On Types over *p*-adically Closed Fields

Ningyuan Yao Zhentao Zhang[⊠]

Abstract. The aim of this paper is to study types over a *p*-adically closed field. We classify the 1-types over an arbitrary *p*-adically closed field, which extends the previous work of Penazzi, Pillay and Yao (2019) on classifying 1-types over the standard model \mathbb{Q}_p of the field of *p*-adic numbers. We also study the orthogonality of pseudo-limit types and distance types and yield an analogue of the dichotomy of "cuts" and "noncuts" in the *o*-minimal context.

1 Introduction

This paper presents several new results on types in *p*-adically closed fields, the structures (in the language of rings) which are elementarily equivalent to the field \mathbb{Q}_p of *p*-adic numbers. We denote the theory of \mathbb{Q}_p in the language of rings by *p*CF.

Delon showed in [3] that every type over \mathbb{Q}_p is definable. In [10], the authors classified the complete 1-types over the standard model \mathbb{Q}_p as follows:

Theorem 1. [10] The complete 1-types over \mathbb{Q}_p are precisely the following:

- (i) The realized types $\operatorname{tp}(a/\mathbb{Q}_p)$ for each $a \in \mathbb{Q}_p$;
- (ii) For each $a \in \mathbb{Q}_p$ and C, a coset of \mathbb{G}_m^0 in \mathbb{G}_m , the type $p_{a,C}$ saying that x is infinitesimally closed to a (i.e. v(x-a) > n for each $n \in \mathbb{N}$), and $x a \in C$;
- (iii) For each coset C as above the type $p_{\infty,C}$ saying that $x \in C$ and v(x) < n for all $n \in \mathbb{Z}$,

where \mathbb{G}_m the is multiplicative group of a very saturated elementary extension of \mathbb{Q}_p , and

$$\mathbb{G}_m^0 = \{ b \in \mathbb{G}_m | \text{ for each } n \in \mathbb{N}^+, \exists x(x^n = b) \}.$$

In this paper, we extend the above result to an arbitrary *p*-adically closed field:

Theorem 2. Let K be a model of pCF, Γ_K the value group of K, and \mathbb{G}_m^0 as above. Then the complete 1-types over K are precisely the following:

(i) The realized types tp(a/K) for each $a \in K$;

Received 2022-10-31	
Ningyuan Yao	Fudan University
	yaony@fudan.edu.cn
Zhentao Zhang [⊠]	Fudan University
	ztzhang22@m.fudan.edu.cn

- (ii) (distance type around a point) For each cut $\Lambda \subseteq \Gamma_K$ (see Definition 2), $c \in K$, and coset C of \mathbb{G}_m^0 , the type $p_{\Lambda,c,C}$ saying that $\Lambda < v(x-c) < \Gamma_K \setminus \Lambda$ and $x - c \in C$;
- (iii) (Pseudo-limit type) For each pesudo-Cauchy sequence $\{c_i\}_{i \in I}$ (see Definition 1), the type $p_{\{c_i\}_{i \in I}}$ saying that x is a pseudo-limit of $\{c_i\}_{i \in I}$, and for any formula $\phi(x)$ over K, $\phi(x) \in p_{\{c_i\}_{i \in I}}$ iff $\phi(x)$ is eventually true (see Definition 1) on $\{c_i\}_{i \in I}$.

Note that when K is \mathbb{Q}_p , any pseudo-limit type is realized since \mathbb{Q}_p is complete as a metric space. As the value group of \mathbb{Q}_p is \mathbb{Z} and there are exactly two cut over \mathbb{Z} , namely, \emptyset and \mathbb{Z} , we see that case (ii) of Theorem 2 corresponds to case (ii) and (iii) of Theorem 1.

Recall that an *o*-minimal structure is an ordered structure (M, <, ...) in which every definable subset $X \subseteq M$ is a finite union of intervals and points. If $A \subseteq M$ and $c \in M$, we call $\operatorname{tp}(c/A)$ a cut iff there are $a, b \in \operatorname{dcl}(A)$, the definable closure of A in M, such that a < c < b, and for $a_0 \in \operatorname{dcl}(A)$ with $a_0 < c$, there is $a_1 \in \operatorname{dcl}(A)$ with $a_0 < a_1 < c$, and likewise for $c < b_0 \in \operatorname{dcl}(A)$. Say that $\operatorname{tp}(c/A)$ is a noncut iff it is not algebraic and not a cut. Abusing terminology, we will also refer to c itself as a cut/noncut over A. In the topological view, $\operatorname{tp}(c/A)$ is a noncut iff there is $a \in \operatorname{dcl}(A)$ such that the "distance" of c and a is minimal among the "distance" of c and other points in $\operatorname{dcl}(A)$, and $\operatorname{tp}(c/A)$ is a cut iff there is no such $a \in \operatorname{dcl}(A)$.

In the pCF environment, it is reasonable to consider the pseudo-limit types and distance types as the analogues of "cut" and "noncut" in the *o*-minimal context, respectively.

Assuming o-minimality, a result of [8] shows that if tp(c/A) is a type of cut over A, and tp(d/A) is a type of noncut over A, then c and d are algebraically independent over A, namely, $c \notin dcl(A, d)$ and $d \notin dcl(A, c)$. Recall from [14] that two types p(x) and q(y) over A are weakly orthogonal if they implies a complete type r(x, y) over A. It is easy to see that if tp(c/A) and tp(d/A) are weakly orthogonal, then c and d are algebraically independent over A. We extend Marker's result to pCF environment, showing that

Theorem 3. Let K be a model of pCF, $p(x) \in S_1(K)$ a pseudo-limit type, and $q(y) \in S_1(K)$ a distance type, then p and q are weakly orthogonal.

The paper is organized as follows: For the rest of the introduction we give precise definition and preliminaries relevant to our results.

In Section 2, we study the the elementary extensions of *p*-adically closed fields and their value groups.

In Section 3, we will prove Theorem 2, classifying the 1-types over an arbitrary model of pCF.

In Section 4, we will prove Theorem 3, the orthogonality of pseudo-limit types and distance types.

1.1 Notations

Let T be a complete theory with infinite models in a countable language L and M a model of T. We usually write tuples as a, b, x, y rather than $\bar{a}, \bar{b}, \bar{x}, \bar{y}$. For A a subset of M, an L_A -formula is a formula with parameters from A. If $\phi(x)$ is an L_M -formula and $A \subseteq M$, then $\phi(A)$ is the collection of the realizations of $\phi(x)$ from A, namely, $\phi(A) = \{a \in A^{|x|} | M \models \phi(a)\}$. Similarly, if $X \subseteq M^{|x|}$ is a definable set defined by the formula $\phi(x)$, then we use X(A) to denote the set $\phi(A) = X \cap A^{|x|}$. If $X \subseteq M^n$ is definable in M and $N \succ M$, we sometimes use X(x) to denote the formula X(x).

Assume that $A \subseteq M$ and $a \in M$. We say that a is in the algebraic closure of A(in M), written $a \in \operatorname{acl}(A)$, if there is a formula $\varphi(x)$ over A (namely of L_A) such that $M \models \varphi(a)$, and moreover such that $\varphi(x)$ has only finitely many solutions in M. We say that a is in the definable closure of A, $a \in \operatorname{dcl}(A)$, if for some L_A -formula $\varphi(x)$, a is the unique solution of $\varphi(x)$ in M. Note that both $\operatorname{acl}(-)$ and $\operatorname{dcl}(-)$ are idempotent operators, namely, $\operatorname{acl}(\operatorname{acl}(A)) = \operatorname{acl}(A)$ and $\operatorname{dcl}(\operatorname{dcl}(A)) = \operatorname{dcl}(A)$ for any $A \subseteq M$. For any n-tuple $a = (a_1, ..., a_n) \in M^n$, we denote $\operatorname{acl}(A \cup \{a_1, ..., a_n\})$ by $\operatorname{acl}(A, a)$. Similarly for $\operatorname{dcl}(A, a)$.

Our notation for model theory is standard, and we will assume familiarity with basic notions such as very saturated models (or monster models), skolem functions, partial types, type-definable etc. References are [11] as well as [9].

1.2 Background in *p*-adically Closed Fields

Let p be a prime and \mathbb{Q}_p the field of p-adic numbers. We call the complete theory of \mathbb{Q}_p (in the language of rings) the *theory of p-adically closed fields*, written pCF. A p-adic closed field is a model of pCF, or equivalently, a field which is elementarily equivalent to \mathbb{Q}_p . A key point is the Macintyre's theorem [7] that pCF has quantifier elimination in the language of rings together with new predicates $P_n(x)$ for the n-th powers for each $n \in \mathbb{N}^+$. Let K be a p-adically closed field, we denote its multiplicative group by K^* , its valuation ring by R_K , and its value group by Γ_K . The value group Γ_K is a model of Pr (Presburger arithmetic), namely, ($\Gamma_K, <, +$) is elementary equivalent to ($\mathbb{Z}, +, <$). The valuation on a K is the map v from K to $\Gamma_K \cup \{\infty\}$ satisfying:

- $\infty > y$ and $y + \infty = \infty + y = \infty$ for all $y \in \Gamma_K$
- $v(x) = \infty \iff x = 0;$
- $v(x + y) \ge \min\{v(x), v(y)\}$ and $v(x + y) = \min\{v(x), v(y)\}$ when $v(x) \ne v(y)$;

• v(xy) = v(x) + v(y).

Note that the valuation ring $R_K = \{x \in K | v(x) \ge 0\}$ and the relation $v(x) \le v(y)$ are definable in the language of rings (see [4]), so is quantifier-free definable in Macintyre's language. We will freely use the variables and parameters from the value group sort.

Throughout this paper, $(\mathbb{K}, +, \times, 0, 1)$ will denote a very saturated model (or monster model) of *p*CF and *K* an (arbitrary) small elementary submodel of \mathbb{K} , where we say that a set *X* is *small* if $|X| < |\mathbb{K}|$. We use \mathbb{G}_m to denote the multiplicative group of \mathbb{K} , so $\mathbb{G}_m(K) = K^*$ is the multiplicative group of *K*. Before getting into details we recall some basic facts which will be used freely in this section and the rest of the paper.

First, the topology on K is the valuation topology. Consider the formula

$$B(x, y, \gamma) := v(x - y) > \gamma$$

where x, y are of the home sort and γ is of the value group sort. For any $c \in K$ and $\delta \in \Gamma_K$, we call $B(c, K, \delta)$ an open ball of center c and radius δ .

Fact 1.

- The *p*-adic field Q_p is a complete, locally compact topological field, with basis given by the sets B(c, Q_p, n) for c ∈ Q_p, n ∈ Z.
- K is also a topological field, with basis given by the sets B(c, K, δ) for c ∈ K, δ ∈ Γ_K, but not need to be complete or locally compact.
- For each $c \in K$ and $\gamma \in \Gamma_K$, $B(c, K, \delta) = B(c', K, \delta)$ whenever $c' \in B(c, K, \delta)$.
- For each $c \in K$ and $\gamma \in \Gamma_K$, $B(c, K, \delta)$ is clopen.
- For each $c \in K$ and $\gamma \in \Gamma_K$, $B(c, K, \delta)$ is a disjoint union of $B(c_0, K, \delta + 1), ..., B(c_{p-1}, K, \delta + 1)$ for some $c_0, ..., c_{p-1} \in B(c, K, \delta)$.

It is well-known that *p*CF satisfies *Hensel's Lemma*:

Fact 2 (Hensel). Let f(t) be a polynomial over R_K in one variable t, and let $\alpha \in R_K$, $e \in \mathbb{N}$. Suppose that $v(f(\alpha)) \ge 2e + 1$ and $v(f'(\alpha)) \le e$, where f' denotes the derivative of f. Then there exists a unique $\epsilon \in R_K$ such that $v(\epsilon) \ge e + 1$ and $f(\alpha + \epsilon) = 0$.

Recall that $P_n(x)$ denotes the formula saying that x is an n-th power, and that pCF has quantifier elimination after adding predicates for all $P_n(x)$. It is easy to see from the Hensel's Lemma that each $P_n(K^*)$ is an open subgroup of the multiplicative group K^* with finite index, and each coset of $P_n(K^*)$ contains representatives from \mathbb{Z} (see [1, 7] for details).

The following lemma can also be conclude directly from the Hensel's Lemma. Nevertheless we give a proof here for convenience.

Lemma 1. Let $a, b \in K^*$. If $v(a) \ge v(b) + 2v(n) + 1$, then a and a - b are in the same coset of $P_n(K^*)$ in K^* , namely, $K \models \forall \lambda (P_n(\lambda b) \leftrightarrow P_n(\lambda (b-a)))$.

Proof. Let $\epsilon \in K$ such that $v(\epsilon) \ge 2v(n)+1$. Consider the polynomial $f(t) = t^n - (1+\epsilon)$. Since $f(1) = \epsilon$ and f'(1) = n. It follows from the Hensel's Lemma that f(t) has a root in K, which means that $1+\epsilon$ is an n-th power whenever $v(\epsilon) \ge 2v(n)+1$.

Now suppose that v(a) > v(b) + 2v(n) + 1, then $v(b-a) = \min\{v(a), v(b)\} = v(b)$. Let $\epsilon = a/(b-a)$, we see that

$$v(\epsilon) = v(a/(b-a)) = v(a) - v(b-a) \ge 2v(n) + 1,$$

so $1 + \epsilon$ is an *n*-th power. Since

$$b = (b - a) + a = (b - a)(1 + a/(b - a)) = (b - a)(1 + \epsilon),$$

we see that b and b - a are in the same coset of $P_n(K^*)$.

The partial type $\{P_n(x) | n \in \mathbb{N}^+\}$ defines a subgroup of \mathbb{G}_m , we call it the *definable connected component* of \mathbb{G}_m , and denote it by \mathbb{G}_m^0 . Note that every coset of \mathbb{G}_m^0 is type-definable over \emptyset .

Recall that a *well-indexed sequence* in K is a sequence $\{a_i\}_{i \in I}$ in K whose terms a_i are indexed by the elements i of an infinite well-ordered set (I, <) without a last element.

Definition 1. Let $\{a_i\}_{i \in I}$ be a well-indexed sequence in K.

- We say that {a_i}_{i∈I} is a pseudo-Cauchy sequence if for some index i₀ we have that v(a_k − a_j) > v(a_j − a_i) whenever k > j > i > i₀.
- We say that $a^* \in \mathbb{K}$ is a *pseudo-limit* of $\{a_i\}_{i \in I}$ if $v(a_i a^*)$ is eventually strictly increasing, that is, for some index i_0 , we have that $v(a_k a^*) > v(a_j a^*)$ whenever $k > j > i_0$.
- We say that a formula φ(x) over K is eventually true on {a_i}_{i∈I} if there is some i₀ ∈ I such that K ⊨ φ(a_i) for all i > i₀.

Remark 1. Since \mathbb{K} is a monster model, a compactness argument shows that any pseudo-Cauchy sequence $\{a_i\}_{i \in I}$ in K has a (not necessary unique) pseudo-limit in \mathbb{K} .

Using cell decomposition in the form of Denef [4] or [5], the following can be easily derived, cf. [2], Lemma 4:

Fact 3. Let $X \subseteq K^{m+1}$ be a definable subset, and $b_j : X \to K$ definable functions, for j = 1, ..., r. Then there exists a finite partition of X such that each part A has form

$$A = \{(x, y) \in K^m \times K | x \in D, v(a_1(x)) \Box_1 v(y - c(x)) \Box_2 v(a_2(x)), (y - c(x)) \in \lambda P_n\}$$

and for each $(x, y) \in A$, we have

$$v(b_j(x,y)) = \frac{1}{e_j}v((y - c(x))^{\mu_j}d_j(x)),$$

with $x \in K^m$, $D \subseteq K^m$ definable, $0 < e_j \in \mathbb{Z}$, $\mu_j \in \mathbb{Z}$, $\lambda \in \mathbb{Z}$, c, a_i, d_j definable functions from K^m to K and \Box_i either $<, \leq$ or no condition.

Remark 2. It is easy to see from Fact 3 that

• Every one-variable formula $\phi(x)$ over K is equivalent to a disjoint disjunction of the formulas of the form

$$(\gamma_1 \Box_1 v(x-c) \Box_2 \gamma_2) \wedge P_n(\lambda(x-c))$$

with $c \in K$, $\gamma_i \in \Gamma_K$, $\lambda \in \mathbb{Z}$, and \Box_i either $<, \leq$ or no condition.

 If s(x) is a K-definable function and a^{*} ∈ K, then there are 0 < e ∈ Z, n ∈ Z, d ∈ K, and γ ∈ Γ_K such that

$$v(s(a^*)) = 1/e(v((a^* - d)^n) + \gamma).$$

Another goodness of *p*CF is that it has definable Skolem functions(See [13]), i.e. for any formula $\varphi(x, y)$ over K with $K \models \forall x \exists y \varphi(x, y)$, we can find a Kdefinable function f_{φ} such that $K \models \forall x \varphi(x, f_{\varphi}(x))$. So for any $A \subseteq K$, dcl(A) is an elementary substructure of K. The reader is referred to [1] for additional details of *p*-adically closed fields.

2 Extensions of Models

Lemma 2. Suppose that S is a small subset of \mathbb{K} , then dcl(S) = acl(S) in \mathbb{K} .

Proof Assume that $a \in \operatorname{acl}(S)$. There is a finite set D defined over S with the smallest cardinality such that $a \in D$. Then let $f(x) = \prod_{d \in D} (x - d)$ and $\operatorname{Aut}(\mathbb{K}/S)$ the group of automorphisms of \mathbb{K} fixing S point-wise. Since every $\sigma \in \operatorname{Aut}(\mathbb{K}/S)$ fixes D set-wisely, we see that each coefficient of f is $\operatorname{Aut}(\mathbb{K}/S)$ -invariant. Thus, all coefficients of f are in dcl(S) by the saturation of \mathbb{K} . As definable Skolem functions exist, some root b of f is in dcl $(\operatorname{dcl}(S)) = \operatorname{dcl}(S)$. If $b \neq a$, then $D \setminus \{b\}$ is defined over S with cardinality < |D| and $a \in D \setminus \{b\}$, which is impossible. Thus, $a = b \in \operatorname{dcl}(S)$.

For any $S \subseteq K$, acl(S) is the same whether computed in K or K. So we have that

Corollary 1. If $S \subseteq K$, then dcl(S) = acl(S) in K.

By [6], the algebraic closure operation $\operatorname{acl}(-)$ in any model K of pCF defines a *pre-geometry*, namely the exchange axiom is satisfied: if $a, b \in K, A \subseteq K$ and $b \in \operatorname{acl}(A, a) \setminus \operatorname{acl}(A)$, then $a \in \operatorname{acl}(A, b)$. For $a \in \mathbb{K}$, we write $\operatorname{dcl}(K, a)$ as $K \langle a \rangle$, which is an elementary extension of K. It is easy to see from Lemma 1 and the exchange axiom that:

Lemma 3. Let $a \in \mathbb{K} \setminus K$. Then there is no proper middle extension between $K \prec K\langle a \rangle$, *i.e.* no L such that $K \not\supseteq L \not\supseteq K\langle a \rangle$.

Recall from [12] that $Pr = Th(\mathbb{Z}, +, <, 0, \{D_n\}_{n>0})$ has definable Skolem functions, quantifier elimination in the language $\{+, <, 0, \{D_n\}_{n>0}\}$, and is decidable, where each D_n is a unary predicate symbol for the set of elements divisible by n. For any $A \subseteq M \models Pr$, we see that dcl(A) is an elementary substructure of M. Clearly, the value group $\Gamma_{\mathbb{K}}$ of \mathbb{K} is a monster model of Pr.

Lemma 4. Let $K_0 \prec K$, and G an elementary substructure of Γ_K extending Γ_{K_0} . Then there is K_1 such that $K_0 \prec K_1 \prec K$ and $G = \Gamma_{K_1}$.

Proof. Let

$$\mathcal{K} = \{ L \models p CF | K_0 \prec L \prec K \text{ and } \Gamma_L \subseteq G \}.$$

Then \mathcal{K} is not empty since $K_0 \in \mathcal{K}$. Applying Zorn's Lemma to (\mathcal{K}, \subseteq) , and let K_1 be a maximal element of \mathcal{K} . We claim that G is the value group of K_1 . Otherwise, there is $\alpha \in G \setminus \Gamma_{K_1}$. Take any $a \in K$ such that $v(a) = \alpha$. Then $v(a - c) = \min\{v(a), v(c)\} \in G$ for each $c \in K_1$. By Remark 2, for each $b \in dcl(K_1, a) = K_1\langle a \rangle$, there are $0 < e \in \mathbb{Z}$, $n \in \mathbb{Z}$, $c \in K$, and $\gamma \in \Gamma_{K_1}$ such that

$$v(b) = 1/e(v((a-c)^n) + \gamma).$$

So $v(K_1\langle a \rangle) \subseteq G$ and thus the proper extension $K_1\langle a \rangle$ of K_1 is also in \mathcal{K} . A contradiction.

We see from Lemma 4 that any $M \models Pr$ is isomorphic to a value group of some $K \prec \mathbb{K}$. In this paper, we consider any (small) model of Pr as a value group of of some $K \prec \mathbb{K}$. We also write $dcl(M, \alpha)$ as $M\langle \alpha \rangle$ for $\alpha \in \Gamma_{\mathbb{K}}$.

Lemma 5. Let $K' \succ K$ and $a \in K' \setminus K$ such that $v(a) = \alpha \notin \Gamma_K$. Then $\Gamma_{K\langle a \rangle} = \Gamma_K \langle \alpha \rangle$.

Proof. It is easy to see that

$$\Gamma_K \langle \alpha \rangle = \operatorname{dcl}(\Gamma_K, \alpha) \subseteq v(\operatorname{dcl}(K, a)) = \Gamma_{K \langle a \rangle}$$

since $\Gamma_K \cup \{\alpha\} \subseteq v(\operatorname{dcl}(K, a))$. Suppose for a contradiction that $\Gamma_K \langle \alpha \rangle$ is a proper subset of $\Gamma_{K\langle a \rangle}$. Then by Lemma 4, there is K' such that $K \prec K' \prec K\langle a \rangle$ such that $\Gamma_{K'} = \Gamma_K \langle \alpha \rangle$. Since $\Gamma_{K'}$ is proper middle extension between Γ_K and $\Gamma_{K\langle a \rangle}$, it follows that K' is a proper middle extension between K and $K\langle a \rangle$. This contradicts to Lemma 3.

Corollary 2. Let $M \models Pr$ and $\alpha \in \Gamma_{\mathbb{K}} \setminus M$, then there is no middle extension between M and $M\langle \alpha \rangle$, i.e. there is no N such that $M \not\supseteq N \not\supseteq M\langle \alpha \rangle$.

Proof. Suppose Not, then there is $\beta \in M\langle \alpha \rangle$ such that

$$M \not\supseteq M\langle \beta \rangle \not\supseteq M\langle \alpha \rangle.$$

By Lemma 4, there is $K' \models pCF$ such that $\Gamma_{K'} = M$. Take any $a \in \mathbb{K}$ such that $v(a) = \alpha$, then $M\langle \alpha \rangle$ is the value group of $K'\langle a \rangle$ by Lemma 5. Take any $b \in K'\langle a \rangle$ such that $v(b) = \beta$, then applying Lemma 5 again, $M\langle \beta \rangle$ is the value group of $K'\langle b \rangle$. We conclude that $K'\langle b \rangle$ is a proper middle extension between K' and $K'\langle a \rangle$. A contradiction.

3 Classification of 1-types

Recall that \mathbb{K} is the monster model of pCF and \mathbb{G}_m is the multiplicative group of \mathbb{K} . From now on, we fix K as a small elementary submodel of \mathbb{K} and $K^* = \mathbb{G}_m(K)$ the multiplicative group of K.

Definition 2. Suppose that $(\Gamma, +, <, 0)$ is a model of Presburger arithmetic. We say that $\Lambda \subseteq \Gamma$ is a *cut* of Γ if

- For each $\gamma, \beta \in \Lambda$, if $\gamma \in \Lambda$ and $\beta < \gamma$, then $\beta \in \Lambda$;
- For each $n \in \mathbb{Z}$ and $\gamma \in \Lambda$, $\gamma + n \in \Lambda$.

i.e. Λ is downward closed and satisfying $\Lambda + \mathbb{Z} = \Lambda$.

Lemma 6. Let $a^* \in \mathbb{K} \setminus K$, and

$$\Lambda := \{ \alpha \in \Gamma_K : \text{there is } c \in K \text{ such that } v(a^* - c) > \alpha \}.$$

Then Λ is a cut of Γ_K

Proof. It is easy to see that Λ is downward closed. It suffices to show that $\delta \in \Lambda$ implies $\delta + 1 \in \Lambda$. Suppose that $v(c - a^*) > \delta$ for some $c \in K$ and $\delta \in \Gamma_K$,

we see from Fact 1 that there are $c_0, ..., c_{p-1} \in K$ such that $B(c, K, \delta)$ is a disjoint union of $B(c_0, K, \delta + 1), ..., B(c_{p-1}, K, \delta + 1)$. Since \mathbb{K} is an elementary extension of $K, B(c, \mathbb{K}, \delta)$ is also a disjoint union of $B(c_0, \mathbb{K}, \delta + 1), ..., B(c_{p-1}, \mathbb{K}, \delta + 1)$. As $a^* \in B(c, \mathbb{K}, \delta)$, there is i < p such that $a^* \in B(c_i, \mathbb{K}, \delta + 1)$. So $v(a^* - c_i) > \delta + 1$ as required.

Theorem 4. Let K be a model of pCF and $\mathbb{G}_m^0 = \bigcap_{n \in \mathbb{N}^+} P_n(\mathbb{G}_m)$ be the definable connected component of \mathbb{G}_m . Then the complete 1-types over K are precisely the following:

- (a) The realized types $\operatorname{tp}(a/K)$ for each $a \in K$;
- (b) (distance type around a point) For each cut $\Lambda \subseteq \Gamma_K$, $c \in K$, and coset C of \mathbb{G}^0_m , the type $p_{\Lambda,c,C}$ saying that $\Lambda < v(x-c) < \Gamma_K \setminus \Lambda$ and $x-c \in C$. We call $p_{\Lambda,c,C}$ a Λ -distance (or distance) type around point c.
- (c) (Pseudo-limit type) For each pesudo-Cauchy sequence $\{c_i\}_{i \in I}$, the type $p_{\{c_i\}_{i \in I}}(x)$ saying that x is a pseudo-limit of $\{c_i\}_{i \in I}$. In this case, $p_{\{c_i\}_{i \in I}}(x)$ is determined by the sequence $\{c_i\}_{i \in I}$: For each formula $\phi(x)$ over K, $\phi(x) \in p_{\{c_i\}_{i \in I}}(x)$ iff $\phi(x)$ is eventually true on $\{c_i\}_{i \in I}$.

Proof. Let $p(x) \in S_1(K)$ be a non-realized type and $a^* \models p$. Let

$$\Lambda := \{ \alpha \in \Gamma_K : \text{there is } c \in K \text{ such that } v(a^* - c) > \alpha \}.$$

Then Λ is a cut of Γ_K by Lemma 6. Let $a^* \models p$. Now we have two cases:

• Case 1: There is $c \in K$ such that $v(a^* - c)$ is maximal among the set $\{v(a^* - d) : d \in K\}$. Then $v(a^* - c) \in \Gamma_{\mathbb{K}} \setminus \Gamma_K$ realizes the cut Λ , i.e. $\Lambda < v(a^* - c) < \Gamma_K \setminus \Lambda$. Let C be the coset of $\mathbb{G}^0_{\mathfrak{m}}$ such that $a^* - c \in C$. We claim that

Claim 1. Let $\Sigma_{\Lambda,C}(x,c)$ be the partial type saying that $\Lambda < v(x-c) < \Gamma_K$ and $x-c \in C$, then for any formula $\phi(x)$ over K, $\phi(x) \in p$ iff $\phi(x)$ is consistent with $\Sigma_{\Lambda,C}(x,c)$.

Proof. Clearly, every formula $\phi(x) \in p(x)$ is consistent with $\Sigma_{\Lambda,C}(x,c)$ since $\Sigma_{\Lambda,C}(x,c) \subseteq p$.

Now suppose that $\phi(x)$ is consistent with $\Sigma_{\Lambda,C}(x,c)$. We aim to show that $a^* \models \phi(x)$. By Remark 2, we can assume that $\phi(x)$ is of the form

$$\alpha_1 \Box_1 v(x-d) \Box_2 \alpha_2 \wedge P_n(s(x-d))$$

with $\alpha_1, \alpha_2 \in \Gamma_K, d \in K$, and $s \in \mathbb{Z}$. Let $b^* \in \mathbb{K}$ realize the partial type

$$\{\alpha_1 \Box_1 v(x-d) \Box_2 \alpha_2, P_n(s(x-d))\} \cup \Sigma_{\Lambda,C}(x,c)\}$$

Then both $v(a^*-c)$ and $v(b^*-c)$ realize the cut Λ . As both $v(a^*-c)$ and $v(b^*-c)$ are not in Γ_K , we have that

$$v(b^* - d) = \min(v(b^* - c), v(c - d)) = \begin{cases} v(c - d), & \text{if } v(c - d) \in \Lambda \\ v(b^* - c), & \text{if } v(c - d) \notin \Lambda \end{cases}$$

and

$$v(a^* - d) = \min(v(a^* - c), v(c - d)) = \begin{cases} v(c - d), & \text{if } v(c - d) \in \Lambda \\ v(a^* - c), & \text{if } v(c - d) \notin \Lambda \end{cases}$$

If $v(c-d) \in \Lambda$, then

$$v(a^* - d) = \min(v(a^* - c), v(c - d)) = v(c - d) = v(b^* - d),$$

which means that $a^* \models \alpha_1 \Box_1 v(x-d) \Box_2 \alpha_2$.

If $v(c-d) \notin \Lambda$, then both

$$v(a^* - d) = \min(v(a^* - c), v(c - d)) = v(a^* - c)$$

and

$$v(b^* - d) = \min(v(b^* - c), v(c - d)) = v(b^* - c)$$

realize the cut Λ , so

$$\alpha_1 \Box_1 v(b^* - d) \Box_2 \alpha_2 \iff \alpha_1 \Box_1 v(a^* - d) \Box_2 \alpha_2,$$

which also means that $a^* \models \alpha_1 \Box_1 v(x-d) \Box_2 \alpha_2$.

We now show that a^* also realizes $P_n(s(x-d))$. If $v(c-d) \in \Lambda$, we have

$$v(a^* - c) > v(c - d) + \mathbb{Z}$$
 and $v(b^* - c) > v(c - d) + \mathbb{Z}$

By Lemma 1, we see that $(a^* - d)$, (c - d) and $(b^* - d)$ are in the same coset of $P_n(\mathbb{G}_m)$. So $a^* \models P_n(s(x - d))$ as required. Similarly, if $v(c - d) \notin \Lambda$, then we have both

$$v(a^* - c) < v(c - d) + \mathbb{Z}$$
 and $v(b^* - c) < v(c - d) + \mathbb{Z}$.

Which implies that $a^* - d$ and $a^* - c$ are in the same coset of $P_n(\mathbb{G}_m)$, also, $b^* - d$ and $b^* - c$ are in the same coset of $P_n(\mathbb{G}_m)$. Since $(b^* - c)$ and $(a^* - c)$ are in the same coset of \mathbb{G}_m^0 , we see that $\mathbb{K} \models P_n(s(b^* - d)) \leftrightarrow P_n(s(a^* - d))$. So $a^* \models P_n(s(x - d))$. This complete the proof of the Claim.

Clearly, we see for the above Claim that p is determined by the partial type $\Sigma_{\Lambda,C}(x,c)$ when Case 1 happens.

• Case 2. There is no such c as in the previous case. First we show that $v(a^*-c) \in \Gamma_K$ for each $c \in K$. To see this, suppose that there is $c \in K$ such that $v(a^*-c) \notin \Gamma_K$, then for any $c \neq d \in K$, we have

$$v(a^* - d) = \min\{v(a^* - c), v(c - d)\} \le v(a^* - c).$$

This contradicts our assumption. So we conclude that $\Lambda = \{v(a^* - c) | c \in K\}$. We claim that Λ has a well-ordered cofinal subst *I*. Let

 $W = \{ J \subseteq \Lambda | J \text{ is a well-ordered subset} \}.$

Applying Zorn's Lemma to (W, \subseteq) , and let I be a maximal element of W, it is easy to see that I is cofinal in Λ . Since Λ is a cut, it has no largest element, we see that I is infinite. Take a sequence $\{c_i \in K | i \in I\}$ such that $v(a^* - c_i) = i$, Then a^* is a pseudo-limit of $\{c_i\}_{i \in I}$.

Claim 2. A formula $\phi(x)$ over K is in p(x) iff $\phi(x)$ is eventually true on $\{c_i \in K | i \in I\}$.

Proof. Assume again that the formula $\phi(x)$ is of the form

$$\alpha_1 \Box_1 v(x-d) \Box_2 \alpha_2 \wedge P_n(s(x-d))$$

with $\alpha_1, \alpha_2 \in \Gamma_K, d \in K$ and $s \in \mathbb{Z}$. Let $i_0 \in I$ such that $v(a^* - c_i) > v(a^* - d) + 2v(n) + 1$ for all $i > i_0$. As

$$v(a^* - d) = \min\{v(a^* - c_i), v(c_i - d)\} = v(c_i - d)$$

for all $i > i_0$, we see that

$$a^* \models \alpha_1 \Box_1 v(x-d) \Box_2 \alpha_2 \iff c_i \models \alpha_1 \Box_1 v(x-d) \Box_2 \alpha_2 \text{ (for all } i > i_0)$$

Applying Lemma 1, we have that $(a^* - d)$ and $(c_i - d)$ are in the same coset of $P_n(\mathbb{G}_m)$. So

$$\mathbb{K} \models P_n(s(a^* - d)) \leftrightarrow P_n(s(c_i - d))$$

for all $i > i_0$. We conclude that $\phi(x) \in p$ iff $\phi(x)$ is eventually true on $\{c_i \in K | i \in I\}$. This completes the proof.

We see from Claim 1 and Claim 2 that each $p(x) \in S_1(K)$ is either a realized type, or a distance type determined by a cut Λ , a point $c \in K$ and, a coset C of \mathbb{G}_m^0 , or a pseudo-limit type determined by a pseudo-Cauchy sequence.

Conversely, the proof of Claim 1 indicates that for each cut $\Lambda \subseteq K$, $c \in K$, and coset C of \mathbb{G}^0_m , the partial type $\Sigma_{\Lambda,C}(x,c)$ determines a complete 1-type over K. Similarly, the proof of Claim 2 indicates that each pseudo-Cauchy sequence also determines a complete 1-type over K.

4 Orthogonality of 1-types

As we mentioned in the introduction, distance types and pseudo-limit types are the analogues of "noncut" and "cut" in the *o*-minimal context respectively. We aim to show the orthogonality of distance types and pseudo-limit types in this section.

Lemma 7. Let $a \in \mathbb{K} \setminus K$. Then

- $\operatorname{tp}(a/K)$ is a pseudo-limit type iff $\Gamma_{K\langle a\rangle} = \Gamma_K$.
- $\operatorname{tp}(a/K)$ is a distance type iff $\Gamma_{K\langle a \rangle} \neq \Gamma_K$. Moreover, if $\operatorname{tp}(a/K)$ is a distance type around $c \in K$ then $\Gamma_{K\langle a \rangle} = \Gamma_K \langle v(a-c) \rangle$.

Proof. It is easy to see from Theorem 4 that tp(a/K) is a pseudo-limit type iff $v(a-b) \in \Gamma_K$ for all $b \in K$. So $\Gamma_{K\langle a \rangle} = \Gamma_K$ implies that tp(a/K) is a pseudo-limit type.

Now suppose that $\Gamma_{K\langle a \rangle} \neq \Gamma_K$. To see that $\operatorname{tp}(a/K)$ is a distance type, it suffices to show that $v(a-c) \notin \Gamma_K$ for some $c \in K$. Let s be a K-definable function such that $v(s(a)) \notin \Gamma_K$, then by Remark 2,

$$v(s(a)) = 1/e(v((a-d)^n) + \gamma)$$

for some $0 < e \in \mathbb{Z}$, $n \in \mathbb{Z}$, $d \in K$, and $\gamma \in \Gamma_K$. It is easy to see that $v(s(a)) \notin \Gamma_K$ implies $v(a - d) \notin \Gamma_K$. So tp(a/K) is a distance type as required.

For the "moreover" part, suppose that $\operatorname{tp}(a/K)$ is a distance type around $c \in K$, we have seen that every $\delta \in \Gamma_{K\langle a \rangle}$ is of the form $1/e(v((a-d)^n)+\gamma)$ with $0 < e \in \mathbb{Z}$, $n \in \mathbb{Z}, d \in K$, and $\gamma \in \Gamma_K$, whereas $v(a-d) = \min\{v(a-c), v(c-d)\}$. We conclude that $\delta \in \operatorname{dcl}(\Gamma_K, v(a-c))$. So $\Gamma_{K\langle a \rangle} \subseteq \Gamma_K \langle v(a-c) \rangle$. As $\Gamma_K \ncong \Gamma_{K\langle a \rangle} \prec$ $\Gamma_K \langle v(a-c) \rangle$, we see that $\Gamma_{K\langle a \rangle} = \Gamma_K \langle v(a-c) \rangle$ by Lemma 5.

Remark 3. It is easy to see from Lemma 7 that a non-realized type can not be both of distance and pseudo-limit simultaneously.

Lemma 8. Let $a \in \mathbb{K} \setminus K$ and $b \in K \langle a \rangle \setminus K$, then tp(b/K) is in the same case of tp(a/K), i.e. tp(b/K) is distance type(resp. pseudo-limit type), if tp(a/K) is.

Proof. We see from Lemma 3 that that $K\langle b \rangle = K\langle a \rangle$ and hence, $\Gamma_{K\langle a \rangle} = \Gamma_{K\langle b \rangle}$. By Lemma 7, $\operatorname{tp}(a/K)$ is a distance type iff $\Gamma_{K\langle a \rangle} = \Gamma_{K\langle b \rangle} \neq \Gamma_K$ iff $\operatorname{tp}(b/K)$ is a distance type.

Lemma 9. If $\operatorname{tp}(c/K)$ is a distance type and $\operatorname{tp}(d/K)$ is a pseudo-limit type, then c and d are algebraic independent over K, i.e. $c \notin \operatorname{acl}(K,d) = \operatorname{dcl}(K,d)$ and $d \notin \operatorname{acl}(K,c) = \operatorname{dcl}(K,c)$.

Proof. Suppose for a contradiction that $c \in dcl(K, d)$. As $c \notin K$, it follows from Lemma 8 that tp(c/K) is a also a pseudo-limit type, which is impossible by Lemma 7. Similarly, we have $d \notin dcl(K, c)$.

For both a and b realize distance types over K, we have a rough relation between $tp(a/K\langle b \rangle)$ and $tp(b/K\langle a \rangle)$:

Proposition 1. If both a and b realize distance types over K, then $tp(a/K\langle b \rangle)$ is in the same case of $tp(b/K\langle a \rangle)$, i.e. $tp(a/K\langle b \rangle)$ is a realized (resp. distance, pesudo-limit) type if $tp(b/K\langle a \rangle)$ is.

Proof. Since $a, b \notin K$, we see that $b \in K\langle a \rangle$ iff $a \in K\langle b \rangle$ by Lemma 3. So $\operatorname{tp}(a/K)$ is realized iff $\operatorname{tp}(b/K)$ is realized.

Now we assume that $b \notin K\langle a \rangle$. Suppose for a contradiction that $\operatorname{tp}(b/K\langle a \rangle)$ is a distance type but $\operatorname{tp}(a/K\langle b \rangle)$ is a pseudo-limit type. Then by Lemma 7 we have that $\Gamma_{K\langle a \rangle} \ncong \Gamma_{K\langle a, b \rangle}$ and $\Gamma_{K\langle b \rangle} = \Gamma_{K\langle a, b \rangle}$. Since *a* realizes a distance types over *K*, we see that $\Gamma_K \gneqq \Gamma_{K\langle a \rangle}$, and hence $\Gamma_{K\langle a \rangle}$ is a proper middle extension between Γ and $\Gamma_{K\langle b \rangle} = \Gamma_{K\langle a, b \rangle}$. Applying Lemma 7 again, there is $\alpha \in \Gamma_{K\langle b \rangle}$ such that $\Gamma_{K\langle b \rangle} = \Gamma_K\langle \alpha \rangle$. We conclude that $\Gamma_{K\langle a \rangle}$ is a proper middle extension between Γ and $\Gamma_{K\langle a \rangle}$, this contradicts to Corollary 2.

Similarly, it is impossible that $tp(b/K\langle a \rangle)$ is pseudo-limit but $tp(a/K\langle b \rangle)$ is a distance type.

We now show that pseudo-limit types and distance types are weakly orthogonal.

Proposition 2. Suppose that tp(a/K) is a distance type and tp(c/K) is a pseudo-limit of a sequence $\{c_i\}_{i \in I} \subseteq K$. Then $tp(c/K\langle a \rangle)$ is also a pseudo-limit of the sequence $\{c_i\}_{i \in I}$.

Proof. Firstly, $c \notin K\langle a \rangle$. Suppose not, $K \prec K\langle c \rangle \prec K\langle a \rangle$ implies that $K\langle c \rangle = K\langle a \rangle$, whereas $\Gamma_{K\langle c \rangle} = \Gamma_K$ and $\Gamma_K \neq \Gamma_{K\langle a \rangle}$.

Secondly, $\operatorname{tp}(c/K\langle a \rangle)$ can not be a distance type. Suppose not, we can assume that $\operatorname{tp}(c/K\langle a \rangle)$ is a distance type around some point $f \in K\langle a \rangle$. If $f \in K$, then v(c-f) is maximal among $\{v(c-e) | e \in K\}$, and thus $\operatorname{tp}(c/K)$ is a distance type, which is a contradiction. So $f \in K\langle a \rangle \setminus K$, and by Lemma 8, we see that $\operatorname{tp}(f/K)$ is a distance type around a point $d \in K$. Since

$$v(c-f) > v(c-d) \in \Gamma_K,$$

we have that

$$v(f-d) = v((f-c) + (c-d)) = \min\{v(f-c), v(c-d)\} = v(c-d) \in \Gamma_K,$$

which is impossible because $v(f - d) \notin \Gamma_K$ by Lemma 7. Thus, we conclude that $\operatorname{tp}(c/K\langle a \rangle)$ is a pseudo-limit of a well-indexed sequence $\{f_i\}_{i \in J} \subseteq K\langle a \rangle$.

To see that $\operatorname{tp}(c/K\langle a \rangle)$ is a pseudo-limit of the sequence $\{c_i\}_{i \in I}$, it suffices to show that for each $j \in J$ there is $i \in I$ such that $v(c - c_i) \geq v(c - f_j)$. Suppose

for a contradiction that there is $j_0 \in J$ such that $v(c - f_{j_0}) > v(c - c_i)$ for all $i \in I$. We see from Lemma 8 that $tp(f_{j_0}/K)$ is a distance type. Suppose that $tp(f_{j_0}/K)$ is around $e \in K$. Then, for all $i \in I$,

$$v(f_{j_0} - e) \ge v(f_{j_0} - c_i) \tag{1}$$

As $\operatorname{tp}(c/K)$ is a pseudo-limit of $\{c_i\}_{i \in I}$ and $e \in K$, there is $i_0 \in I$ such that $v(c - c_i) > v(c - e)$ for all $i \in I$ with $i > i_0$. Then we have that, for every $i \in I$ with $i > i_0$,

$$v(c - f_{j_0}) > v(c - c_i) > v(c - e)$$
 (2)

We conclude from (1) and (2) that,

$$v(f_{j_0} - e) \ge v(f_{j_0} - c_i) = v(f_{j_0} - c + c - c_i) = \min\{v(f_{j_0} - c), v(c - c_i)\} = v(c - c_i),$$

and then

$$v(c-e) = v((c-f_{j_0}) + (f_{j_0} - e)) \ge \min(v(c-f_{j_0}), v(f_{j_0} - e)) \ge v(c-c_i),$$

for all $i \in I$ with $i > i_0$. Since c is a pseudo-limit of $\{c_i\}_{i \in I}$, we see that v(c - e) is maximal among $\{v(c - d) | d \in K\}$, and hence tp(c/K) is a distance type. It is a contradiction.

We conclude the orthogonality of pseudo-limit types and distance types directly from Proposition 2:

Theorem 5. Suppose that $p(x) \in S_1(K)$ is a pseudo-limit type and $q(y) \in S_1(K)$ is a distance type, then there is $r(x, y) \in S_2(K)$ such that $p(x) \cup q(y) \vdash r(x, y)$.

Proof. Take any $r(x, y) \in S_2(K)$ such that $p(x) \cup q(x) \subseteq r(x, y)$. We now show that $p(x) \cup q(y) \vdash r(x, y)$. Let $a \models p(x)$ and $c \models q(y)$, then it suffices to show that $(a, c) \models r(x, y)$. Suppose that $(a', c') \models r(x, y)$. Since tp(a/K) = tp(a'/K), by the saturation of \mathbb{K} , there is $c'' \in \mathbb{K}$ such that tp(a, c''/K) = tp(a', c'/K). So r = tp(a, c''/K) and q = tp(c/K) = tp(c''/K). Assume that q is a pseudo-limit of a sequence $(c_i)_{i \in I} \subseteq K$. We see from Proposition 2 that both $tp(c/K\langle a \rangle)$ and $tp(c''/K\langle a \rangle)$ are pseudo-limit of the sequence $(c_i)_{i \in I}$. By Lemma 4, $tp(c/K\langle a \rangle) =$ $tp(c''/K\langle a \rangle)$. So tp(a, c/K) = tp(a, c''/K) = r(x, y) as required. \Box

References

 L. Bélair, 2012, "Panorama of p-adic model theory", Annales des Sciences Mathématiques du Québec, 36(1): 43–75.

- [2] R. Cluckers, 2001, "Classification of semi-algebraic *p*-adic sets up to semi-algebraic bijection", *Journal für die Reine und Angewandte Mathematik*, **540**: 105–114.
- [3] F. Delon, 1989, "Définissabilité avec paramètres extérieurs dans Q et R", Proceedings of the American Mathematical Society, 106(1): 193–198.
- [4] J. Denef, 1984, "The rationality of the poincaré series associated to the *p*-adic points on a variety", *Inventiones Mathematicae*, **77**: 1–23.
- [5] J. Denef, 1986, "*p*-adic semi-algebraic sets and cell decomposition", *Journal für die Reine und Angewandte Mathematik*, **369:** 154–166.
- [6] E. Hrushovski and A. Pillay, 1994, "Groups definable in local fields and pseudo-finite fields", *Israel Journal of Mathematics*, **85:** 203–262.
- [7] A. Macintyre, 1976, "On definable subsets of *p*-adic fields", *The Journal of Symbolic Logic*, **41(3)**: 605–610.
- [8] D. Marker, 1986, "Omitting types in o-minimal theories", *Journal of Symbolic Logic*, 51(1): 63–74.
- [9] D. Marker, 2002, Model Theory: An Introduction, New York: Springer.
- [10] D. Penazzi, A. Pillay and N. Yao, 2019, "Some model theory and topological dynamics of *p*-adic algebraic groups", *Fundamenta Mathematicae*, 247(2): 191–216.
- [11] B. Poizat, 2000, A Course in Model Theory, New York: Springer.
- [12] M. Presburger, 1991, "On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation", *History and Philosophy of Logic*, **12(2)**: 92–101.
- [13] P. Scowcroft, 1988, "A note on definable skolem functions", *The Journal of Symbolic Logic*, 53(3): 905–911.
- [14] P. Simon, 2015, A Guide to NIP Theories, Cambridge: Cambridge University Press.

p-进闭域上型的研究

姚宁远 张镇涛⊠

摘 要

本文的目标是研究 *p*-进闭域上型。我们首先分类了 *p*-进闭域上的 1-型,该结 果推广了 D. Penazzi, A. Pillay 和 N. Yao (2019)对于 *p*-进闭域的标准模型 \mathbb{Q}_p 上 的型的分类。我们还进一步研究了"伪极限型"与"距离型"的正交性,这种正 交性类似于序-极小结构上 1-型的"切割"与"非切割"正交性和二歧性。

姚宁远 复旦大学 yaony@fudan.edu.cn
张镇涛[∞] 复旦大学 ztzhang22@m.fudan.edu.cn