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On Types over p-adically Closed Fields

Ningyuan Yao Zhentao Zhang™

Abstract.  The aim of this paper is to study types over a p-adically closed field. We classify
the 1-types over an arbitrary p-adically closed field, which extends the previous work of Penazzi,
Pillay and Yao (2019) on classifying 1-types over the standard model Q, of the field of p-adic
numbers. We also study the orthogonality of pseudo-limit types and distance types and yield an
analogue of the dichotomy of “cuts” and “noncuts” in the o-minimal context.

1 Introduction

This paper presents several new results on types in p-adically closed fields, the
structures (in the language of rings) which are elementarily equivalent to the field Q,
of p-adic numbers. We denote the theory of Q,, in the language of rings by pCF.

Delon showed in [3] that every type over QQ, is definable. In [10], the authors
classified the complete 1-types over the standard model Q,, as follows:

Theorem 1. [10] The complete 1-types over Q, are precisely the following:

(i) The realized types tp(a/Q)) for each a € Qy,;
(ii) For each a € Q, and C, a coset of GO, in G, the type pa.c saying that x is
infinitesimally closed to a (i.e. v(x —a) > n foreachn € N), and x — a € C;
(iti) For each coset C as above the type poo ¢ saying that x € C and v(z) < n for
alln € Z,

where G,, the is multiplicative group of a very saturated elementary extension of Qp,

and

G = {b € G| for eachn € N*,3z(a™ = b)}.
In this paper, we extend the above result to an arbitrary p-adically closed field:

Theorem 2. Let K be a model of pCF, T the value group of K, and GY, as above.
Then the complete 1-types over K are precisely the following:

(i) The realized types tp(a/K) for each a € K;
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(ii) (distance type around a point) For each cut A C Tk (see Definition 2), c € K,
and coset C of G, the type pa ..o saying that A < v(z — ¢) < Tr\A and
x—ceC;

(iii) (Pseudo-limit type) For each pesudo-Cauchy sequence {c;}icr (see Definition
1), the type Plesticr saying that x is a pseudo-limit of {¢; }ic1, and for any for-
mula ¢(x) over K, ¢(x) € p,,,  iff ¢(x) is eventually true (see Definition
1) on{ci}tier.

Yier

Note that when K is @, any pseudo-limit type is realized since Q, is complete
as a metric space. As the value group of Q,, is Z and there are exactly two cut over Z,
namely, () and Z, we see that case (ii) of Theorem 2 corresponds to case (ii) and (iii)
of Theorem 1.

Recall that an o-minimal structure is an ordered structure (M, <, ...) in which
every definable subset X C M is a finite union of intervals and points. If A C M
and ¢ € M, we call tp(c/ A) a cut iff there are a, b € dcl(A), the definable closure of
Ain M, such that a < ¢ < b, and for ay € dcl(A) with ag < ¢, there is a; € dcl(A)
with ag < a1 < ¢, and likewise for ¢ < by € dcl(A). Say that tp(c/A) is a noncut iff
it is not algebraic and not a cut. Abusing terminology, we will also refer to c itself as a
cut/noncut over A. In the topological view, tp(c/A) is anoncut iff there is a € dcl(A)
such that the “distance” of ¢ and a is minimal among the “distance” of ¢ and other
points in dcl(A), and tp(c/A) is a cut iff there is no such a € dcl(A).

In the pCF environment, it is reasonable to consider the pseudo-limit types and
distance types as the analogues of “cut” and “noncut” in the o-minimal context, re-
spectively.

Assuming o-minimality, a result of [8] shows that if tp(c/ A) is a type of cut over
A, and tp(d/A) is a type of noncut over A, then ¢ and d are algebraically independent
over A, namely, ¢ ¢ dcl(A, d)andd ¢ dcl(A, c). Recall from [14] that two types p(x)
and ¢(y) over A are weakly orthogonal if they implies a complete type (z, y) over A.
It is easy to see that if tp(c/A) and tp(d/A) are weakly orthogonal, then ¢ and d are
algebraically independent over A. We extend Marker’s result to pCF environment,
showing that

Theorem 3. Let K be a model of pCF, p(z) € Si(K) a pseudo-limit type, and
q(y) € S1(K) a distance type, then p and q are weakly orthogonal.

The paper is organized as follows: For the rest of the introduction we give precise
definition and preliminaries relevant to our results.

In Section 2, we study the the elementary extensions of p-adically closed fields
and their value groups.

In Section 3, we will prove Theorem 2, classifying the 1-types over an arbitrary
model of pCF.
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In Section 4, we will prove Theorem 3, the orthogonality of pseudo-limit types
and distance types.

1.1 Notations

Let T" be a complete theory with infinite models in a countable language L and
M a model of T. We usually write tuples as a, b, z, y rather than @, b, Z, 3. For A
a subset of M, an L 4-formula is a formula with parameters from A. If ¢(z) is an
Lys-formulaand A C M, then ¢(A) is the collection of the realizations of ¢(z) from
A, namely, ¢(A) = {a € AI| M |= ¢(a)}. Similarly, if X C Ml is a definable set
defined by the formula ¢(z), then we use X (A) to denote the set ¢p(A) = X N Al
If X C M" is definable in M and N > M, we sometimes use X (z) to denote the
formula which defines X and X (V) the subset of N™ defined by the formula X (x).

Assume that A C M and a € M. We say that a is in the algebraic closure of A
(in M), written a € acl(A), if there is a formula ¢(z) over A (namely of L4) such
that M = ¢(a), and moreover such that ¢(x) has only finitely many solutions in M.
We say that a is in the definable closure of A, a € dcl(A), if for some L 4-formula
©(x), a is the unique solution of ¢(z) in M. Note that both acl(—) and dcl(—) are
idempotent operators, namely, acl(acl(A4)) = acl(A) and dcl(dcl(A)) = dcl(A) for
any A C M. Forany n-tuple a = (ay, ..., an) € M", wedenote acl(AU{ay, ..., an})
by acl(A, a). Similarly for dcl(A, a).

Our notation for model theory is standard, and we will assume familiarity with
basic notions such as very saturated models (or monster models), skolem functions,
partial types, type-definable etc. References are [11] as well as [9].

1.2 Background in p-adically Closed Fields

Let p be a prime and Q,, the field of p-adic numbers. We call the complete theory

of Q, (in the language of rings) the theory of p-adically closed fields, written pCF. A
p-adic closed field is a model of pCF, or equivalently, a field which is elementarily
equivalent to Q,,. A key point is the Macintyre’ s theorem [7] that pCF has quantifier
elimination in the language of rings together with new predicates P, (z) for the n-th
powers for eachn € NT. Let K be a p-adically closed field, we denote its multiplica-
tive group by K*, its valuation ring by Ry, and its value group by I'x. The value
group I' is a model of Pr (Presburger arithmetic), namely, (I'x, <, +) is elementary
equivalent to (Z, +, <). The valuation on a K is the map v from K to ' U {oo}
satisfying:

ccx>yandy+oco=o00+y=ooforally € 'y

cv(x) =00 <= x=0;

* v(z +y) > min{v(z),v(y)} and v(z + y) = min{v(z),v(y)} when v(z) #

v(y);
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* v(zy) = v(z) + v(y).
Note that the valuation ring Rx = {z € K| v(xz) > 0} and the relation v(z) <
v(y) are definable in the language of rings (see [4]), so is quantifier-free definable
in Macintyre’ s language. We will freely use the variables and parameters from the
value group sort.

Throughout this paper, (K, +, x,0,1) will denote a very saturated model (or
monster model) of pCF and K an (arbitrary) small elementary submodel of K, where
we say that a set X is small if | X| < |K|. We use G, to denote the multiplicative
group of K, so G, (K) = K* is the multiplicative group of K. Before getting into
details we recall some basic facts which will be used freely in this section and the rest
of the paper.

First, the topology on K is the valuation topology. Consider the formula

B(z,y,7) ==v(r—y) >~

where x, y are of the home sort and +y is of the value group sort. For any ¢ € K and
§ € T'k, we call B(c, K, §) an open ball of center ¢ and radius 0.

Fact 1.

* The p-adic field Q, is a complete, locally compact topological field, with basis
given by the sets B(c, Q,,n) for c € Q,, n € Z.

+ K is also a topological field, with basis given by the sets B(c, K, §) forc € K,
6 € 'k, but not need to be complete or locally compact.

e Foreachc¢ € K and v € Tk, B(¢,K,d) = B(d,K,§) whenever ¢ €
B(c, K, 0).

» Foreachc € K andv € I'k, B(c, K, ) is clopen.

* Foreach ¢ € K and y € I'k, B(c, K, 0) is a disjoint union of B(co, K,J +
1),..., B(cp—1, K, 0 + 1) for some cg, ..., cp—1 € B(c, K, 6).

It is well-known that pCF satisfies Hensels Lemma:

Fact 2 (Hensel). Let f(t) be a polynomial over R in one variable ¢, and let o €
Rk, e € N. Suppose that v(f(a)) > 2e + 1 and v(f'(a)) < e, where f’ denotes
the derivative of f. Then there exists a unique e € Ry such that v(e) > e + 1 and
fla+¢€) =0.

Recall that P, (x) denotes the formula saying that = is an n-th power, and that
pCF has quantifier elimination after adding predicates for all P, (z). It is easy to see
from the Hensel’s Lemma that each P,,(K*) is an open subgroup of the multiplicative
group K* with finite index, and each coset of P, (K ™) contains representatives from
Z (see [1, 7] for details).
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The following lemma can also be conclude directly from the Hensel’s Lemma.
Nevertheless we give a proof here for convenience.

Lemma 1. Let a,b € K*. Ifv(a) > v(b) + 2v(n) + 1, then a and a — b are in the
same coset of P,,(K*) in K*, namely, K |= V(P (Ab) <+ P,(A(b— a))).

Proof. Lete € K suchthatv(e) > 2v(n)+1. Consider the polynomial f(t) = ¢" —
(1+4e€). Since f(1) = eand f/'(1) = n. It follows from the Hensel’s Lemma that f(¢)
has a root in K, which means that 1 + € is an n-th power whenever v(e) > 2v(n) + 1.

Now suppose that v(a) > v(b) +2v(n)+ 1, then v(b—a) = min{v(a),v(b)} =
v(b). Lete = a/(b — a), we see that

v(€) = v(a/(b—a)) = v(a) —v(b—a) > 2v(n) +1,
s0 1 + € is an n-th power. Since
b=(b—-a)+a=(0b—-a)(l+a/(b—a))=(b—a)(l+e),
we see that b and b — a are in the same coset of P, (K™). O

The partial type {P,(z)| n € N1} defines a subgroup of Gy, we call it the
definable connected component of G, and denote it by GU,. Note that every coset of
GV is type-definable over {).

Recall that a well-indexed sequence in K is a sequence {a; };c; in K whose terms
a; are indexed by the elements 7 of an infinite well-ordered set (I, <) without a last
element.

Definition 1. Let {a;};c; be a well-indexed sequence in K.

» We say that {a; };c is a pseudo-Cauchy sequence if for some index iy we have
that v(ay, — a;j) > v(a; — a;) whenever k > j > i > ij.

» We say that a* € K is a pseudo-limit of {a;}icr if v(a; — a*) is eventually
strictly increasing, that is, for some index 7o, we have that v(a,, —a*) > v(a; —
a*) whenever k > j > io.

» We say that a formula ¢(x) over K is eventually true on {a; };c if there is some
iop € I such that K = ¢(a;) for all ¢ > iy.

Remark 1. Since K is a monster model, a compactness argument shows that any

pseudo-Cauchy sequence {a; };cr in K has a (not necessary unique) pseudo-limit in
K.

Using cell decomposition in the form of Denef [4] or [5], the following can be
easily derived, cf. [2], Lemma 4:
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Fact3. Let X C K™ beadefinable subset, and bj : X — K definable functions,
for j = 1,...,7. Then there exists a finite partition of X such that each part A has
form

A={(z,y) € K™xK|z € D,v(a1(z))T1v(y—c(x))Oqv(az(z)), (y—c(x)) € AP, }
and for each (z,y) € A, we have

1 .
v(bj(,y)) = —v((y — c(2))d;(2)),
J
withz € K™, D C K™ definable, 0 < ¢; € Z, puj € Z, X € Z, ¢, a;,d; definable
functions from K" to K and O; either <, < or no condition.

Remark 2. It is easy to see from Fact 3 that

* Every one-variable formula ¢(z) over K is equivalent to a disjoint disjunction
of the formulas of the form

(O1v(z — ¢)O2792) A Py(Mz —¢))

withc € K,v; € ', A € Z, and O; either <, < or no condition.
* If s(z) is a K-definable function and a* € K, then thereare 0 < e € Z, n € Z,
d € K, and v € I'k such that

v(s(a”)) = 1/e(v((a” = d)") + 7).

Another goodness of pCF is that it has definable Skolem functions(See [13]),
i.e. for any formula ¢(x,y) over K with K = Va3yp(zr,y), we can find a K-
definable function f,, such that K |= Vap(z, f,(x)). So forany A C K, dcl(A) is
an elementary substructure of K. The reader is referred to [1] for additional details
of p-adically closed fields.

2 Extensions of Models

Lemma 2. Suppose that S is a small subset of K, then dcl(S) = acl(5) in K.

Proof Assume that a € acl(S). There is a finite set D defined over S with the
smallest cardinality such that a € D. Then let f(z) = [[;cp(z — d) and Aut(K/S)
the group of automorphisms of K fixing S point-wise. Since every o € Aut(K/S)
fixes D set-wisely, we see that each coefficient of f is Aut(K/S)-invariant. Thus, all
coefficients of f are in dcl(.S) by the saturation of K. As definable Skolem functions
exist, some root b of f is in dcl(dcl(S)) = dcl(S). If b # a, then D\{b} is defined
over S with cardinality < |D| and a € D\{b}, which is impossible. Thus, a = b €
del(S). O
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Forany S C K, acl(9S) is the same whether computed in K or K. So we have
that

Corollary 1. If S C K, then dcl(S) = acl(S) in K.

By [6], the algebraic closure operation acl(—) in any model K of pCF defines
a pre-geometry, namely the exchange axiom is satisfied: ifa,b € K, A C K and
b € acl(A,a)\acl(A), then a € acl(A,b). For a € K, we write dcl(K, a) as K {(a),
which is an elementary extension of K. It is easy to see from Lemma 1 and the
exchange axiom that:

Lemma 3. Let a € K\K. Then there is no proper middle extension between K <
K{a), i.e. no L such that K 2 L 2 K(a).

Recall from [12] that Pr = Th(Z, +, <, 0, { D, }n>0) has definable Skolem func-
tions, quantifier elimination in the language {+, <,0,{D; }n>0}, and is decidable,
where each D, is a unary predicate symbol for the set of elements divisible by n. For
any A C M = Pr, we see that dcl(A) is an elementary substructure of M. Clearly,
the value group I'x of K is a monster model of Pr.

Lemma 4. Let Ko < K, and G an elementary substructure of I' i extending I' .
Then there is K1 such that Ky < K1 < K and G =T'g,.

Proof. Let
K={LEpCF|Ky<L<KandI', C G}.

Then K is not empty since Ky € K. Applying Zorn’s Lemma to (I, C), and let K
be a maximal element of K. We claim that G is the value group of K;. Otherwise,
there is @« € G\I'k,. Take any a € K such that v(a) = «. Then v(a — ¢) =
min{v(a),v(c)} € G for each ¢ € K;. By Remark 2, for each b € dcl(K;,a) =
Ki{a),thereare0 < e € Z,n € Z,c € K, and vy € 'k, such that

v(b) = 1/e(v((a = )") + 7).

So v(K1(a)) C G and thus the proper extension K (a) of K is also in K. A contra-
diction. ]

We see from Lemma 4 that any M |= Pr is isomorphic to a value group of some
K < K. In this paper, we consider any (small) model of Pr as a value group of of
some K < K. We also write dcl(M, o) as M () for a € T'k.

Lemma 5. Let K' = K and a € K'\K such that v(a) = o ¢ T'c. Then I'c(q) =
Ii{a).
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Proof. Itis easy to see that
() = del(l'k, o) C v(del(K, a)) = Ty

since I'r U {a} C v(del(K, a)). Suppose for a contradiction that I' - () is a proper
subset of I'(4y. Then by Lemma 4, there is K’ such that X' < K’ < K{(a) such
that I'x» = 'k (o). Since 'y is proper middle extension between I'yc and Iy, it
follows that K’ is a proper middle extension between K and K (a). This contradicts
to Lemma 3. |

Corollary 2. Let M = Prand o € I'x\ M, then there is no middle extension between
M and M{«), i.e. there is no N such that M 2 N = M («).

Proof. Suppose Not, then there is 3 € M («) such that
M 2 M(B) 2 M{a).

By Lemma 4, there is K’ = pCF such that 'y = M. Take any a € K such
that v(a) = «, then M{«) is the value group of K'(a) by Lemma 5. Take any
b € K'(a) such that v(b) = f3, then applying Lemma 5 again, M (f3) is the value
group of K’(b). We conclude that K'(b) is a proper middle extension between K’
and K'(a). A contradiction. O

3 Classification of 1-types

Recall that K is the monster model of pCF and Gy, is the multiplicative group of
K. From now on, we fix K as a small elementary submodel of K and K* = G, (K)
the multiplicative group of K.

Definition 2. Suppose that (I', +, <, 0) is a model of Presburger arithmetic. We say
that A C T"is a cut of I if

* Foreach~,8 € A,ify € Aand 8 < =, then 5 € A;
* Foreachn € Zandy e A,v+n € A.

i.e. A is downward closed and satisfying A + Z = A.
Lemma 6. Let o* € K\ K, and

A:={a €'k : thereis c € K such that v(a* — c¢) > a}.
Then Ais a cut of 'k

Proof. It is easy to see that A is downward closed. It suffices to show that 6 € A
implies § + 1 € A. Suppose that v(c — a*) > § for some ¢ € K and § € Ik,
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we see from Fact 1 that there are ¢y, ..., ¢,—1 € K such that B(c, K, 6) is a disjoint
union of B(cy, K,d + 1), ..., B(cp—1, K, 0 + 1). Since K is an elementary extension
of K, B(c, K, 9) is also a disjoint union of B(cp,K,0+1), ..., B(cp—1,K,d+1). As
a* € B(¢, K, ¢), thereis i < psuchthata* € B(¢;, K, +1). Sov(a* —¢;) > 0+1
as required. O

Theorem 4. Let K be a model of pCF and G, = (,,cn+ Pn(Gm) be the definable
connected component of G,,. Then the complete 1-types over K are precisely the
following:

(a) The realized types tp(a/K) for each a € K,

(b) (distance type around a point) For each cut A C ', ¢ € K, and coset C of
G, the type pa ¢ saying that A < v(z —c) < Tg\Aand x —c € C. We call
DA,e,c a A-distance (or distance) type around point c.

(c) (Pseudo-limit type) For each pesudo-Cauchy sequence {c;}icy, the type
Pieivic; () saying that x is a pseudo-limit of {c; }icy. In this case, pycy,., ()
is determined by the sequence {c;}ic: For each formula ¢(x) over K, ¢(x) €
Pieivic; () i ¢(x) is eventually true on {c; }icr.

Proof. Letp(z) € S1(K) be a non-realized type and a* |= p. Let
A :={a €'k : thereis c € K such thatv(a® — ¢) > a}.

Then A is a cut of ' by Lemma 6. Let a* = p. Now we have two cases:

e Case 1: There is ¢ € K such that v(a* — ¢) is maximal among the set {v(a* — d) :
d € K}. Then v(a* — ¢) € I'g\I'k realizes the cut A, i.e. A < v(a* —¢) < Tg\A.
Let C be the coset of GY, such that a* — ¢ € C. We claim that

Claim 1. Let X5 ¢(x,c) be the partial type saying that A < v(x — ¢) < I'x and
x — ¢ € C, then for any formula ¢(z) over K, ¢(x) € p iff ¢(x) is consistent with
Yoz, c).

Proof. Clearly, every formula ¢(z) € p(z) is consistent with ¥ c(z,c) since
Erclz,c) Cp.
Now suppose that ¢ () is consistent with X5 ¢ (x, ¢). We aim to show that a* |=
¢(z). By Remark 2, we can assume that ¢(x) is of the form
a101v(x — d)Ogae A Py (s(z — d))
with a1, a0 € ', d € K, and s € Z. Let b* € K realize the partial type

{a101v(z — d)Oacrg, Py (s(x — d))} U X c(z, c).
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Then both v(a* — ¢) and v(b* — ¢) realize the cut A. As both v(a* — ¢) and v(b* — ¢)
are not in I' -, we have that

v(ic—d), ifv(c—d)eA

(b = d) = min(v(b" = ¢), v(c — d)) = {v(b* =), ifv(c—d)¢A

and

) — minfo(a* — o). vle — d)) — v(c—d), ifv(c—d)eA
vl —d) (v Jrvle—d)) {v(a* —c), ifv(c—d)¢A
If v(c — d) € A, then

v(a* —d) =min(v(a* — ¢),v(c — d)) =v(c—d) = v(b* — d),

which means that a* = a101v(x — d)Oga.
If v(c — d) ¢ A, then both

v(a* —d) = min(v(a* — ¢),v(c—d)) =v(a" —¢)

and
v(b* —d) = min(v(b* — ¢),v(c —d)) = v(b* —¢)

realize the cut A, so
alEllv(b* — d)DQOQ < alﬂlv(a* — d)DQOZQ,

which also means that ¢* = a;0;v(z — d)Oaas.
We now show that a* also realizes P, (s(x — d)). Ifv(c — d) € A, we have

v(a* —c)>v(c—d)+Zandv(b* —c) > v(c—d)+Z

By Lemma 1, we see that (a* — d), (¢ — d) and (b* — d) are in the same coset of
P,(Gp). So a* = P,(s(z — d)) as required. Similarly, if v(c — d) ¢ A, then we
have both

v(a* —c¢) <v(c—d)+Zand v(b* —¢) < v(c—d) + Z.

Which implies that a* —d and a* — ¢ are in the same coset of P,,(Gyy,), also, b* —d and
b* —c are in the same coset of P,,(Gp,). Since (b* —c) and (a* —c) are in the same coset
of GY, we see that K |= P,,(s(b* — d)) «> Pu(s(a* —d)). So a* = P,(s(x — d)).
This complete the proof of the Claim. |
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Clearly, we see for the above Claim that p is determined by the partial type
YA,c(z, ¢) when Case 1 happens.

e Case 2. There is no such c as in the previous case. First we show thatv(a*—c) € '
for each ¢ € K. To see this, suppose that there is ¢ € K such that v(a* — ¢) ¢ 'k,
then for any ¢ # d € K, we have

v(a* —d) = min{v(a* — ¢),v(c—d)} <v(a® —c).
This contradicts our assumption. So we conclude that A = {v(a* — ¢)| c € K}. We
claim that A has a well-ordered cofinal subet /. Let

W = {J C A| J is a well-ordered subset}.

Applying Zorn’s Lemma to (W, C), and let I be a maximal element of W, it is easy
to see that [ is cofinal in A. Since A is a cut, it has no largest element, we see that 1
is infinite. Take a sequence {¢; € K| i € I} such that v(a* — ¢;) = i, Thena* is a
pseudo-limit of {c; }cr.

Claim 2. 4 formula ¢(x) over K is in p(z) iff ¢(x) is eventually true on {c; € K| i €

I},

Proof. Assume again that the formula ¢(z) is of the form
a10yv(z — d)Ogag A Py(s(z — d))

with g, 0 € T, d € K and s € Z. Letig € I such that v(a* — ¢;) > v(a* —d) +
2v(n) 4+ 1 forall i > ig. As

v(a* —d) = min{v(a™ — ¢;),v(c; —d)} = v(c; — d)
for all 7 > ig, we see that
a* ‘: olelv(:c — d)DQOéQ < ¢ ): Oél‘:‘l’()(:E — d)D2a2 (for all 7 > io).

Applying Lemma 1, we have that (a* — d) and (¢; — d) are in the same coset of
P, (Gp). So

K | Pa(s(a® — d)) <> Py(s(c; — d))
for all ¢ > ip. We conclude that ¢(x) € p iff ¢(z) is eventually true on {¢; € K| i €
I'}. This completes the proof. O

We see from Claim 1 and Claim 2 that each p(z) € S;(K) is either a realized
type, or a distance type determined by a cut A, a point ¢ € K and, a coset C of G¥,
or a pseudo-limit type determined by a pseudo-Cauchy sequence.

Conversely, the proof of Claim 1 indicates that for each cut A C K, ¢ € K,
and coset C' of G, the partial type X5 ¢(, ) determines a complete 1-type over
K. Similarly, the proof of Claim 2 indicates that each pseudo-Cauchy sequence also
determines a complete 1-type over K. O
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4 Orthogonality of 1-types

As we mentioned in the introduction, distance types and pseudo-limit types are
the analogues of “noncut” and “cut” in the o-minimal context respectively. We aim
to show the orthogonality of distance types and pseudo-limit types in this section.

Lemma 7. Let a € K\K. Then

* tp(a/K) is a pseudo-limit type iff T (qy = T'k.
* tp(a/K) is a distance type iff T () # U'ic. Moreover, iftp(a/K) is a distance
type around c € K then I (o) = ' (v(a — ¢)).

Proof. It is easy to see from Theorem 4 that tp(a/K) is a pseudo-limit type iff
v(a—0b) € Tk forallb € K. So 'k, = I'k implies that tp(a/ K) is a pseudo-limit
type.

Now suppose that I' () 7 ['ic. To see that tp(a/K) is a distance type, it suffices
to show that v(a — ¢) ¢ 'k for some ¢ € K. Let s be a K-definable function such
that v(s(a)) ¢ 'k, then by Remark 2,

v(s(a)) =1/e(v((a —d)™) + )

forsome 0 < e € Z,n € Z,d e K,and vy € I'k. It is easy to see that v(s(a)) ¢ 'k
implies v(a — d) ¢ I'k. Sotp(a/K) is a distance type as required.

For the “moreover” part, suppose that tp(a/K) is a distance type around ¢ € K,
we have seen thatevery 0 € T'¢ (4 is of the form 1 /e(v((a—d)")+) with0 < e € Z,
n € Z,d € K, and vy € 'k, whereas v(a — d) = min{v(a — ¢),v(c — d)}. We
conclude that § € del(I'i,v(a —¢)). So Tk gy € T (v(a—c)). AsTx 2 Tgqy <
L'k (v(a — c)), we see that I' () = I'ie (v(a — ¢)) by Lemma 5. O

Remark 3. It is easy to see from Lemma 7 that a non-realized type can not be both
of distance and pseudo-limit simultaneously.

Lemma 8. Let a € K\K and b € K{(a)\K, then tp(b/K) is in the same case of
tp(a/K), i.e. tp(b/K) is distance type(resp. pseudo-limit type), if tp(a/K) is.

Proof. We see from Lemma 3 that that K'(b) = K (a) and hence, I'g(q) = T ).
By Lemma 7, tp(a/K) is a distance type iff I (py = Iy # ' iff tp(b/K) is a
distance type. O

Lemma 9. [f'tp(c/K) is a distance type and tp(d/K) is a pseudo-limit type, then
¢ and d are algebraic independent over K, i.e. ¢ ¢ acl(K,d) = dcl(K,d) and
d ¢ acl(K, c) = dcl(K, c).

Proof. Suppose for a contradiction that ¢ € dcl(K,d). As ¢ ¢ K, it follows from
Lemma 8 that tp(c/K) is a also a pseudo-limit type, which is impossible by Lemma
7. Similarly, we have d ¢ dcl(K, c). O
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For both a and b realize distance types over K, we have a rough relation between
tp(a/K (b)) and tp(b/ K (a)):

Proposition 1. [fboth a and b realize distance types over K, thentp(a/ K (b)) is in the
same case of tp(b/ K (a)), i.e. tp(a/K (b)) is a realized (vesp. distance , pesudo-limit)

type if tp(b/ K (a)) is.

Proof. Since a,b ¢ K, we see that b € K(a) iff a € K(b) by Lemma 3. So
tp(a/K) is realized iff tp(b/ K) is realized.

Now we assume that b ¢ K (a). Suppose for a contradiction that tp(b/K (a)) is
a distance type but tp(a/K (b)) is a pseudo-limit type. Then by Lemma 7 we have
that g0y 2 Ticgap) and Ty = T(a,p). Since a realizes a distance types over
K,weseethat 'y 2 T K (a)» and hence ',y 1s a proper middle extension between
I"and T'gpy = T'(apy- Applying Lemma 7 again, there is o € D'y such that
Pr@wy = Tr{a). We conclude that I'x(, is a proper middle extension between I'
and I' (), this contradicts to Corollary 2.

Similarly, it is impossible that tp(b/ K (a)) is pseudo-limit but tp(a/K (b)) is a
distance type. (I

We now show that pseudo-limit types and distance types are weakly orthogonal.

Proposition 2. Suppose thattp(a/ K) is a distance type and tp(c/ K) is a pseudo-limit
of a sequence {c;}ic; C K. Thentp(c/K(a)) is also a pseudo-limit of the sequence

{Ci}iel-

Proof. Firstly, ¢ ¢ K(a). Suppose not, K < K{(c) < K(a) implies that K(c) =
K(a), whereas I'ge (o) = I'ry and I'ic # T ().

Secondly, tp(c/ K (a)) can not be a distance type. Suppose not, we can assume
that tp(c/K (a)) is a distance type around some point f € K(a). If f € K, then
v(c — f) is maximal among {v(c — e)| e € K}, and thus tp(c¢/K) is a distance type,
which is a contradiction. So f € K(a)\K, and by Lemma 8, we see that tp(f/K) is
a distance type around a point d € K. Since

vic—f) >v(c—d) €Tk,
we have that

v(f—d)=v((f—c)+ (c—d)) =min{v(f —¢),v(c—d)} =v(c—d) € 'k,

which is impossible because v(f — d) ¢ I'x by Lemma 7. Thus, we conclude that
tp(c/K (a)) is a pseudo-limit of a well-indexed sequence { f;};c;7 C K(a).

To see that tp(c/ K (a)) is a pseudo-limit of the sequence {c; };c;, it suffices to
show that for each j € J there is ¢ € I such that v(c — ¢;) > v(c — f;). Suppose
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for a contradiction that there is jo € J such that v(c — f;,) > v(c —¢;) forall i € I.
We see from Lemma 8 that tp(f}, /K) is a distance type. Suppose that tp(f},/K) is
around e € K. Then, forall i € I,

v(fjo —€) = v(fj — i) (1)

As tp(c/K) is a pseudo-limit of {c¢; };cr and e € K, there is ig € I such that v(c —
¢i) > v(c —e) forall i € I withi > ip. Then we have that, for every i € I with
1> 19,

vle = f) > v(c—c) > (e —e) ®)
We conclude from (1) and (2) that,

v(fjo—e) = v(fjo—ci) = v(fjo—cte—c) = min{u(fj,—c),v(c—ci)} = v(c—ci),
and then

(e —e) = v((c— fio) + (fjo — €)) = min(v(c = fi),v(fjo — €)) = v(c — i),

forall i € I with i > ig. Since c is a pseudo-limit of {c; };cr, we see that v(c — e)
is maximal among {v(c — d)| d € K}, and hence tp(c/K) is a distance type. It is a
contradiction. g

We conclude the orthogonality of pseudo-limit types and distance types directly
from Proposition 2:

Theorem 5. Suppose that p(x) € S1(K) is a pseudo-limit type and q(y) € S1(K) is
a distance type, then there is r(x,y) € So(K) such that p(x) U q(y) & r(z,y).

Proof. Take any r(z,y) € So(K) such that p(z) U ¢(z) C r(x,y). We now show
that p(z) U q(y) + r(z,y). Leta = p(x) and ¢ = q(y), then it suffices to show
that (a,c) |= r(x,y). Suppose that (a’, ') = r(x,y). Since tp(a/K) = tp(d'/K),
by the saturation of KK, there is ¢’ € K such that tp(a,c’/K) = tp(d’,d/K). So
r = tp(a,d’/K) and ¢ = tp(¢/K) = tp(¢”/K). Assume that ¢ is a pseudo-limit
of a sequence (¢;)ier C K. We see from Proposition 2 that both tp(c/K (a)) and
tp(¢” /K (a)) are pseudo-limit of the sequence (¢;);ecr. By Lemma 4, tp(c/K{(a)) =
tp(¢”/K{a)). So tp(a,c¢/K) = tp(a,’/K) = r(x,y) as required. O
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