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On Types over padically Closed Fields

Ningyuan Yao Zhentao ZhangB

Abstract. The aim of this paper is to study types over a padically closed field. We classify
the 1types over an arbitrary padically closed field, which extends the previouswork of Penazzi,
Pillay and Yao (2019) on classifying 1types over the standard model Qp of the field of padic
numbers. We also study the orthogonality of pseudolimit types and distance types and yield an
analogue of the dichotomy of “cuts” and “noncuts” in the ominimal context.

1 Introduction

This paper presents several new results on types in padically closed fields, the
structures (in the language of rings) which are elementarily equivalent to the fieldQp

of padic numbers. We denote the theory of Qp in the language of rings by pCF.
Delon showed in [3] that every type over Qp is definable. In [10], the authors

classified the complete 1types over the standard model Qp as follows:

Theorem 1. [10] The complete 1types over Qp are precisely the following:

(i) The realized types tp(a/Qp) for each a ∈ Qp;
(ii) For each a ∈ Qp and C, a coset of G0

m in Gm, the type pa,C saying that x is
infinitesimally closed to a (i.e. v(x− a) > n for each n ∈ N), and x− a ∈ C;

(iii) For each coset C as above the type p∞,C saying that x ∈ C and v(x) < n for
all n ∈ Z,

where Gm the is multiplicative group of a very saturated elementary extension ofQp,
and

G0
m = {b ∈ Gm| for each n ∈ N+,∃x(xn = b)}.

In this paper, we extend the above result to an arbitrary padically closed field:

Theorem 2. Let K be a model of pCF, ΓK the value group of K, and G0
m as above.

Then the complete 1types over K are precisely the following:

(i) The realized types tp(a/K) for each a ∈ K;
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(ii) (distance type around a point) For each cut Λ ⊆ ΓK (see Definition 2), c ∈ K,
and coset C of G0

m, the type pΛ,c,C saying that Λ < v(x − c) < ΓK\Λ and
x− c ∈ C;

(iii) (Pseudolimit type) For each pesudoCauchy sequence {ci}i∈I (see Definition
1), the type p{ci}i∈I

saying that x is a pseudolimit of {ci}i∈I , and for any for
mula ϕ(x) over K, ϕ(x) ∈ p{ci}i∈I

iff ϕ(x) is eventually true (see Definition
1) on {ci}i∈I .

Note that whenK is Qp, any pseudolimit type is realized since Qp is complete
as a metric space. As the value group ofQp is Z and there are exactly two cut over Z,
namely, ∅ and Z, we see that case (ii) of Theorem 2 corresponds to case (ii) and (iii)
of Theorem 1.

Recall that an ominimal structure is an ordered structure (M,<, ...) in which
every definable subset X ⊆ M is a finite union of intervals and points. If A ⊆ M

and c ∈ M , we call tp(c/A) a cut iff there are a, b ∈ dcl(A), the definable closure of
A in M , such that a < c < b, and for a0 ∈ dcl(A) with a0 < c, there is a1 ∈ dcl(A)

with a0 < a1 < c, and likewise for c < b0 ∈ dcl(A). Say that tp(c/A) is a noncut iff
it is not algebraic and not a cut. Abusing terminology, we will also refer to c itself as a
cut/noncut overA. In the topological view, tp(c/A) is a noncut iff there is a ∈ dcl(A)

such that the “distance” of c and a is minimal among the “distance” of c and other
points in dcl(A), and tp(c/A) is a cut iff there is no such a ∈ dcl(A).

In the pCF environment, it is reasonable to consider the pseudolimit types and
distance types as the analogues of “cut” and “noncut” in the ominimal context, re
spectively.

Assuming ominimality, a result of [8] shows that if tp(c/A) is a type of cut over
A, and tp(d/A) is a type of noncut overA, then c and d are algebraically independent
overA, namely, c /∈ dcl(A, d) and d /∈ dcl(A, c). Recall from [14] that two types p(x)
and q(y) overA are weakly orthogonal if they implies a complete type r(x, y) overA.
It is easy to see that if tp(c/A) and tp(d/A) are weakly orthogonal, then c and d are
algebraically independent over A. We extend Marker’s result to pCF environment,
showing that

Theorem 3. Let K be a model of pCF, p(x) ∈ S1(K) a pseudolimit type, and
q(y) ∈ S1(K) a distance type, then p and q are weakly orthogonal.

The paper is organized as follows: For the rest of the introductionwe give precise
definition and preliminaries relevant to our results.

In Section 2, we study the the elementary extensions of padically closed fields
and their value groups.

In Section 3, we will prove Theorem 2, classifying the 1types over an arbitrary
model of pCF.
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In Section 4, we will prove Theorem 3, the orthogonality of pseudolimit types
and distance types.

1.1 Notations

Let T be a complete theory with infinite models in a countable language L and
M a model of T . We usually write tuples as a, b, x, y rather than ā, b̄, x̄, ȳ. For A
a subset of M , an LAformula is a formula with parameters from A. If ϕ(x) is an
LM formula andA ⊆ M , then ϕ(A) is the collection of the realizations of ϕ(x) from
A, namely, ϕ(A) = {a ∈ A|x||M |= ϕ(a)}. Similarly, ifX ⊆ M |x| is a definable set
defined by the formula ϕ(x), then we use X(A) to denote the set ϕ(A) = X ∩ A|x|.
If X ⊆ Mn is definable in M and N ≻ M , we sometimes use X(x) to denote the
formula which defines X and X(N) the subset of Nn defined by the formula X(x).

Assume that A ⊆ M and a ∈ M . We say that a is in the algebraic closure of A
(in M ), written a ∈ acl(A), if there is a formula φ(x) over A (namely of LA) such
thatM |= φ(a), and moreover such that φ(x) has only finitely many solutions inM .
We say that a is in the definable closure of A, a ∈ dcl(A), if for some LAformula
φ(x), a is the unique solution of φ(x) in M . Note that both acl(−) and dcl(−) are
idempotent operators, namely, acl(acl(A)) = acl(A) and dcl(dcl(A)) = dcl(A) for
anyA ⊆ M . For any ntuple a = (a1, ..., an) ∈ Mn, we denote acl(A∪{a1, ..., an})
by acl(A, a). Similarly for dcl(A, a).

Our notation for model theory is standard, and we will assume familiarity with
basic notions such as very saturated models (or monster models), skolem functions,
partial types, typedefinable etc. References are [11] as well as [9].

1.2 Background in padically Closed Fields

Let p be a prime andQp the field of padic numbers. We call the complete theory
ofQp (in the language of rings) the theory of padically closed fields, written pCF. A
padic closed field is a model of pCF, or equivalently, a field which is elementarily
equivalent toQp. A key point is the Macintyre’ s theorem [7] that pCF has quantifier
elimination in the language of rings together with new predicates Pn(x) for the nth
powers for each n ∈ N+. LetK be a padically closed field, we denote its multiplica
tive group by K∗, its valuation ring by RK , and its value group by ΓK . The value
group ΓK is a model of Pr (Presburger arithmetic), namely, (ΓK , <,+) is elementary
equivalent to (Z,+, <). The valuation on a K is the map v from K to ΓK ∪ {∞}
satisfying:

• ∞ > y and y +∞ = ∞+ y = ∞ for all y ∈ ΓK

• v(x) = ∞ ⇐⇒ x = 0;
• v(x + y) ≥ min{v(x), v(y)} and v(x + y) = min{v(x), v(y)} when v(x) ̸=
v(y);
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• v(xy) = v(x) + v(y).

Note that the valuation ring RK = {x ∈ K| v(x) ≥ 0} and the relation v(x) ≤
v(y) are definable in the language of rings (see [4]), so is quantifierfree definable
in Macintyre’ s language. We will freely use the variables and parameters from the
value group sort.

Throughout this paper, (K,+,×, 0, 1) will denote a very saturated model (or
monster model) of pCF andK an (arbitrary) small elementary submodel ofK, where
we say that a set X is small if |X| < |K|. We use Gm to denote the multiplicative
group of K, so Gm(K) = K∗ is the multiplicative group of K. Before getting into
details we recall some basic facts which will be used freely in this section and the rest
of the paper.

First, the topology onK is the valuation topology. Consider the formula

B(x, y, γ) := v(x− y) > γ

where x, y are of the home sort and γ is of the value group sort. For any c ∈ K and
δ ∈ ΓK , we call B(c,K, δ) an open ball of center c and radius δ.

Fact 1.

• The padic fieldQp is a complete, locally compact topological field, with basis
given by the sets B(c,Qp, n) for c ∈ Qp, n ∈ Z.

• K is also a topological field, with basis given by the setsB(c,K, δ) for c ∈ K,
δ ∈ ΓK , but not need to be complete or locally compact.

• For each c ∈ K and γ ∈ ΓK , B(c,K, δ) = B(c′,K, δ) whenever c′ ∈
B(c,K, δ).

• For each c ∈ K and γ ∈ ΓK , B(c,K, δ) is clopen.
• For each c ∈ K and γ ∈ ΓK , B(c,K, δ) is a disjoint union of B(c0,K, δ +

1), ..., B(cp−1,K, δ + 1) for some c0, ..., cp−1 ∈ B(c,K, δ).

It is wellknown that pCF satisfies Hensel’s Lemma:

Fact 2 (Hensel). Let f(t) be a polynomial over RK in one variable t, and let α ∈
RK , e ∈ N. Suppose that v(f(α)) ≥ 2e + 1 and v(f ′(α)) ≤ e, where f ′ denotes
the derivative of f . Then there exists a unique ϵ ∈ RK such that v(ϵ) ≥ e + 1 and
f(α+ ϵ) = 0.

Recall that Pn(x) denotes the formula saying that x is an nth power, and that
pCF has quantifier elimination after adding predicates for all Pn(x). It is easy to see
from the Hensel’s Lemma that each Pn(K

∗) is an open subgroup of the multiplicative
groupK∗ with finite index, and each coset of Pn(K

∗) contains representatives from
Z (see [1, 7] for details).
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The following lemma can also be conclude directly from the Hensel’s Lemma.
Nevertheless we give a proof here for convenience.

Lemma 1. Let a, b ∈ K∗. If v(a) ≥ v(b) + 2v(n) + 1, then a and a − b are in the
same coset of Pn(K

∗) in K∗, namely, K |= ∀λ(Pn(λb) ↔ Pn(λ(b− a))).

Proof. Let ϵ ∈ K such that v(ϵ) ≥ 2v(n)+1. Consider the polynomial f(t) = tn−
(1+ϵ). Since f(1) = ϵ and f ′(1) = n. It follows from the Hensel’s Lemma that f(t)
has a root inK, which means that 1+ ϵ is an nth power whenever v(ϵ) ≥ 2v(n)+1.

Now suppose that v(a) > v(b)+2v(n)+1, then v(b−a) = min{v(a), v(b)} =

v(b). Let ϵ = a/(b− a), we see that

v(ϵ) = v(a/(b− a)) = v(a)− v(b− a) ≥ 2v(n) + 1,

so 1 + ϵ is an nth power. Since

b = (b− a) + a = (b− a)(1 + a/(b− a)) = (b− a)(1 + ϵ),

we see that b and b− a are in the same coset of Pn(K
∗). □

The partial type {Pn(x)| n ∈ N+} defines a subgroup of Gm, we call it the
definable connected component ofGm, and denote it byG0

m. Note that every coset of
G0

m is typedefinable over ∅.
Recall that awellindexed sequence inK is a sequence {ai}i∈I inK whose terms

ai are indexed by the elements i of an infinite wellordered set (I,<) without a last
element.

Definition 1. Let {ai}i∈I be a wellindexed sequence inK.

• We say that {ai}i∈I is a pseudoCauchy sequence if for some index i0 we have
that v(ak − aj) > v(aj − ai) whenever k > j > i > i0.

• We say that a∗ ∈ K is a pseudolimit of {ai}i∈I if v(ai − a∗) is eventually
strictly increasing, that is, for some index i0, we have that v(ak−a∗) > v(aj−
a∗) whenever k > j > i0.

• We say that a formula ϕ(x) overK is eventually true on {ai}i∈I if there is some
i0 ∈ I such thatK |= ϕ(ai) for all i > i0.

Remark 1. Since K is a monster model, a compactness argument shows that any
pseudoCauchy sequence {ai}i∈I in K has a (not necessary unique) pseudolimit in
K.

Using cell decomposition in the form of Denef [4] or [5], the following can be
easily derived, cf. [2], Lemma 4:
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Fact 3. LetX ⊆ Km+1 be a definable subset, and bj : X → K definable functions,
for j = 1, ..., r. Then there exists a finite partition of X such that each part A has
form

A = {(x, y) ∈ Km×K|x ∈ D, v(a1(x))21v(y−c(x))22v(a2(x)), (y−c(x)) ∈ λPn}

and for each (x, y) ∈ A, we have

v(bj(x, y)) =
1

ej
v((y − c(x))µjdj(x)),

with x ∈ Km, D ⊆ Km definable, 0 < ej ∈ Z, µj ∈ Z, λ ∈ Z, c, ai, dj definable
functions fromKm toK and 2i either <, ≤ or no condition.

Remark 2. It is easy to see from Fact 3 that

• Every onevariable formula ϕ(x) overK is equivalent to a disjoint disjunction
of the formulas of the form

(γ121v(x− c)22γ2) ∧ Pn(λ(x− c))

with c ∈ K, γi ∈ ΓK , λ ∈ Z, and 2i either <, ≤ or no condition.
• If s(x) is aKdefinable function and a∗ ∈ K, then there are 0 < e ∈ Z, n ∈ Z,
d ∈ K, and γ ∈ ΓK such that

v(s(a∗)) = 1/e(v((a∗ − d)n) + γ).

Another goodness of pCF is that it has definable Skolem functions(See [13]),
i.e. for any formula φ(x, y) over K with K |= ∀x∃yφ(x, y), we can find a K
definable function fφ such that K |= ∀xφ(x, fφ(x)). So for any A ⊆ K, dcl(A) is
an elementary substructure of K. The reader is referred to [1] for additional details
of padically closed fields.

2 Extensions of Models

Lemma 2. Suppose that S is a small subset of K, then dcl(S) = acl(S) in K.

Proof Assume that a ∈ acl(S). There is a finite set D defined over S with the
smallest cardinality such that a ∈ D. Then let f(x) =

∏
d∈D(x− d) and Aut(K/S)

the group of automorphisms of K fixing S pointwise. Since every σ ∈ Aut(K/S)

fixesD setwisely, we see that each coefficient of f is Aut(K/S)invariant. Thus, all
coefficients of f are in dcl(S) by the saturation of K. As definable Skolem functions
exist, some root b of f is in dcl(dcl(S)) = dcl(S). If b ̸= a, then D\{b} is defined
over S with cardinality < |D| and a ∈ D\{b}, which is impossible. Thus, a = b ∈
dcl(S). □



64 Studies in Logic, Vol. 16, No. 6 (2023)

For any S ⊆ K, acl(S) is the same whether computed in K or K. So we have
that

Corollary 1. If S ⊆ K, then dcl(S) = acl(S) in K.

By [6], the algebraic closure operation acl(−) in any model K of pCF defines
a pregeometry, namely the exchange axiom is satisfied: if a, b ∈ K, A ⊆ K and
b ∈ acl(A, a)\acl(A), then a ∈ acl(A, b). For a ∈ K, we write dcl(K, a) as K⟨a⟩,
which is an elementary extension of K. It is easy to see from Lemma 1 and the
exchange axiom that:

Lemma 3. Let a ∈ K\K. Then there is no proper middle extension between K ≺
K⟨a⟩, i.e. no L such that K ⪵ L ⪵ K⟨a⟩.

Recall from [12] that Pr = Th(Z,+, <, 0, {Dn}n>0) has definable Skolem func
tions, quantifier elimination in the language {+, <, 0, {Dn}n>0}, and is decidable,
where eachDn is a unary predicate symbol for the set of elements divisible by n. For
any A ⊆ M |= Pr, we see that dcl(A) is an elementary substructure of M . Clearly,
the value group ΓK of K is a monster model of Pr.

Lemma 4. Let K0 ≺ K, and G an elementary substructure of ΓK extending ΓK0 .
Then there is K1 such that K0 ≺ K1 ≺ K and G = ΓK1 .

Proof. Let
K = {L |= pCF|K0 ≺ L ≺ K and ΓL ⊆ G}.

Then K is not empty since K0 ∈ K. Applying Zorn’s Lemma to (K,⊆), and let K1

be a maximal element of K. We claim that G is the value group of K1. Otherwise,
there is α ∈ G\ΓK1 . Take any a ∈ K such that v(a) = α. Then v(a − c) =

min{v(a), v(c)} ∈ G for each c ∈ K1. By Remark 2, for each b ∈ dcl(K1, a) =

K1⟨a⟩, there are 0 < e ∈ Z, n ∈ Z, c ∈ K, and γ ∈ ΓK1 such that

v(b) = 1/e(v((a− c)n) + γ).

So v(K1⟨a⟩) ⊆ G and thus the proper extensionK1⟨a⟩ ofK1 is also in K. A contra
diction. □

We see from Lemma 4 that anyM |= Pr is isomorphic to a value group of some
K ≺ K. In this paper, we consider any (small) model of Pr as a value group of of
someK ≺ K. We also write dcl(M,α) asM⟨α⟩ for α ∈ ΓK.

Lemma 5. Let K ′ ≻ K and a ∈ K ′\K such that v(a) = α /∈ ΓK . Then ΓK⟨a⟩ =

ΓK⟨α⟩.
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Proof. It is easy to see that

ΓK⟨α⟩ = dcl(ΓK , α) ⊆ v(dcl(K, a)) = ΓK⟨a⟩

since ΓK ∪ {α} ⊆ v(dcl(K, a)). Suppose for a contradiction that ΓK⟨α⟩ is a proper
subset of ΓK⟨a⟩. Then by Lemma 4, there is K ′ such that K ≺ K ′ ≺ K⟨a⟩ such
that ΓK′ = ΓK⟨α⟩. Since ΓK′ is proper middle extension between ΓK and ΓK⟨a⟩, it
follows that K ′ is a proper middle extension between K and K⟨a⟩. This contradicts
to Lemma 3. □

Corollary 2. LetM |= Pr and α ∈ ΓK\M , then there is no middle extension between
M and M⟨α⟩, i.e. there is no N such that M ⪵ N ⪵ M⟨α⟩.

Proof. Suppose Not, then there is β ∈ M⟨α⟩ such that

M ⪵ M⟨β⟩ ⪵ M⟨α⟩.

By Lemma 4, there is K ′ |= pCF such that ΓK′ = M . Take any a ∈ K such
that v(a) = α, then M⟨α⟩ is the value group of K ′⟨a⟩ by Lemma 5. Take any
b ∈ K ′⟨a⟩ such that v(b) = β, then applying Lemma 5 again, M⟨β⟩ is the value
group of K ′⟨b⟩. We conclude that K ′⟨b⟩ is a proper middle extension between K ′

andK ′⟨a⟩. A contradiction. □

3 Classification of 1types

Recall thatK is the monster model of pCF andGm is the multiplicative group of
K. From now on, we fixK as a small elementary submodel of K andK∗ = Gm(K)

the multiplicative group ofK.

Definition 2. Suppose that (Γ,+, <, 0) is a model of Presburger arithmetic. We say
that Λ ⊆ Γ is a cut of Γ if

• For each γ, β ∈ Λ, if γ ∈ Λ and β < γ, then β ∈ Λ;
• For each n ∈ Z and γ ∈ Λ, γ + n ∈ Λ.

i.e. Λ is downward closed and satisfying Λ + Z = Λ.

Lemma 6. Let a∗ ∈ K\K, and

Λ := {α ∈ ΓK : there is c ∈ K such that v(a∗ − c) > α}.

Then Λ is a cut of ΓK

Proof. It is easy to see that Λ is downward closed. It suffices to show that δ ∈ Λ

implies δ + 1 ∈ Λ. Suppose that v(c − a∗) > δ for some c ∈ K and δ ∈ ΓK ,
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we see from Fact 1 that there are c0, ..., cp−1 ∈ K such that B(c,K, δ) is a disjoint
union of B(c0,K, δ + 1), ..., B(cp−1,K, δ + 1). Since K is an elementary extension
ofK, B(c,K, δ) is also a disjoint union ofB(c0,K, δ+1), ..., B(cp−1,K, δ+1). As
a∗ ∈ B(c,K, δ), there is i < p such that a∗ ∈ B(ci,K, δ+1). So v(a∗− ci) > δ+1

as required. □

Theorem 4. Let K be a model of pCF and G0
m =

∩
n∈N+ Pn(Gm) be the definable

connected component of Gm. Then the complete 1types over K are precisely the
following:

(a) The realized types tp(a/K) for each a ∈ K;
(b) (distance type around a point) For each cut Λ ⊆ ΓK , c ∈ K, and coset C of

G0
m, the type pΛ,c,C saying that Λ < v(x− c) < ΓK\Λ and x− c ∈ C. We call

pΛ,c,C a Λdistance (or distance) type around point c.
(c) (Pseudolimit type) For each pesudoCauchy sequence {ci}i∈I , the type

p{ci}i∈I
(x) saying that x is a pseudolimit of {ci}i∈I . In this case, p{ci}i∈I

(x)

is determined by the sequence {ci}i∈I : For each formula ϕ(x) overK, ϕ(x) ∈
p{ci}i∈I

(x) iff ϕ(x) is eventually true on {ci}i∈I .

Proof. Let p(x) ∈ S1(K) be a nonrealized type and a∗ |= p. Let

Λ := {α ∈ ΓK : there is c ∈ K such that v(a∗ − c) > α}.

Then Λ is a cut of ΓK by Lemma 6. Let a∗ |= p. Now we have two cases:

• Case 1: There is c ∈ K such that v(a∗ − c) is maximal among the set {v(a∗ − d) :

d ∈ K}. Then v(a∗ − c) ∈ ΓK\ΓK realizes the cut Λ, i.e. Λ < v(a∗ − c) < ΓK\Λ.
Let C be the coset of G0

m such that a∗ − c ∈ C. We claim that

Claim 1. Let ΣΛ,C(x, c) be the partial type saying that Λ < v(x − c) < ΓK and
x − c ∈ C, then for any formula ϕ(x) over K, ϕ(x) ∈ p iff ϕ(x) is consistent with
ΣΛ,C(x, c).

Proof. Clearly, every formula ϕ(x) ∈ p(x) is consistent with ΣΛ,C(x, c) since
ΣΛ,C(x, c) ⊆ p.

Now suppose that ϕ(x) is consistent withΣΛ,C(x, c). We aim to show that a∗ |=
ϕ(x). By Remark 2, we can assume that ϕ(x) is of the form

α121v(x− d)22α2 ∧ Pn(s(x− d))

with α1, α2 ∈ ΓK , d ∈ K, and s ∈ Z. Let b∗ ∈ K realize the partial type

{α121v(x− d)22α2, Pn(s(x− d))} ∪ ΣΛ,C(x, c).
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Then both v(a∗− c) and v(b∗− c) realize the cut Λ. As both v(a∗− c) and v(b∗− c)

are not in ΓK , we have that

v(b∗ − d) = min(v(b∗ − c), v(c− d)) =

{
v(c− d), if v(c− d) ∈ Λ

v(b∗ − c), if v(c− d) /∈ Λ

and

v(a∗ − d) = min(v(a∗ − c), v(c− d)) =

{
v(c− d), if v(c− d) ∈ Λ

v(a∗ − c), if v(c− d) /∈ Λ

If v(c− d) ∈ Λ, then

v(a∗ − d) = min(v(a∗ − c), v(c− d)) = v(c− d) = v(b∗ − d),

which means that a∗ |= α121v(x− d)22α2.
If v(c− d) /∈ Λ, then both

v(a∗ − d) = min(v(a∗ − c), v(c− d)) = v(a∗ − c)

and
v(b∗ − d) = min(v(b∗ − c), v(c− d)) = v(b∗ − c)

realize the cut Λ, so

α121v(b
∗ − d)22α2 ⇐⇒ α121v(a

∗ − d)22α2,

which also means that a∗ |= α121v(x− d)22α2.
We now show that a∗ also realizes Pn(s(x− d)). If v(c− d) ∈ Λ, we have

v(a∗ − c) > v(c− d) + Z and v(b∗ − c) > v(c− d) + Z

By Lemma 1, we see that (a∗ − d), (c − d) and (b∗ − d) are in the same coset of
Pn(Gm). So a∗ |= Pn(s(x − d)) as required. Similarly, if v(c − d) /∈ Λ, then we
have both

v(a∗ − c) < v(c− d) + Z and v(b∗ − c) < v(c− d) + Z.

Which implies that a∗−d and a∗−c are in the same coset of Pn(Gm), also, b∗−d and
b∗−c are in the same coset ofPn(Gm). Since (b∗−c) and (a∗−c) are in the same coset
of G0

m, we see that K |= Pn(s(b
∗ − d)) ↔ Pn(s(a

∗ − d)). So a∗ |= Pn(s(x − d)).
This complete the proof of the Claim. □
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Clearly, we see for the above Claim that p is determined by the partial type
ΣΛ,C(x, c) when Case 1 happens.

•Case 2. There is no such c as in the previous case. First we show that v(a∗−c) ∈ ΓK

for each c ∈ K. To see this, suppose that there is c ∈ K such that v(a∗ − c) /∈ ΓK ,
then for any c ̸= d ∈ K, we have

v(a∗ − d) = min{v(a∗ − c), v(c− d)} ≤ v(a∗ − c).

This contradicts our assumption. So we conclude that Λ = {v(a∗ − c)| c ∈ K}. We
claim that Λ has a wellordered cofinal subet I . Let

W = {J ⊆ Λ| J is a wellordered subset}.

Applying Zorn’s Lemma to (W,⊆), and let I be a maximal element of W , it is easy
to see that I is cofinal in Λ. Since Λ is a cut, it has no largest element, we see that I
is infinite. Take a sequence {ci ∈ K| i ∈ I} such that v(a∗ − ci) = i, Then a∗ is a
pseudolimit of {ci}i∈I .

Claim 2. A formula ϕ(x) overK is in p(x) iff ϕ(x) is eventually true on {ci ∈ K| i ∈
I}.

Proof. Assume again that the formula ϕ(x) is of the form

α121v(x− d)22α2 ∧ Pn(s(x− d))

with α1, α2 ∈ ΓK , d ∈ K and s ∈ Z. Let i0 ∈ I such that v(a∗ − ci) > v(a∗ − d) +

2v(n) + 1 for all i > i0. As

v(a∗ − d) = min{v(a∗ − ci), v(ci − d)} = v(ci − d)

for all i > i0, we see that

a∗ |= α121v(x− d)22α2 ⇐⇒ ci |= α121v(x− d)22α2 (for all i > i0).

Applying Lemma 1, we have that (a∗ − d) and (ci − d) are in the same coset of
Pn(Gm). So

K |= Pn(s(a
∗ − d)) ↔ Pn(s(ci − d))

for all i > i0. We conclude that ϕ(x) ∈ p iff ϕ(x) is eventually true on {ci ∈ K| i ∈
I}. This completes the proof. □

We see from Claim 1 and Claim 2 that each p(x) ∈ S1(K) is either a realized
type, or a distance type determined by a cut Λ, a point c ∈ K and, a coset C of G0

m,
or a pseudolimit type determined by a pseudoCauchy sequence.

Conversely, the proof of Claim 1 indicates that for each cut Λ ⊆ K, c ∈ K,
and coset C of G0

m, the partial type ΣΛ,C(x, c) determines a complete 1type over
K. Similarly, the proof of Claim 2 indicates that each pseudoCauchy sequence also
determines a complete 1type overK. □
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4 Orthogonality of 1types

As we mentioned in the introduction, distance types and pseudolimit types are
the analogues of “noncut” and “cut” in the ominimal context respectively. We aim
to show the orthogonality of distance types and pseudolimit types in this section.

Lemma 7. Let a ∈ K\K. Then

• tp(a/K) is a pseudolimit type iff ΓK⟨a⟩ = ΓK .
• tp(a/K) is a distance type iff ΓK⟨a⟩ ̸= ΓK . Moreover, if tp(a/K) is a distance
type around c ∈ K then ΓK⟨a⟩ = ΓK⟨v(a− c)⟩.

Proof. It is easy to see from Theorem 4 that tp(a/K) is a pseudolimit type iff
v(a− b) ∈ ΓK for all b ∈ K. So ΓK⟨a⟩ = ΓK implies that tp(a/K) is a pseudolimit
type.

Now suppose thatΓK⟨a⟩ ̸= ΓK . To see that tp(a/K) is a distance type, it suffices
to show that v(a − c) /∈ ΓK for some c ∈ K. Let s be a Kdefinable function such
that v(s(a)) /∈ ΓK , then by Remark 2,

v(s(a)) = 1/e(v((a− d)n) + γ)

for some 0 < e ∈ Z, n ∈ Z, d ∈ K, and γ ∈ ΓK . It is easy to see that v(s(a)) /∈ ΓK

implies v(a− d) /∈ ΓK . So tp(a/K) is a distance type as required.
For the “moreover” part, suppose that tp(a/K) is a distance type around c ∈ K,

we have seen that every δ ∈ ΓK⟨a⟩ is of the form 1/e(v((a−d)n)+γ)with 0 < e ∈ Z,
n ∈ Z, d ∈ K, and γ ∈ ΓK , whereas v(a − d) = min{v(a − c), v(c − d)}. We
conclude that δ ∈ dcl(ΓK , v(a− c)). So ΓK⟨a⟩ ⊆ ΓK⟨v(a− c)⟩. As ΓK ⪵ ΓK⟨a⟩ ≺
ΓK⟨v(a− c)⟩, we see that ΓK⟨a⟩ = ΓK⟨v(a− c)⟩ by Lemma 5. □

Remark 3. It is easy to see from Lemma 7 that a nonrealized type can not be both
of distance and pseudolimit simultaneously.

Lemma 8. Let a ∈ K\K and b ∈ K⟨a⟩\K, then tp(b/K) is in the same case of
tp(a/K), i.e. tp(b/K) is distance type(resp. pseudolimit type), if tp(a/K) is.

Proof. We see from Lemma 3 that that K⟨b⟩ = K⟨a⟩ and hence, ΓK⟨a⟩ = ΓK⟨b⟩.
By Lemma 7, tp(a/K) is a distance type iff ΓK⟨a⟩ = ΓK⟨b⟩ ̸= ΓK iff tp(b/K) is a
distance type. □

Lemma 9. If tp(c/K) is a distance type and tp(d/K) is a pseudolimit type, then
c and d are algebraic independent over K, i.e. c /∈ acl(K, d) = dcl(K, d) and
d /∈ acl(K, c) = dcl(K, c).

Proof. Suppose for a contradiction that c ∈ dcl(K, d). As c /∈ K, it follows from
Lemma 8 that tp(c/K) is a also a pseudolimit type, which is impossible by Lemma
7. Similarly, we have d /∈ dcl(K, c). □
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For both a and b realize distance types overK, we have a rough relation between
tp(a/K⟨b⟩) and tp(b/K⟨a⟩):

Proposition 1. If both a and b realize distance types overK, then tp(a/K⟨b⟩) is in the
same case of tp(b/K⟨a⟩), i.e. tp(a/K⟨b⟩) is a realized (resp. distance , pesudolimit)
type if tp(b/K⟨a⟩) is.

Proof. Since a, b /∈ K, we see that b ∈ K⟨a⟩ iff a ∈ K⟨b⟩ by Lemma 3. So
tp(a/K) is realized iff tp(b/K) is realized.

Now we assume that b /∈ K⟨a⟩. Suppose for a contradiction that tp(b/K⟨a⟩) is
a distance type but tp(a/K⟨b⟩) is a pseudolimit type. Then by Lemma 7 we have
that ΓK⟨a⟩ ⪵ ΓK⟨a,b⟩ and ΓK⟨b⟩ = ΓK⟨a,b⟩. Since a realizes a distance types over
K, we see that ΓK ⪵ ΓK⟨a⟩, and hence ΓK⟨a⟩ is a proper middle extension between
Γ and ΓK⟨b⟩ = ΓK⟨a,b⟩. Applying Lemma 7 again, there is α ∈ ΓK⟨b⟩ such that
ΓK⟨b⟩ = ΓK⟨α⟩. We conclude that ΓK⟨a⟩ is a proper middle extension between Γ

and ΓK⟨α⟩, this contradicts to Corollary 2.
Similarly, it is impossible that tp(b/K⟨a⟩) is pseudolimit but tp(a/K⟨b⟩) is a

distance type. □

We now show that pseudolimit types and distance types are weakly orthogonal.

Proposition 2. Suppose that tp(a/K) is a distance type and tp(c/K) is a pseudolimit
of a sequence {ci}i∈I ⊆ K. Then tp(c/K⟨a⟩) is also a pseudolimit of the sequence
{ci}i∈I .

Proof. Firstly, c /∈ K⟨a⟩. Suppose not, K ≺ K⟨c⟩ ≺ K⟨a⟩ implies that K⟨c⟩ =
K⟨a⟩, whereas ΓK⟨c⟩ = ΓK and ΓK ̸= ΓK⟨a⟩.

Secondly, tp(c/K⟨a⟩) can not be a distance type. Suppose not, we can assume
that tp(c/K⟨a⟩) is a distance type around some point f ∈ K⟨a⟩. If f ∈ K, then
v(c− f) is maximal among {v(c− e)| e ∈ K}, and thus tp(c/K) is a distance type,
which is a contradiction. So f ∈ K⟨a⟩\K, and by Lemma 8, we see that tp(f/K) is
a distance type around a point d ∈ K. Since

v(c− f) > v(c− d) ∈ ΓK ,

we have that

v(f − d) = v((f − c) + (c− d)) = min{v(f − c), v(c− d)} = v(c− d) ∈ ΓK ,

which is impossible because v(f − d) /∈ ΓK by Lemma 7. Thus, we conclude that
tp(c/K⟨a⟩) is a pseudolimit of a wellindexed sequence {fj}j∈J ⊆ K⟨a⟩.

To see that tp(c/K⟨a⟩) is a pseudolimit of the sequence {ci}i∈I , it suffices to
show that for each j ∈ J there is i ∈ I such that v(c − ci) ≥ v(c − fj). Suppose
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for a contradiction that there is j0 ∈ J such that v(c− fj0) > v(c− ci) for all i ∈ I .
We see from Lemma 8 that tp(fj0/K) is a distance type. Suppose that tp(fj0/K) is
around e ∈ K. Then, for all i ∈ I ,

v(fj0 − e) ≥ v(fj0 − ci) (1)

As tp(c/K) is a pseudolimit of {ci}i∈I and e ∈ K, there is i0 ∈ I such that v(c −
ci) > v(c − e) for all i ∈ I with i > i0. Then we have that, for every i ∈ I with
i > i0,

v(c− fj0) > v(c− ci) > v(c− e) (2)

We conclude from (1) and (2) that,

v(fj0−e) ≥ v(fj0−ci) = v(fj0−c+c−ci) = min{v(fj0−c), v(c−ci)} = v(c−ci),

and then

v(c− e) = v((c− fj0) + (fj0 − e)) ≥ min(v(c− fj0), v(fj0 − e)) ≥ v(c− ci),

for all i ∈ I with i > i0. Since c is a pseudolimit of {ci}i∈I , we see that v(c − e)

is maximal among {v(c − d)| d ∈ K}, and hence tp(c/K) is a distance type. It is a
contradiction. □

We conclude the orthogonality of pseudolimit types and distance types directly
from Proposition 2:

Theorem 5. Suppose that p(x) ∈ S1(K) is a pseudolimit type and q(y) ∈ S1(K) is
a distance type, then there is r(x, y) ∈ S2(K) such that p(x) ∪ q(y) ⊢ r(x, y).

Proof. Take any r(x, y) ∈ S2(K) such that p(x) ∪ q(x) ⊆ r(x, y). We now show
that p(x) ∪ q(y) ⊢ r(x, y). Let a |= p(x) and c |= q(y), then it suffices to show
that (a, c) |= r(x, y). Suppose that (a′, c′) |= r(x, y). Since tp(a/K) = tp(a′/K),
by the saturation of K, there is c′′ ∈ K such that tp(a, c′′/K) = tp(a′, c′/K). So
r = tp(a, c′′/K) and q = tp(c/K) = tp(c′′/K). Assume that q is a pseudolimit
of a sequence (ci)i∈I ⊆ K. We see from Proposition 2 that both tp(c/K⟨a⟩) and
tp(c′′/K⟨a⟩) are pseudolimit of the sequence (ci)i∈I . By Lemma 4, tp(c/K⟨a⟩) =
tp(c′′/K⟨a⟩). So tp(a, c/K) = tp(a, c′′/K) = r(x, y) as required. □
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p进闭域上型的研究

姚宁远 张镇涛 B

摘 要

本文的目标是研究 p进闭域上型。我们首先分类了 p进闭域上的 1型，该结
果推广了 D. Penazzi，A. Pillay和 N. Yao（2019）对于 p进闭域的标准模型 Qp上

的型的分类。我们还进一步研究了“伪极限型”与“距离型”的正交性，这种正

交性类似于序极小结构上 1型的“切割”与“非切割”正交性和二歧性。
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