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Finite Axiomatizability of Transitive Logics of Finite
Depth and of Finite Weak Width*

Yan Zhang

Abstract. This paper presents a study of finite axiomatizability of transitive logics of finite
depth and finite weak width. We prove the finite axiomatizability of each transitive logic of
finite depth and of weak width 1 that are characterized by rooted transitive frames in which all
antichains contain at most n irreflexive points. As to negative results, we show that there are
non-finitely-axiomatizble transitive logics of depth n and of weak width k for each n > 3 and
k>2.

It is well known from [9] that all transitive logics of finite depth have the finite
model property(f.m.p.). In [11], the authors prove the finite axiomatizability of tran-
sitive logics of finite depth that are characterized by frames with an upper-bounded
number of equivalence classes modulo the relation of having the same proper succes-
sors. This result implies the finite axiomatizability of transitive logics of finite depth
and of finite width (in the sense of [5]), that of transitive logics of depth at most 2,
and that of weakly convergent transitive logics of depth at most 3, etc.

This paper presents a study of finite axiomatizability of transitive logics of fi-
nite depth and of finite weak width, i.e., containing a weak width formula Wid;!" for
some n > 1. These formulas are weaker forms of width formulas in [5], and each
Wid," (n > 1) corresponds to the condition within rooted transitive frames that all
subframes generated by some proper successor of a root are at most width n. As a
negative results, we show that there are non-finitely-axiomatizble transitive logics of
depth n and of weak width k£ for each n > 3 and k£ > 2, by a way of construct-
ing infinite irreducible sequences of frames. As a positive result, we prove the finite
axiomatizability of each transitive logic of finite depth and of weak width 1 that con-
tains Wid;, for an n > 1, in which Wid;, corresponds to the condition within rooted
transitive frames that each antichain in them contains at most n irreflexive points.
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Section 1 provides preliminary notions and facts, and section 2 gives criteria of
finite axiomatizability of transitive logics whose extensions all have the fm.p. In
section 3, we introduce transitive logics of finite depth and of finite weak width, and
prove the non-finite-axiomatizability result. We then present in section 4 our main
result of finite axiomatizability of transitive logic of finite depth and of weak width
1, and concludes the paper in section 5.

1 Preliminaries

This section lists some standard preliminary notions and theorems, and a full
account can be found in standard modal logic textbooks (e.g., [1, 2]). Modal for-
mulas are built up from propositional variables, using truth-functional operators and
the necessity operator 0. We will simply call them formulas. A normal modal logic
(or simply modal logic) is a set of modal formulas that contains all truth-functional
tautologies and O(p — ¢) — (Op — Og), and is closed under modus ponens, sub-
stitution and necessitation. As usual, we use K (K4) for the smallest modal logic
(containing Op — OOp). For each modal logic L, an extension of L is a modal logic
L’ such that L C L’. Let L be any modal logic and let A be any set of formulas,
L & A is the smallest modal logic including L. U A; and for each formula ¢, we use
L@ ¢ for LB {¢}. Asusual, we use S4 for K4@ Op — p. A modal logic L is finitely
axiomatizable over L if L' = L @ A for a finite A, and is finitely axiomatizable if it
is finitely axiomatizable over K.

Let § = (W, R) be any frame with w € W, and let 9t be any model on §. For
each formula ¢, we use 9, w F ¢ for that 9 satisfies ¢ at w, use §F, w F ¢ for that
M, w E ¢ for each model M on F, and use F = ¢ for that ¢ is valid in § (F is a frame
for ¢). For any set A of formulas, and any class € of frames, the validity-relation
F between them are defined as usual, and we will use Log(%’) for the modal logic
{¢ : € F ¢}. Forall u,v € W, let Ruv iff Ruv but not Rvu,and letu Lg v
iff neither Ruv nor Rvu. For all u,v € W, when Ruv, we say that u sees v, and
call v a successor of u; and when Ruv, wecall va proper successor of u, and u a
proper predecessor of v. Foreach X C W, let X1p = {v : Ruv forau € X},
Xlp={v:Rvuforaue X}, X1, = X1tp—Xand X|, = X|p — X. When
R is clear in the context, we drop “r” and use “ X1” and “ X ]” instead. For each
we W, let wt ={w}t, wl ={w}ll, wt™ ={w}t” and w]™ ={w}l".

For each family {§;}icr ({9M;}icr) of pairwise disjoint frames (models), we
use [d);c; 8 (4, M) for the disjoint union of {F;}icr ({M;}ier). For each frame
§ = (W, R) and each model 9% on §, and for each nonempty X C W, weuse § | X
(M | X) for the restriction of § () to X, and use §|x (M| x) for the subframe of
T (submodel of 9t) generated by X; and when X = {w}, we use §|,, and 9|,, for
5 {w) and M| {w) respectively. For frames § and & (models 91 and M), we say that
a function f reduces F (IN) to & (M’) when f is a reduction of F (M) to & (M'); and
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that § (9N) is reducible to & (M) if a function reduces F (M) to & (IMN'). We assume
the reader’s familiarity with the related theorems on preservation of truth and validity
under these frame/model constructions.

Let § = (W, R) be a transitive frame. For all w,u € W, w ~pg wu iff either w =
u, or Rwu and Ruw. A cluster in § is an equivalence class modulo ~ . Foreachw €
W, we use ¢y, for the cluster containing w. For each cluster ¢ in §, ¢ is degenerate
if it is a singleton of an irreflexive point in §, otherwise, it is nondegenerate. Let
k > 1. A point uy in § is of rank greater than k if there is an R-chain {u1,...,un}
with n > k, and is of rank k if there is an R-chain {u,...,u;} and u; is not of
rank greater than k. § is of rank k if it contains a point of rank k£ but no point of rank
greater than k, and is of finite rank if it is of rank k for some £ > 1. The following
formulas are from [9], where ¢ > 1:

By = <¢0p1 — p1,
Bit1 = O(Opiy1 A =Bi) = pitr.
We use K4B,, (S4B,, ) for K4 © B,, (S4 @ B,,), where n > 1. A transitive logic is of’

depth n (n > 1) if it contains B,, but not B,,_; (it is assumed that By = 1), and is of
finite depth if it contains By, for a £ > 1. The following are established in [9]:

Proposition 1 For each transitive frame § and each n > 1, § F B, iff § is of rank
at most n.

Theorem 2. All transitive logics of finite depth have the f.m.p.

An antichain in a transitive frame § = (W, R) is a nonempty A C W such
that for all u,v € A, u # v only if u L g v. Whenever we speak of an antichain
{ug,...,u,} in a frame, we presuppose that ug,...,u, are distinct. A transitive
frame is of width at most n (n > 1) if |A|] < n for each antichain A in the frame. The
following formulas are from [5], where n > 1:

Wid, = A, Opi — Vogz‘;éjgno(]’i A (pj V ©pj)).

A transitive logic is of width n (n > 1) if it contains Wid,, but not Wid,,_ (it is
assumed that Widg = 1), and is of finite width if it contains Widy, fora k > 1. The
following proposition is from [5]:

Proposition 3 For each rooted transitive frame § and each n > 1, § F Wid,, iff §
is of width at most n.

2 Ciriteria of Finite Axiomatizability

In this section, we present necessary and sufficent conditions for all extensions
of a modal logic L to be finitely axiomatizable over L. For each family {L;};c; of
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modal logics, ), ; L; is the smallest modal logic including | J
is a well-known theorem from Tarski (see, e.g., [2]):

;er Li- The following

Theorem 4. Let L and L be any modal logics such that L. C L'. Then L is finitely
axiomatizable over L iff there is no infinite ascending C-chain Lo C Ly C Ly C - --
of extensions of L such that L' = @, L.

Let {J; }icw be any infinite sequence of frames. {F; }icw is backward irreducible
(forward-backward irreducible, or simply irreducible) if for all 1,5 € I with¢ < j
(¢ # j), no point-generated subframe of §; is reducible to §;. For each class ¢
of frames, {§;}icw is a backward irreducible (or irreducible) sequence w.rt. € if
{Fi}iew is backward irreducible (or irreducible) and §; € € for each i € w. A modal
logic L is characterized by a class € of frames if L = Log(%).

The following theorem provides a sufficient condition of finite axiomatizability
in terms of backward irreducible sequences, and is proved by applying Theorem 4.

Theorem 5. Let L be a modal logic, and let € be a class of frames for L such that
each extension of L is characterized by a subclass of €. Then all extensions of L are
finitely axiomatizable over L if there is no backward irreducible sequence w.r.t. €.

Proof Suppose that L' extends L but is not finitely axiomatizable over L. By Theo-
rem 4, there is an infinite ascending C-chain Ly C L; C - - - of extensions of L, and
then for each i € w, there is a ¢; € L;+1 — L;, and hence by hypothesis, §; ¥ ¢; for
a member §; of € such that §; F L;, which implies that for each i, j € w withi < j,
§i ¥ ¢i and §; ¥ ¢;. Therefore, {§;}ic., is a backward irreducible sequence w.r.t.
€. O

From now on, whenever we speak of an backward irreducible (or irreducible)
sequence of such and such frames (for L), we mean an backward irreducible (or ir-
reducible) sequence w.r.t. the class of such and such frames (for L). The following
corollary is often applied in studies of finite axiomatizability of modal logics whose
extensions have the fm.p. (see, e.g., [3], [7] and [10])

Corollary 1 Let L be any modal logic whose extensions all have the f.m.p. Then all
extensions of L are finitely axiomatizable over L if there is no backward irreducible
sequence of finite rooted frames for L.

Proof Let & be the class of finite rooted frames for L. It follows from hypothesis
that each extension of L is characterized by a subclass of 4. Hence the conclusion
follows from Theorem 5. O

In the following, we prove the converse of Corollary 1, and combined it with
Corollary 1 to get our final criterion of finite axiomatizability in terms of (backward)
irreducible sequences. Let § = (W, R) be a finite rooted transitive frame, where
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W = {wy, ..., wy,} with wy to be a root of §, and wy, . . . , w, to be all distinct. We
call (wo, ..., wy) an ordering of points in §. Let po, . . ., p, be distinct propositional
letters, and let us call a conjunction of the following formulas a frame formula for §
w.rt. (wg, ..., Wy):

* Do,

« O(po V-V pn),

* M(pi = —p;) ANDO(pi — —p;) : i, <nandi # j},

* A{(pi = Opj) AO(p; = ©pj) : 4,5 < nand Rw;w; },

* NMpi = ~Cp;) AO(pi = —~Opj) 14, < nand not Rw;w; }.

A frame formula® for § is a frame formula for § w.r.t. an ordering (uq, ..., u,) of
points in §, where ug is a root.

Lemmal LetF = (W, R) be a finite rooted transitive frame, for which ¢ is a frame
formula w.r.t. an ordering (wy, . . ., w,) of points in §. Then ¢ is satisfiable in § at its
root wg.

Proof Let 9 = (F,V) where V(p;) = {w;} for each i < n. It is routine to check
that 91, wy & ¢. O

The following is Lemma 3.20 from [1], and the proof is left to the reader.

Lemma 2 Let § be a finite rooted transitive frame, for which ¢ is a frame formula,
and let & = (U, S) be any transitive frame with u € U. Then ¢ is satisfiable in & at
u iff &|,, is reducible to .

Proposition 6 Let {J;}ic. be an irreducible sequence of finite rooted transitive
frames. Then there is a continuum of extensions of L = Log({F; }icw)-

Proof For eachi € w, let ¢; be a frame formula for §;; and for each I C w, let
L; = Log({Ji}icr). Considerany I, .J C w such that thereisan i € I — J. For each
k € J, because i # k, ¢; is by hypothesis and Lemma 2 not satisfiable in §, and
hence §; F —¢;. It then follows that —=¢; € L;. By Lemma 1, §; ¥ —¢;, and then
—¢; ¢ Ly, and hence L; # L. A similar argument shows that L; # L if there is
ajeJ—1. HenceL; # Ljforall I,J C wsuch that I # J. It then follows that
there is a continuum of extensions of L. ([l

For each frame § = (W, R), we use ||§|| for [IW|. The following is easily veri-
fiable:

'A frame formula for § is also known as a Jankov-Fine formula for § (see [1]). The term “frame
formula” goes back to [4].
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Fact 7 Let {F;}icw be an infinite sequence of frames such that for an m > 1,
|§i]| < m for all i € w. Then there is an infinite / C w such that all frames in
{T:}ier are isomorphic.

Proposition 8 Each infinite backward irreducible sequence of finite frames has an
infinite irreducible subsequence.

Proof Let {§;}ic., be a backward irreducible sequence of finite frames. By Fact 7,
there is no m € w such that ||§;|| < m for all i € w. Then there is an infinite I C w
such that for all 4, j € I withi < j, ||§]| < [|§;||, and hence no point-generated
subframe of §; is reducible to §;. It then follows that {F; }ic; is irreducible. O

Theorem 9. Let L be a transitive logic whose extensions all have the f-m.p. Then the
following are equivalent:*

(i) all extensions of L are finitely axiomatizable over L;
(ii) there is no infinite backward irreducible sequence of finite rooted frames for L;
(iii) there is no infinite irreducible sequence of finite rooted frames for L.

Proof By definition of irreducible sequences and Proposition 8, (ii) is equivalent to
(ii1). According to Corollary 1 and Proposition 6, we have that (ii) implies (i) and (i)
implies (iii), and hence (i) is equivalent to (ii). (I

3 Transitive Logics of Finite Depth and of Finite Weak Width

In this section, we present weak width formulas Wid,} (n > 1), discuss their
frame conditions, and then show that there are non-finitely-axiomatizble extensions
of K4B,, ® Wid: whenever n > 3 and k > 2.

For each n > 1, let Wid," be the following formula:

Wid) = g A O(87¢ A (N, OPi)) = Voocinjen© @i A (D5 V ©py)).-

A transitive logic is of weak width n (n > 1) if it contains Wid;| but not Wid" ,,
and is of finite weak width if it contains VVidkF forak > 1.

Proposition 10 Let § = (W, R) be a transitive frame, and let w € W and n > 1.
Then §, w F Wid iff for each u with Rwu, |, is of width at most 7.

Proof Suppose that 90T, w ¥ Wid| for a model 9 on §. Because M, w F g A
O(B2g A (N\i<p,©pi)), there is a u € w1 such that M, u F O-q A (A, Opi), and

i<n

2Since a continuum of extensions of L can be constructed from an infinite irreducible sequence of
finite rooted frames for L, we also have the following equivalences: there is a continuum of non-finitely-
axiomatizble extensions of L iff there is an infinite backward irreducible sequence of finite rooted frames
for L iff there is an infinite irreducible sequence of finite rooted frames for L.



22 Studies in Logic, Vol. 12, No. 3 (2019)

then ﬁwu, and for each ¢ < n, M, v; F p; forav; € ut. Consider any 7,57 < n
such that ¢ # j. Because M, w ¥ o, .;,O(pi A (pj V Opj)), and because Rwv;
by the transitivity of R, it then follows that 91, v; & p; and 9, v; ¥ p; V Opj, and
M, v; F p; and M, v; ¥ p; V Op;, and then neither v; = v; nor Rv;v; nor Rvjv;.
Hence {vo,...,v,} is an antichain, and then §|,, is of width greater than n because
{vo,..., v} C ut.

Suppose that there is a u € ¢(,,yT™ such that |, is of width greater than n. Then
there is an antichain {vp, ..., v,} C ut. Let M = (F, V) where V(¢) = {w}, and
V(pi) = v; for each i < n. Since Rwu and {vo,...,vn} C uf, it is easy to see
that M, u F O-q A (\;<,,Opi), and then M, w F g A O(O=g A (A, Opi)). For
each v € w1 and each i < n, if M, v F p;, we know by definition of V' that v = v,
and M, v ¥ p; vV Op; for each j < n with j # 4. Hence for each v € w1, M, v ¥
Vo<izj<n(Pi A (pj V ©Opj)), from which it follows that M, w ¥ Vo, ic,, O(pi A
(p; V ©pj)), and hence 9, w ¥ Wid;}. O

In what follows, we show that there are non-finitely-axiomatizble extensions of
K4B, & Wid,‘: whenever n > 3 and k£ > 2, by way of constructing irreducible
sequences of finite rooted transitive frames of rank 3.

We now construct irreducible sequences of finite rooted transitive frames of rank
3, in each of which all points of rank 2 have exactly two proper successors. For each
n€w,letB, ={X € Z2(C,) : |X| =2}, where C), = {k : k < n+ 1}, and let
n = (Wy, Ey,), where

W, ={a}UB,UC,,

E, ={{a,u) :u € B,UC,}U{(b,c) € B, x Cy : c €b}.
It is easy to see that for each n € w and in each of §3,,, a is of rank 3, and members
of B,, are of rank 2 while those of C), are of rank 1. Note that for each n € w, 9,, is

a finite strict partial order. Since all points of rank 2 in these frames have exactly two
proper successors, the following Fact holds:

Fact11 Foreachn > 2, VVid;r is valid in all members of {$);, } new-

In our proof of Lemma 3, we make use of the following simple fact about reduc-
tion:

Fact 12 Let f be a reduction of § to &, where both § and & are transitive, and let
w be a point in §. Then the following hold:

(i) w is a dead-end in § iff f(w) is a dead-end in &;

(if) for eachn > 1, if f(w) is of rank n in &, then w is of rank at least n in §.

Lemma3 {9, },c, is irreducible.
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Proof Letk,n € wwith k& < n. We only show that §),, is not reducible to £y, the
other direction is trivial because |IWj| < |W,|. Let us use R for E,, and S for E},. By
definition, b1y = b for each b € B,,, and hence by hypothesis,

btr = bforeachb € B,,. (1

Suppose for reductio that f reduces ), to . It follows from Fact 12 that f(a) = a,
f[Br] = By and f[C),] = Cy. Since k < n, C, C C,, and then there are distinct
¢, d € Oy such that f(c) = f(¢). Letb = {c,c'} € B,. Then f(b) = {v,v'} € By
for some distinct v, v" € C},. By definition,

Sf(b)v, Sf(b)v and f(b) # v, v’ (2)

Since f(c) = F(¢), either v # f(e), f(¢) or ¢/ £ f(e), f(¢). Ifv # f(e), F(),
then by (1) and (2), Sf(b)v but f(u) # v for each u € bty = {c, '}, contrary to
the supposition that f reduces $),, to . By the same token, if v’ # f(c), f(¢/), then
Sf(b)v' but f(u) # v for each u € by, contrary to the supposition again. O

Theorem 13. Letn > 3 and k > 2. There are non-finitely-axiomatizble extensions
of K4B,, ® Wid; .3

Proof By Proposition 1 and Fact 11, we have that for each n € w, ), is a frame for
K4B,, & Wid:. It then follows from Lemma 3 and Theorem 9, there are non-finitely-
axiomatizble extensions of K4B,, & Wid; . O

4 Finite Axiomatizability of Transitive Logics of Finite Depth and of
Weak Width 1

Consider the following formulas, where n > 1:

Wid), = Aic,, @0 A O=0i) = Vocizjcn Qi A (95 V Opj)).

In this section, we discuss the frame conditions for Wid;, with n > 1, provide a
study of well-quasi-orders on trees, and then prove the finite axiomatizability of each
transitive logic of finite depth and of weak width 1 that contains Wid;, forann > 1.

4.1 Transitive Frames for Wid,

Let § = (W, R) be any frame, and let A be an antichain in §. We say A is
irreflexive if for all w € A, Rww fails.

3 According to footnote 2, we can actually show that there is a continuum of extensions of K4B,, ©
Widz whenever n > 3 and k > 2.
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Proposition 14 Let § = (IV, R) be any transitive frame, and let w € W andn > 1.
Then §, w E Wid} iff |A| < n for each irreflexive antichain A in §/,.

Proof Suppose that 90, w ¥ Wid}, foramodel 9T on §. Because M, w F A, O (p
AO=p;), we have that for each ¢ < n, M, u; F p; for an irreflexive point u; € wt.
Considerany 4, j < nsuchthati # j. Because M, w ¥ Ve, 2, O (piA(p; VD)),
it then follows from Rwu; and 9, u; F p; that I, u; ¥ p; V Opj; it further follows
from Rwu; and M, u; = p; that I, u; F p; and M, u; ¥ p; V Op;. So we have that
neither u; = u; nor Ru;uj nor Ruju,;. Hence {uo, . .., uy} is an irreflexive antichain
in §|,, whose cardinality is greater than n.
Suppose that there is an irreflexive antichain {ug, ..., u,} in §|y. Let M =
(&, V) where V (p;) = u; for each i < n. It is easy to see that 9, u; = p; A O-p; for
each i < n, and hence M, w = A\, O(pi AO-p;). Foreachv € wt and eachi < n,
if M, v F p;, we know by definition of V' that v = w; and 9, v ¥ p; vV Op; for each
J < nwith j # 4. Hence foreach v € wt, MM, v ¥ Vo, 1ic,(pi A (pj V Opj)), from
which it follows that M, w ¥ /o, 5, C(piA(p;VOp;)), and hence I, w ¥ Wid;,.
O

The following proposition is a direct consequence of Proposition 14.

Proposition 15 For each rooted transitive frame § and each n > 1, § F Wid? iff
|A| < n for each irreflexive antichain A in §.

4.2 Well-quasi-orders

Let A be any set. A binary relation R on A is a quasi-order iff it is reflexive
and transitive. Let < be a quasi-order on A. We say < is a well-quasi-order (in
short: wgqo) iff every infinite sequence (ay)xe,, of elements of A contains an infinite
subsequence (ag)kerc., of it such that a; < a; foralld,j € I withi < j.* Note that
any quasi-order on A is wqo if A is finite, and that < is a wgo on any A’ C A if < is
awgqgo on A. Let < be the usual less-than-order on w. We fix a new order < on w as
follows: m < niffeitherm =n=00r0 < m < n.

Fact 16 Both < and < are wgo on w.

The following lemma is from [8], and the reader can also refer to Lemma 2.6
in [6].

4 Another well-known definition of well-quasi-order is as follows: < is a well-quasi-order iff every
infinite sequence (ax)rew Of elements of A contains two element a;, a; such that a; < a; with i < j.
These two definitions are equivalent, and a proof of their equivalence can be found in Lemma 2.5 in [6].
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Lemma 4 Let <; and <5 be wgo on set A1 and A, respectively, and let < be the
order on A; x Ay defined as follows: (a1, as) =< (a},ab) iff a1 <; af and az <9 db,.
Then <isawgo on A; x As.

Let A be any set. We use A* for set of all finite sequences (or strings) over A,
use /(s) for the length of the sequence s, and for each i < k, we will use #;(s) for the
i-th member of s, starting from 0. For each n > 0, we fix Seq,(4) = {s € A* :
£(s) < n}. Let < be a quasi-order on A. We define the orders < and < on A* as
follows:

 forall s,t € A*, s < tiff {(s) = £(t), and for each i < £(s), #;(s) = #(t).

o foralls,t € A* where s = (a;)i<randt = (b;)i<n,t < siffeithern =k =0,
orn >k > 0anday < b, and s < ¢’ for a subsequence ¢’ of ¢.

It is easy to see that both < and < are quasi-orders on A*. Furthermore, Lemma 4
can be applied to show the following Lemma by a trivial induction.

Lemma 5 If <isawgo on A, then < is a wgo on Seq,,(A) foralln > 0.

The following theorem is a slightly stronger formulation of Theorem 3.2 in [6],
however the same proof can be applied here. A restricted version of the theorem,
where A is the set of natural number, is proved in [3] along the same line as [6].

Theorem 17. If < is a wqo on A, then < is a wqo on A*.

A tree is a pair (T, <), in which 7" is a nonempty set and < is a partial ordering
on T satisfying downward connectedness (Ym¥m'Jw(w < m A w < m')) and no
downward branching (Ym¥wVw'(w < mAw <m —w <w' Vuw <w)). w<u
is introduced as w < u A w # u. Let T = (T, <) be any tree. Note that the set
ancgz(w) = {u € T : v < w} is a chain under <, and a finite trec always has a
unique root. We use dom(¥) for the domain of ¥, and use root(¥) for the root of T
when it exists. For any w € T, the level of w in T is levz (w) = |ancg(w)|, the set of
immediate successors of w is sucz(w) ={u € T : w < uA—-Jv(w < v < u)}, and
the height of T is heit(T) = maz{levs(w) : w € T'}. Given a set ¥ of labels, a -
treeis a pair (T, 7), where T is a tree and 7 is a labeling function on T from dom(¥) to
Y. Lett = (T, 7) be any X-tree where ¥ = (T, <). A X-tree tis finite if its underlying
tree ¥ is finite, and the height (domain, root, etc.) can be level up to X-trees from their
underlying trees naturally. Foreach A C ¥, dom(t)® = {w € dom(t) : 7(w) € A},
and we use dom(t)" for dom ().

In the following, we consider only finite w-trees, and use T for the set of all
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finite w-trees. For each m,n > 1, we fix

T“im o = {t € T¥ : heit(t) = m A ‘dom(t)o‘ < n},

<m <n = U T*m <n-

1<i<n

Note that T2, _,, = T%; _,, and all w-trees in them have only one node, i.e. the root.
It is convenient for our discussion to represent a X-tree t = (%, 7) as the following
triple:

t= <(T00t(t)a T(TOOt(t))) ) (tla s 7t’m) ’ (tm+la s athrn)> ’ (3)
where
e t1,...,t, are all subtrees of t generated by an element of
{w € sucg(root(t)) : 7(w) = 0},
* tntl,-- -, tmin are all subtrees of t generated by an element of

{w € sucg(root(t)) : T(w) > 0},
* Timtn (100t (tan)) = min{r(root(t;)) : m < i < m+ n}, in which 7; is the
labeling function in t;.

We call the triple above a standard representation triple of t. Note that the last two
elements of a standard representation triple could be the empty sequence, such as
when the represented tree has only one-node. Recall thatm < niffeitherm =n =0
or 0 < m < n. We define C on T% inductively as follows:

(i) for any w-tree t = ((r,s), (), ()) and any w-tree t', t C t' iff t’ is a one-node
tree and s < 7/ (root(t')), where 7’ is the labeling function in t';

(i) forany w-treet = ((r,s), (t1,-.-,tm), (tma1s-- - tmsn)) and any w-tree t' =
((r',8") s (8, ) s (boggs - tiy) ), T Y iff s < &, and

(@) m=kandforeachl <i<m,t; Ct;

(b) either [ = n = 0,0orl > n > 0and t,,4, C t_,; and there are
Jmtls---sJmin SUch that k +1 < jmy1 < 0 < Jman < k+ 1,
andthgt;-hforeachhwithm—i—l<h<m+n.

Note that if we replace = with < in (a) and (b), then they become the exactly same
as definition of < and definition of < respectively.

Theorem 18. Forallm,n > 1, CisawqoonTZ,, _,.

Proof It suffices to show that for all m,n > 1, C is a wgo on Tim <n- We
prove it by induction on m. The base case (m = 1) holds because of Fact 16.
Consider m = k + 1. Suppose that for all n > 1, E is a wgo on T2 _ . Let
n > 1 and let (;);e. be any infinite sequence of elements from T, < where
tio= ((ri;si), (6, th,) s (th, 115+ > tinyn, ) ) for each i € w. We have by

Fact 16 that there is an infinite subsequence (t;);cr, of (4)ic, such that (s;)icr,
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is an infinite <-chain. Since ‘dom ‘ < n for each i € w, there is an infinite
subsequence (t;)icr, of (t;)icr, such that m; = m; for all i, € I,. It then fol-
lows from Lemma 16 and supposition that there is an infinite subsequence (t;)icr,
of (t;)icr, such that for each i < j € I3, m; = m; and foreach 1 < h < my,
t}; C t{l. Apply Theorem 17 and supposition, we obtain that there is an infinite sub-
sequence (t;);er, of ( Z)Zej3 such that for each i < j € Iy, either n; = n; = 0,

orn; > n; > 0and tm 4n; & tm ~+n; and there are ji,; 41, ..., Jm;4n, such that
mj +1 < Jmir1 < 0 < Jmgtn; < My +ny, and ) E 5, for each h with
m; +1 < h < m;+n,. By definition of C, (t;);c, is an infinite C-chain, and hence

we have that for all n > 1, C is a wgo on T¥ |

=k+1,<n’

4.3 Finite Axiomatizability

Recall that a transitive logic is of weak width 1 if it contains Wid]. In the
subsection, we show the finite axiomatizability of all transitive logics of finite depth
and of finite weak width 1 that contains Wid?, for an n > 1 (Theorem 20).

Let § = (W, R) be a transitive frame. Then s¢(§F) = (s¢(W),s€¢(R)) is the
skeleton of §, where s¢(W) is the set of clusters in §, and for all ¢,d € s¢(WV),
(c,d) € st(R) iff Rwu for some w € ¢ and u € d (in fact, iff Rwu for all w € ¢ and
u € d). For any binary relation R onaset W, we use R* for the reflexive closure of R,
ie, RU{(w,w): w & W}, and use R~! for the inverse of R, i.e., {(w u> (u,w) €
R}. We fix s£(F)* = (s&(W),s¢(R)*) and s&(F)~* <5?(W )~H.

Let § = (W, R) be any finite transitive frame for Wid such that s¢(F) Lisa
finite tree. The representation tree of § is the following w-tree:

() = (st(F) 7', 7), (4)

where for each ¢ € s¢(WW), 7(¢) = |¢| if ¢ is a nondegenerate cluster in §, otherwise

7(¢) = 0.

Lemma 6 For any finite transitive frames § and & for Wid;" such that s¢(F) ! and
s€(®) ! are finite trees, if tt(F) C tt(&), then & is reducible to F.

Proof We prove it by induction on the height of t(F). Let tt(F) = <5{3 (6 7'> and
t(6) = (s¢(6)~!, o), and suppose that vt(F) T vt(&). Consider heit(tt(F)) = 1.
By definition of C, we have that

heit(tt(®)) = 1 and 5)
7(root(st(§) 1)) < o(root(st(&)1)). (6)
By (5), both § and & are universal frames, i.e., containing only one cluster. Assume

that ¢ and d is the unique cluster in § and &, respectively. It follows from (6) that
7(¢) < 7(d). By definition of <, either 7(¢) = 7(d) = 0or 0 < 7(¢) < 7(d). If
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the former holds, then we have by (4) that both ¢ and d are degenerate clusters; if
the latter holds, then we have by (4) that both ¢ and d are nondegenerate clusters and
|e| < |d|. In either case, there is a function f from d onto ¢ that reduces & to 3.

Consider heit(¢t(F)) = k. Letet(F) = ((r,s), (t1,- -, tm) s (k1 -+ o5 tingn))
and vt(&8) = ((r', ), (¢, ..., ), (toq,-- -t ;). Since tt(F) C (&), we have
that

i) s=<éd,
(i) m=kandforeachl <i:<m,t; Ct,
(ii1) eitherl=n=0,orl >n >0and t, 1, C tkH and there are jim+1,-- -, Jmtn

suchthatk +1 < jpg1 < -+ < Jman S k+ 1l and t, C t;h for each h with
m+1<h<m+n.

Apply the same reason as the base case, we have by (i) that there is a function f from
r’ onto r such that f reduces & | r’ to § | r. Since heit(tt(F)) = k, the heights of
t, ooty g, - - - b are all less than k, and hence by (ii), (iii) and induction
hypothe51s, we have that for each 1 < i < m, there is a function f; that reduces
& | (Udom(t)) to§ | (Udom(t:)), and foreach h withm +1 < h < m +n,
there is a function fj, that reduces & [ (U dom(t}, )) to § | (Udom(t)). Let =J =
{k+1,...,k+1} — {Jm+1,- -+ Jm+n - It follows from (iii) that t,,, ,, T t§€+l, and
hence |root(ty1n)| < |root(t]_,)|. We then have by (3) that 0 < |root(tm4n)| <

min{ ‘root(t;-)
—J } are nondegenerate clusters. Let g be any function from (JJ;_; dom(t}) onto
U dom(ti+n) such that g[root(t})] = root(t,,+n) for each j € =J. This is possible

: j € ~J}, and thus root(t;,1n) and elements of {root(t;) : j €

because of |root(tpy4n)| < min{‘root(t;)‘ : j € —J}. Itis easy to see that g

reduces & | (UUje—y dom(t))) to § [ (Udom(tm+n)). Finally, leth = f U gU
{fi}i<i<m-n. Itis routine to check that h reduces & to F. O

Recall that for each nonempty X C W, we use § [ X for the restriction of § to
X. Apply Proposition 10, the following fact is easily verifiable.

Fact 19 Let§ = (W, R) be any rooted finite transitive frame for Wid;", and let ¢
be the initial cluster in §. Then there are disjoint subframes §1, . . . §, of § such that
Sl(et7)= HJKK” T: and s€(F;) ! is a finite tree for each 1 < i < n.

Let § = (W, R) be any rooted finite transitive frame for Wid;]™ and let ¢ be the
initial cluster in §. According to Fact 19, there there are disjoint subframes §1, .. .5
of §suchthat§ | ¢~ = U1<Z<h T; and 5€(F;) ! is a finite tree for each 1 < i < h.
LetT = {tt(F1),...,vt(Fn)}, and assume that {t;, ..., t,} = {teT:t= (T, 7)A
T(root(t)) = 0} and {tmt1s - stmn} = {t € Tt = (T, 7) AT(root(t)) > 0}
with Ty (100t (t1r)) = min{m;(root(t;)) : m < i < m+ n}, in which 7; is the
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labeling function in t;. The standard representation tree of § is the following w-tree:

5tt(%') = <(C, T(C)) ) (tlv <o 7tm) > (tm-‘rla . 7tm+n)> )

where for each ¢ € s¢(WW), 7(¢) = |¢| if ¢ is a nondegenerate cluster in §, otherwise
7(¢) = 0. Note that for any finite transitive frame § that both stt(F) and tt(§F) are
well-defined, they are always different from each other, since the root of stt(F) is the
initial cluster in § and the root of t¢(F) is the final cluster in §. Apply Lemma 6, the
following Lemma can be proved in a similar way as the inductive case in Lemma 6.

Lemma 7 Let § and & be finite transitive frames for Wid", and let stt(F) C
stt(®). Then & is reducible to F.

Lemma 8 Letn,k > 1 and let (§x)ke,, be an infinite sequence of finite rooted
transitive frames for Widj, of rank at most m and of weak width 1. Then there is an
infinite / C w such that for all 7, j € I with ¢ < j, §; is reducible to §;.

Proof Since each §; is a frame for Wid;, of rank at most m, we have by Proposi-
tion 14 that there are at most m x k degenerate clusters in §;, and hence stt(F;) €
T¢,, <mxkr1 foreach i € w. We then obtain by Theorem 18 that there is an infinite
I C w such that (stt(F;))ics is an infinite C-chain, and hence by Lemma 7, §; is

reducible to §; for all ¢, j € I with ¢ < j. O

Theorem 20. Foralln, k > 1, all extensions of K4B,, ® {Wid{", Wid}} are finitely
axiomatizable, and are hence decidable.

Proof LetL = K4B, ® {Wid], Wid}} with n,k > 1. By Theorem 2, all exten-
sions of L have the f.m.p. To show that all extensions of L are finitely axiomatizable,
it then suffices by Theorem 9 to let {F; };c., be any infinite sequence of finite rooted
frames for L and show that it is not irreducible. For each ¢ € w, because §; is a frame
for B,, and Wid{, it is clear by Propositions 1 and 10 that §; is of rank at most n and
of weak width 1. Then by Lemma 8, §; is reducible to §; for some i, j € w with
i < j,and hence {§; }ic. is not irreducible. O

Since S4B,, is an extension of K4B,, & {Wid} } for all n, k > 1, the following
Corollary follows immediately from Theorem 20:

Corollary 2 Forall n > 1, all extensions of S4B,, ® {Wid{ } are finitely axioma-
tizable, and are hence decidable.

5 Conclusion

In this paper, we proved as our negative result that there are non-finitely-axioma-
tizable extensions of K4B,, & Wid",; foralln > 3 and £ > 2, by a way of con-
structing infinite irreducible sequences of finite rooted transitive frames of depth
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3 and of weak width 2. As our positive result, we showed that all extensions of
K4B,, & {Wid?, Wid} } are finitely axiomatizable for all n, k > 1, by a way of ap-
plying wgo on finite height w-trees. It is known from [11] that there are non-finitely-
axiomatizble extensions of K4B,,&Wid}, foralln > 3and & > 1. Therefore formulas
Wid] play an essential role in our finite axiomatizability result. However, the follow-
ing problem still remains open: for each n > 1, are all extensions of K4B,, ® VVid;r
finitely axiomatizable? Finally, since the infinite irreducible sequences of frames con-
structed in section 3 don’t validate any formula Wid}. So the following problem is
unsettled: foreachn, k > 1andm > 2, are all extensions of K4B,, ® {Wid,", , Wid}}
finitely axiomatizable?
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