽ jm+1 < · · · < jm+n ⩽ k + l, and th ⊑ t′jh for each h with
m+ 1 ⩽ h ⩽ m+ n.

Apply the same reason as the base case, we have by (i) that there is a function f from
r′ onto r such that f reduces G ↾ r′ to F ↾ r. Since heit(rt(F)) = k, the heights of
t1, . . . , tm, tm+1, . . . , tm+n are all less than k, and hence by (ii), (iii) and induction
hypothesis, we have that for each 1 ⩽ i ⩽ m, there is a function fi that reduces
G ↾ (

⋃
dom(t′i)) to F ↾ (

⋃
dom(ti)), and for each h with m + 1 ⩽ h ⩽ m + n,

there is a function fh that reduces G ↾ (
⋃
dom(t′jh)) to F ↾ (

⋃
dom(th)). Let ¬J =

{k + 1, . . . , k + l} − {jm+1, . . . , jm+n}. It follows from (iii) that tm+n ⊑ t′k+l, and
hence |root(tm+n)| ≼

∣∣root(t′k+l)
∣∣. We then have by (3) that 0 < |root(tm+n)| ⩽

min{
∣∣∣root(t′j)∣∣∣ : j ∈ ¬J}, and thus root(tm+n) and elements of {root(t′j) : j ∈

¬J} are nondegenerate clusters. Let g be any function from
⋃⋃

j∈¬J dom(t′j) onto⋃
dom(tm+n) such that g[root(t′j)] = root(tm+n) for each j ∈ ¬J . This is possible

because of |root(tm+n)| ⩽ min{
∣∣∣root(t′j)∣∣∣ : j ∈ ¬J}. It is easy to see that g

reduces G ↾ (
⋃⋃

j∈¬J dom(t′j)) to F ↾ (
⋃

dom(tm+n)). Finally, let h = f ∪ g ∪
{fi}1⩽i⩽m+n. It is routine to check that h reduces G to F. □

Recall that for each nonemptyX ⊆ W , we use F ↾ X for the restriction of F to
X . Apply Proposition 10, the following fact is easily verifiable.

Fact 19 Let F = ⟨W,R⟩ be any rooted finite transitive frame for Wid+
1 , and let c

be the initial cluster in F. Then there are disjoint subframes F1, . . .Fn of F such that
F ↾ (c↑−) =

⊎
1⩽i⩽n Fi and sk(Fi)

−1 is a finite tree for each 1 ⩽ i ⩽ n.

Let F = ⟨W,R⟩ be any rooted finite transitive frame for Wid+
1 and let c be the

initial cluster in F. According to Fact 19, there there are disjoint subframes F1, . . .Fh

of F such that F ↾ c↑− =
⊎

1⩽i⩽h Fi and sk(Fi)
−1 is a finite tree for each 1 ⩽ i ⩽ h.

Let T = {rt(F1), . . . , rt(Fh)}, and assume that {t1, . . . , tm} = {t ∈ T : t = ⟨T, τ⟩∧
τ(root(t)) = 0} and {tm+1, . . . , tm+n} = {t ∈ T : t = ⟨T, τ⟩ ∧ τ(root(t)) > 0}
with τm+n(root(tm+n)) = min{τi(root(ti)) : m ⩽ i ⩽ m+ n}, in which τi is the
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labeling function in ti. The standard representation tree of F is the following ω-tree:

srt(F) = ⟨(c, τ(c)) , (t1, . . . , tm) , (tm+1, . . . , tm+n)⟩ ,

where for each c ∈ sk(W ), τ(c) = |c| if c is a nondegenerate cluster in F, otherwise
τ(c) = 0. Note that for any finite transitive frame F that both srt(F) and rt(F) are
well-defined, they are always different from each other, since the root of srt(F) is the
initial cluster in F and the root of rt(F) is the final cluster in F. Apply Lemma 6, the
following Lemma can be proved in a similar way as the inductive case in Lemma 6.

Lemma 7 Let F and G be finite transitive frames for Wid+
1 , and let srt(F) ⊑

srt(G). Then G is reducible to F.

Lemma 8 Let n, k ⩾ 1 and let (Fk)k∈ω be an infinite sequence of finite rooted
transitive frames for Wid•

k of rank at most m and of weak width 1. Then there is an
infinite I ⊆ ω such that for all i, j ∈ I with i < j, Fj is reducible to Fi.

Proof Since each Fi is a frame for Wid•
k of rank at most m, we have by Proposi-

tion 14 that there are at most m × k degenerate clusters in Fi, and hence srt(Fi) ∈
Tω
⩽m,<m×k+1 for each i ∈ ω. We then obtain by Theorem 18 that there is an infinite

I ⊆ ω such that (srt(Fi))i∈I is an infinite ⊑-chain, and hence by Lemma 7, Fj is
reducible to Fi for all i, j ∈ I with i < j. □

Theorem 20. For all n, k ⩾ 1, all extensions ofK4Bn⊕{Wid+
1 ,Wid•

k} are finitely
axiomatizable, and are hence decidable.

Proof Let L = K4Bn ⊕ {Wid+
1 ,Wid•

k} with n, k ⩾ 1. By Theorem 2, all exten-
sions of L have the f.m.p. To show that all extensions of L are finitely axiomatizable,
it then suffices by Theorem 9 to let {Fi}i∈ω be any infinite sequence of finite rooted
frames for L and show that it is not irreducible. For each i ∈ ω, because Fi is a frame
for Bn and Wid+

1 , it is clear by Propositions 1 and 10 that Fi is of rank at most n and
of weak width 1. Then by Lemma 8, Fj is reducible to Fi for some i, j ∈ ω with
i < j, and hence {Fi}i∈ω is not irreducible. □

Since S4Bn is an extension of K4Bn ⊕ {Wid•
k} for all n, k ⩾ 1, the following

Corollary follows immediately from Theorem 20:

Corollary 2 For all n ⩾ 1, all extensions of S4Bn ⊕ {Wid+
1 } are finitely axioma-

tizable, and are hence decidable.

5 Conclusion

In this paper, we proved as our negative result that there are non-finitely-axioma-
tizable extensions of K4Bn ⊕ Wid+

k for all n ⩾ 3 and k ⩾ 2, by a way of con-
structing infinite irreducible sequences of finite rooted transitive frames of depth
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3 and of weak width 2. As our positive result, we showed that all extensions of
K4Bn ⊕ {Wid+

1 ,Wid•
k} are finitely axiomatizable for all n, k ⩾ 1, by a way of ap-

plying wqo on finite height ω-trees. It is known from [11] that there are non-finitely-
axiomatizble extensions ofK4Bn⊕Wid•

k for alln ⩾ 3 and k ⩾ 1. Therefore formulas
Wid+

1 play an essential role in our finite axiomatizability result. However, the follow-
ing problem still remains open: for each n ⩾ 1, are all extensions of K4Bn ⊕ Wid+

1

finitely axiomatizable? Finally, since the infinite irreducible sequences of frames con-
structed in section 3 don’t validate any formula Wid•

k. So the following problem is
unsettled: for each n, k ⩾ 1 andm ⩾ 2, are all extensions ofK4Bn⊕{Wid+

m,Wid•
k}

finitely axiomatizable?
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深度和弱宽度有穷的传递逻辑的有穷可公理化

张炎

摘 要

这篇文章研究深度和弱宽度都有穷的传递逻辑类的可有穷公理化问题，并给

出了正反两方面的结论。在正面方面，本文证明了对每个深度有穷且弱宽度为 1

的传递逻辑 L，如果 L的框架中反链的禁自返点基数都不大于某个自然数 n，那

么 L是有穷可公理化的。对于反面结论，本文证明了对任意 n ⩾ 3和 k ⩾ 2，存

在深度为 n且弱宽度为 k的传递逻辑是不可有穷公理化的。
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