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Sahlqvist Correspondence Theory for Modal Logic
with Quantification over Relations*

Fei Liang Zhiguang Zhao

Abstract. Lehtinen (2008) introduced a new concept of validity of modal formulas, where
quantification over binary relations is allowed for the so called “helper modalities”, and the
“boss modalities” are similar to ordinary modalities in modal logic in the sense that they are
interpreted as a fixed binary relation in a Kripke frame. In the present paper, we study the
correspondence theory for this validity notion. We define the class of Sahlqvist formulas for
this validity notion, each formula of which has a first­order frame correspondent, and define the
algorithm ALBARQ to compute the first­order correspondents of this class.

1 Introduction

Lehtinen ([6]) introduced a new concept of validity of modal formulas, which
allows, from the perspective of second­order logic, quantification over binary rela­
tions. In this definition of validity, if the modal similarity type is τ = {31, . . . ,3n},
then we say that the modal formula φ is τ ­valid in a set W (notation W ⊩τ φ) iff
it is valid in each frame F = (W,R1, . . . , Rn). With the help of the standard trans­
lation, assume that only p1, . . . , pk occur in φ, then the τ ­validity in a setW can be
equivalently written as:

W ⊩τ φ ⇔ W ⊨ ∀R1 . . . ∀Rn∀P1 . . . ∀Pk∀xSTx(φ).

As is shown in [6, Example 5.1.2, 5.1.3], this notion of validity can be used to define
the size of the domain. Indeed, take τ = {3},

W ⊩τ 3p→ 2p ⇔ |W |≤ 1.
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W ⊩τ (3p1 ∧3p2 ∧3p3) → 3((p1 ∧ p2) ∨ (p1 ∧ p3) ∨ (p2 ∧ p3)) ⇔ |W |≤ 2.

In this definition, set validity allows us to talk about the size of a domain, but
we lose the possibility to talk about relations. Therefore, Lehtinen proposes a more
general perspective by allowing some relations to be helpers and others to be bosses,
such that we only quantify over the helpers and keep the bosses similar to the standard
Kripke frame validity.

In the new definition, the similarity type τ is defined to be the disjoint union
of τH and τB , where modalities in τH = {3H

1 , . . . ,3
H
m} are called helpers, and

modalities in τB = {3B
1 , . . . ,3

B
n } are called bosses.

We say that a formula is τH ­valid in a frame (W,R1, . . . , Rn), if

(W,R1, . . . , Rn,H1, . . . , Hm) ⊩ φ

for all helper relations H1, . . . , Hm. With the help of the standard translation, the
τH ­validity in F = (W,R1, . . . , Rn) can be reformulated as

F ⊨ ∀H1 . . . ∀Hm∀P1 . . . ∀Pk∀xSTx(φ).

With the notion of τH ­validity, we can use modal formulas to define first­order prop­
erties of Kripke frames that cannot be defined using standard validity notion.

Example 1 (Example 5.1.7 in [6]). Let τB = {3}, τH = {3H}, and F = (W,R).
Then we have

F ⊩ 2p→ 2Hp iff R =W ×W.

In the present paper, we study the Sahlqvist correspondence theory of this valid­
ity notion, namely, we define a class of Sahlqvist formulas in the modal language of
helpers and bosses, and define an Ackermann Lemma Based Algorithm ALBARQ1

to compute the first­order correspondents of Sahlqvist formulas.
The structure of the paper is organized as follows: Section 2 presents preliminar­

ies on modal logic of helpers and bosses. Section 3 defines Sahlqvist formulas and
inequalities. Section 4 defines the expanded modal language, the first­order corre­
spondence language and the standard translation, which will be used in the algorithm.
Section 5 defines the Ackermann Lemma Based Algorithm ALBARQ. Section 6
proves the soundness of the algorithm. Section 7 shows that ALBARQ succeeds on
Sahlqvist formulas. Section 8 gives some examples. Section 9 gives conclusions.

2 Preliminaries

In the present section, we collect the preliminaries on modal logic with helpers
and bosses. For more details, see [6, Section 5].

1Here RQ stands for “relation quantifier”.
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2.1 Language and Syntax

Definition 1. Given a setProp of propositional variables, a finite set τH = {3H
1 , . . .

, 3H
m}, a finite set τB = {3B

1 , . . . ,3
B
n } such that τH ∩ τB = ∅, the modal language

with helpers and bosses is defined recursively as follows:

φ ::= p | ⊥ | ⊤ | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | 3φ,

where p ∈ Prop, 3 ∈ τH ∪ τB . 2 and ↔ are defined in the standard way. We call
a formula pure if it contains no propositional variables. We use τ := (τH , τB) to
denote the similarity type of the language. Throughout the article, we will also make
substantial use of the following expressions:

(1) An inequality is of the form φ ≤ ψ, where φ and ψ are formulas.
(2) A quasi­inequality is of the form φ1 ≤ ψ1 & . . . & φn ≤ ψn ⇒ φ ≤ ψ.

We will find it easy to work with inequalities φ ≤ ψ in place of implicative formulas
φ→ ψ in Section 3.

2.2 Semantics

Definition 2. Given a similarity type τ = (τH , τB), a τ ­Kripke frame is a tuple
F = (W,R1, . . . , Rn, H1, . . . , Hm) whereW ̸= ∅ is the domain of F, R1, . . . , Rn,

H1, . . . , Hm are accessibility relations which are binary relations onW , and eachRi

corresponds to3B
i , eachHi corresponds to3H

i . The underlying τB­Kripke frame of
a τ ­Kripke frame is a tuple F = (W,R1, . . . , Rn) where each Ri corresponds to 3B

i

respectively and no relations for 3H
i are there. τB­Kripke frames are used to define

validity. A τ ­Kripke model is a pair M = (F, V ) where F is a τ ­Kripke frame and
V : Prop → P (W ) is a valuation on F. Now the satisfaction relation is defined
as follows2: given any τ ­Kripke modelM = (W,R1, . . . , Rn, H1, . . . , Hm, V ), any
w ∈W ,

M, w ⊩ 2B
i φ iff ∀v(Riwv ⇒ M, v ⊩ φ);

M, w ⊩ 3B
i φ iff ∃v(Riwv and M, v ⊩ φ).

M, w ⊩ 2H
i φ iff ∀v(Hiwv ⇒ M, v ⊩ φ);

M, w ⊩ 3H
i φ iff ∃v(Hiwv and M, v ⊩ φ).

For any formula φ, we let JφKM = {w ∈W | M, w ⊩ φ} denote the truth set of φ in
M. The formulaφ is globally true onM (notation: M ⊩ φ) if JφKM =W . The crucial
difference between modal logic with helpers and bosses and ordinary modal logic is
the definition of validity. Validity in the former is only defined on τB­Kripke frames:

2The basic case and the Boolean cases are defined as usual, and here we only give the clauses for
the modalities.



42 Studies in Logic, Vol. 16, No. 6 (2023)

A τ ­formulaφ is valid on a τB­Kripke frameF = (W,R1, . . . , Rn) (notation: F ⊩ φ)
if φ is globally true on (F,H1, . . . , Hm, V ) for all helper relations H1, . . . , Hm and
all valuations V . The semantics of inequalities and quasi­inequalities are given as
follows:

M ⊩ φ ≤ ψ iff (for all w ∈W, ifM, w ⊩ φ, thenM, w ⊩ ψ).

M ⊩ φ1 ≤ ψ1 & . . . & φn ≤ ψn ⇒ φ ≤ ψ iff

M ⊩ φ ≤ ψ holds wheneverM ⊩ φi ≤ ψi for all 1 ≤ i ≤ n.

The definitions of validity are similar to formulas. It is easy to see thattM ⊩ φ ≤ ψ

iffM ⊩ φ→ ψ.

3 Sahlqvist Formulas and Inequalities

In this section, we define Sahlqvist formulas and inequalities in the similarity
type τ , in the style of unified correspondence [2]. We collect preliminaries here.

Definition 3 (Order­type). (cf. [4, p. 346]) For an n­tuple (p1, . . . , pn) of proposi­
tional variables, an order­type ε is an element in {1, ∂}n. We say that pi has order­
type 1 (resp. ∂) with respect to ε if εi = 1 (resp. εi = ∂), and denote ε(pi) = 1 (resp.
ε(pi) = ∂). We use ε∂ to denote the order­type where ε∂(pi) = 1 (resp. ε∂(pi) = ∂)
iff ε(pi) = ∂ (resp. ε(pi) = 1).

Definition 4 (Signed generation tree). (cf. [5, Definition 4]) The positive (resp. neg­
ative) generation tree of any τ ­formula φ is defined by first labelling the root of the
generation tree of φwith+ (resp.−) and then labelling the children nodes as follows:

• Assign the same sign to the children nodes of any node labelled with ∨,∧,2H
i ,

3H
i ,2

B
i ,3

B
i ;

• Assign the opposite sign to the child node of any node labelled with ¬;
• Assign the opposite sign to the first child node and the same sign to the second
child node of any node labelled with→;

Nodes in signed generation trees are called positive (resp. negative) if they are signed
+ (resp. −).

We give an example of signed generation tree in Figure 1.

For any τ ­formula φ(p1, . . . pn), any order­type ε over n, and any i = 1, . . . , n,
an ε­critical node in a signed generation tree of φ is a leaf node +pi when εi = 1

or −pi when εi = ∂. An ε­critical branch in a signed generation tree is a branch
from an ε­critical node. The ε­critical occurrences are intended to be those which the
algorithm ALBARQ will solve for.
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+ →

−3B
1

−∨

−p −¬

+2H
2

+q

+3B
1

+q

Figure 1: Positive generation tree for 3B
1 (p ∨ ¬2H

2 q) → 3B
1 q

Outer Inner
+ ∨ ∧ 3 ¬
− ∧ ∨ 2 ¬ →

+ ∧ 2 ¬
− ∨ 3 ¬

Table 1: Outer and Inner nodes.

We use +p ≺ +φ (resp. −p ≺ +φ) to indicate that an occurrence of a proposi­
tional variable p inherits the positive (resp. negative) sign from the positive generation
tree+φ, and say that p is positive (resp. negative) in φ if+p ≺ +φ (resp.−p ≺ +φ)
for all occurrences of p in φ.

Definition 5. (cf. [5, Definition 5]) Nodes in signed generation trees are called outer
nodes and inner nodes, according to Table 1. Here 2 stands for 2H

i or 2B
i , 3 stands

for 3H
i or 3B

i .
A branch in a signed generation tree is excellent if it is the concatenation of two

paths P1 and P2, one of which might be of length 0, such that P1 is a path from the
leaf consisting (apart from variable nodes) of inner nodes only, and P2 consists (apart
from variable nodes) of outer nodes only.

Definition 6 (Sahlqvist inequalities). (cf. [5, Definition 6]) For any order­type ε,
the signed generation tree ∗φ (where ∗ ∈ {+,−}) of a formula φ(p1, . . . pn) is ε­
Sahlqvist if

• for all 1 ≤ i ≤ n, every ε­critical branch with leaf pi is excellent;
• for every branch (notice that here it might not be ε­critical) with occurrences of
+3H or −2H , every node from the root to this occurrence of +3H or −2H

in the signed generation tree is an outer node.

An inequality φ ≤ ψ is ε­Sahlqvist if the signed generation trees +φ and −ψ are ε­
Sahlqvist. An inequality φ ≤ ψ is Sahlqvist if it is ε­Sahlqvist for some ε. A formula
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φ→ ψ is Sahlqvist if the inequality φ ≤ ψ is a Sahlqvist inequality.

Example 2.An example of Sahlqvist formula in our language is3H2Bp→ 2B3Hp,
which is similar to the Geach formula in ordinary modal logic. Notice that here we
have position restrictions on the first occurrence of 3H .

The classification of outer nodes and inner nodes is based on how different con­
nectives behave in the algorithm. When the input inequality is a Sahlqvist inequality,
the algorithm first decompose the outer part of the formula, and then decompose the
inner part of the formula, which will be shown in the success proof of the algorithm
in Section 7.

The difference between the present setting and ordinary modal logic is that we
have additional requirement of the positions of helper modalities, which will be clear
from the execution of the algorithm.

4 The Expanded Modal Language, First­Order Correspondence Lan­
guage and Standard Translation

4.1 The Expanded Modal Language

In the present subsection, we define the expanded modal language , which will
be used in the execution of the algorithm:

φ ::= p | ⊥ | ⊤ | i | ¬φ | φ∧φ | φ∨φ | φ→ φ | 2H
i φ | 3H

i φ | 2B
j φ | 3B

j φ | 2Sφ |

3Sφ | ■H
i φ | ♦H

i φ | ■B
j φ | ♦B

j φ | ■Sφ | ♦Sφ

where i ∈ Nom are nominals as in hybrid logic which are interpreted as singleton sets,
3H

i ∈ τH , 3B
j ∈ τB , S = {(i1, j1), . . . , (ik, jk)} for some pairs (i1, j1), . . . , (ik, jk).

The reason for introducing the nominals and S­modalities is to compute the min­
imal valuations for propositional variables and for the H­modalities (which are essen­
tially quantified by second­order quantifiers in the validity definition), therefore we
can eliminate them to get a quasi­inequality which is essentially quantified by first­
order quantifiers.

2S and 3S are interpreted on the relation S := {(V (i1), V (j1)), . . . , (V (ik),
V (jk))}. For■ and♦, they are interpreted as the box and diamondmodality on the in­
verse relationH−1

i , R−1
j , S−1, according to the superscipt and subscript, respectively.

The S­modalities are interpreted as the computation result of the minimal relations
for the helper modalities, which is similar to the minimal valuations of propositional
variables in the algorithm ALBARQ.

For the semantics of the expanded modal language, the valuation is defined as
V : Prop ∪ Nom → P(W ) where V (i) is defined as a singleton as in hybrid logic,
and the additional semantic clauses can be given as follows:
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M, w ⊩ i iff w ∈ V (i)
M, w ⊩ 2Sφ iff for all v, (w, v) ∈ S ⇒ M, v ⊩ φ

M, w ⊩ 3Sφ iff there exists a v s.t. (w, v) ∈ S andM, v ⊩ φ

M, w ⊩ ■H
i φ iff for all v, (v, w) ∈ Hi ⇒ M, v ⊩ φ

M, w ⊩ ♦H
i φ iff there exists a v s.t. (v, w) ∈ Hi andM, v ⊩ φ

M, w ⊩ ■B
j φ iff for all v, (v, w) ∈ Rj ⇒ M, v ⊩ φ

M, w ⊩ ♦B
j φ iff there exists a v s.t. (v, w) ∈ Rj andM, v ⊩ φ

M, w ⊩ ■Sφ iff for all v, (v, w) ∈ S ⇒ M, v ⊩ φ

M, w ⊩ ♦Sφ iff there exists a v s.t. (v, w) ∈ S andM, v ⊩ φ

4.2 The first­order correspondence language and the standard translation

In the first­order correspondence language, we have a binary predicate symbol
Hi corresponding to the binary relationHi, a binary predicate symbolRj correspond­
ing to the binary relationRj , a set of constant symbols i corresponding to each nomi­
nal i, a set of unary predicate symbols P corresponding to each propositional variable
p. Notice that we do not have binary predicate symbols for the S relations.

Definition 7. For the standard translation of the expandedmodal language, the basic
propositional cases and the Boolean cases as well as the modal cases for boss modal­
ities are defined as usual and hence omitted, the other cases are defined as follows:

• STx(i) := x = i;
• STx(2H

i φ) := ∀y(Hixy → STy(φ));
• STx(3H

i φ) := ∃y(Hixy ∧ STy(φ));
• STx(3Sφ) :=

∨k
l=1(x = il ∧ STjl(φ));

• STx(2Sφ) := ¬STx(3S¬φ);
• STx(■H

i φ) := ∀y(Hiyx→ STy(φ));
• STx(♦H

i φ) := ∃y(Hiyx ∧ STy(φ));
• STx(♦Sφ) :=

∨k
l=1(x = jl ∧ STil(φ));

• STx(■Sφ) := ¬STx(♦S¬φ).

It is easy to see that this translation is correct:

Proposition 1 (Folklore.). For any Kripke model M, any w ∈W and any expanded
modal formula φ,

M, w ⊩ φ iff M ⊨ STx(φ)[x := w].

For inequalities, quasi­inequalities, the standard translation is given in a global
way:

Definition 8. • ST (φ ≤ ψ) := ∀x(STx(φ) → STx(ψ));
• ST (φ1 ≤ ψ1& . . .&φn ≤ ψn ⇒ φ ≤ ψ) := ST (φ1 ≤ ψ1) ∧ . . . ∧ ST (φn ≤
ψn) → ST (φ ≤ ψ).
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Proposition 2 (Folklore.). For any Kripke modelM, any inequality Ineq, any quasi­
inequality Quasi,

M ⊩ Ineq iff M ⊨ ST (Ineq);

M ⊩ Quasi iff M ⊨ ST (Quasi).

5 The Algorithm ALBARQ

In this section, we define the algorithm ALBARQ which computes the first­
order correspondents of input Sahlqvist formulas, in the style of [3, 4]. The algorithm
receives an input formula φ → ψ and transforms it into an inequality φ ≤ ψ. Then
the algorithm goes in three steps.

1. Preprocessing and first approximation:
In the generation tree of +φ and −ψ3,

(a) Apply the distribution rules:

i. Push down +3H
i ,+3B

j ,−¬,+∧,− → by distributing them over
nodes labelled with +∨ which are outer nodes, and

ii. Push down −2H
i ,−2B

j ,+¬,−∨,− → by distributing them over
nodes labelled with −∧ which are outer nodes.

(b) Apply the splitting rules: rewrite α ≤ β ∧ γ as α ≤ β and α ≤ γ;
rewrite α ∨ β ≤ γ as α ≤ γ and β ≤ γ;

(c) Apply the monotone and antitone variable­elimination rules:

α(p) ≤ β(p)

α(⊥) ≤ β(⊥)

β(p) ≤ α(p)

β(⊤) ≤ α(⊤)

for β(p) positive in p and α(p) negative in p.

We denote by Preprocess(φ → ψ) the finite set {φi ≤ ψi}i∈I of inequalities
obtained after the exhaustive application of the previous rules. Then we apply
the following first approximation rule to every inequality in Preprocess(φ →
ψ):

φi ≤ ψi

i0 ≤ φi ψi ≤ ¬i1
Here, i0 and i1 are special fresh nominals. Now we get a set of inequalities
{i0 ≤ φi, ψi ≤ ¬i1}i∈I .

2. The reduction stage:
In this stage, for each {i0 ≤ φi, ψi ≤ ¬i1}, we apply the following rules to
prepare for eliminating all the propositional variables and helper modalities:

3The discussion below relies on the definition of signed generation tree in Section 3. In what follows,
we identify a formula with its signed generation tree.



Fei Liang, Zhiguang Zhao / Sahlqvist Correspondence Theory for Modal Logic with Quantification over Relations 47

(a) Splitting rules (similar to the splitting rules in Stage 1);
(b) Approximation rules:

i ≤ 3α
j ≤ α i ≤ 3j

2α ≤ ¬i
α ≤ ¬j 2¬j ≤ ¬i

α→ β ≤ ¬i
j ≤ α β ≤ ¬k j → ¬k ≤ ¬i

The nominals introduced by the approximation rules must not occur in
the system before applying the rule, and 3 stands for 3H

i , 3B
j or 3S, 2

stands for 2H
i , 2B

j or 2S.
(c) Residuation rules:

α ≤ ¬β
β ≤ ¬α

¬α ≤ β

¬β ≤ α

3α ≤ β

α ≤ ■β
α ≤ 2β

♦α ≤ β

Here 3 stands for 3H
i , 3B

j or 3S, 2 stands for 2H
i , 2B

j or 2S, ♦ stands
for ♦H

i , ♦B
j or ♦S according to the superscript and subscript of the corre­

sponding2, and■ stands for■H
i ,■B

j or■S according to the superscript
and subscript of the corresponding 3.

(d) Ackermann rules:
By the Ackermann rules, we compute the minimal/maximal valuation for
propositional variables and minimal valuation for helper modalities and
use the Ackermann rules to eliminate all the propositional variables and
helper modalities. These three rules are the core of ALBARQ, since their
application eliminates propositional variables and helper modalities. In
fact, all the preceding steps are aimed at reaching a shape in which the
Ackermann rules can be applied. Notice that an important feature of these
rules is that they are executed on the whole set of inequalities, and not on
a single inequality.

The right­handed Ackermann rule for propositional variables:

The system
{
α1 ≤ p, . . . , αn ≤ p

β1 ≤ γ1, . . . , βm ≤ γm
is replaced by{

β1((α1 ∨ . . . ∨ αn)/p) ≤ γ1((α1 ∨ . . . ∨ αn)/p), . . . ,

βm((α1 ∨ . . . ∨ αn)/p) ≤ γm((α1 ∨ . . . ∨ αn)/p)
where:

i. Each βi is positive in p, and each γi negative in p, for 1 ≤ i ≤ m;
ii. Each αi is pure.

The left­handed Ackermann rule for propositional variables:

The system
{
p ≤ α1, . . . , p ≤ αn

β1 ≤ γ1, . . . , βm ≤ γm
is replaced by
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β1((α1 ∧ . . . ∧ αn)/p) ≤ γ1((α1 ∧ . . . ∧ αn)/p), . . . ,

βm((α1 ∧ . . . ∧ αn)/p) ≤ γm((α1 ∧ . . . ∧ αn)/p)
where:

i. Each βi is negative in p, and each γi positive in p, for 1 ≤ i ≤ m;
ii. Each αi is pure.

The right­handed Ackermann rule for helper modalities:

The system


i1 ≤ 3H

i j1, . . . , ik1 ≤ 3H
i jk1

2H
i ¬j′1 ≤ ¬i′1, . . . ,2H

i ¬j′k2 ≤ ¬i′k2
β1 ≤ γ1, . . . , βm ≤ γm

is replaced by
{
β1(S/Hi) ≤ γ1(S/Hi), . . . , βm(S/Hi) ≤ γm(S/Hi)

where:

i. S = {(i1, j1), . . . , (ik1 , jk1), (i′1, j′1), . . . , (i′k2 , j
′
k2
)};

ii. Each βj is positive in3H
i ,♦H

i and negative in 2H
i ,■H

i , and each γj
is negative in 3H

i ,♦H
i and positive in 2H

i ,■H
i ;

iii. (S/Hi) stands for uniformly replacing2H
i ,3

H
i ,■H

i ,♦H
i by2S,3S,

■S,♦S respectively.

3. Output: If in the previous stage, for some {i0 ≤ φi, ψi ≤ ¬i1}, the algo­
rithm gets stuck, i.e. some propositional variables or helper modalities cannot
be eliminated by the application of the reduction rules, then the algorithm halts
and output “failure”. Otherwise, each initial tuple {i0 ≤ φi, ψi ≤ ¬i1} of
inequalities after the first approximation has been reduced to a set of pure in­
equalities Reduce(φi ≤ ψi) without helper modalities, and then the output is
a set of quasi­inequalities {&Reduce(φi ≤ ψi) ⇒ i0 ≤ ¬i1 : φi ≤ ψi ∈
Preprocess(φ → ψ)} without helper modalities, where & is the big meta­
conjunction in quasi­inequalities. Then the algorithm use the standard transla­
tion to transform the quasi­inequalities into first­order formulas.

6 Soundness of ALBARQ

In the present section, we will prove the soundness of the algorithm ALBARQ

with respect to Kripke frames. The basic proof structure is similar to [7].

Theorem 3 (Soundness). If ALBARQ runs successfully on φ → ψ and outputs
FO(φ→ ψ), then for any τB­Kripke frame F = (W,R1, . . . , Rn),

F ⊩ φ→ ψ iff F |= FO(φ→ ψ).

Proof. The proof goes similarly to [4, Theorem 8.1]. Let φi ≤ ψi, 1 ≤ i ≤ n

denote the inequalities produced by preprocessing φ → ψ after Stage 1, and {i0 ≤
φi, ψi ≤ ¬i1} denote the inequalities after the first­approximation rule,Reduce(φi ≤
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ψi) denote the set of pure inequalities after Stage 2, and FO(φ → ψ) denote the
standard translation of the quasi­inequalities into first­order formulas, then we have
the following chain of equivalences:

F ⊩ φ→ ψ (1)
F ⊩ φi ≤ ψi, for all 1 ≤ i ≤ n (2)
F ⊩ (i0 ≤ φi & ψi ≤ ¬i1) ⇒ i0 ≤ ¬i1 for all 1 ≤ i ≤ n (3)
F ⊩ Reduce(φi ≤ ψi) ⇒ i0 ≤ ¬i1 for all 1 ≤ i ≤ n (4)
F ⊩ FO(φ→ ψ) (5)

• The equivalence between (1) and (2) follows from Proposition 4;
• the equivalence between (2) and (3) follows from Proposition 5;
• the equivalence between (3) and (4) follows from Propositions 6, 7 and 8;
• the equivalence between (4) and (5) follows from Proposition 2.

□

In the remainder of this section, we prove the soundness of the rules in Stage 1,
2 and 3.

Proposition 4 (Soundness of the rules in Stage 1). For the distribution rules, the
splitting rules and the monotone and antitone variable­elimination rules, they are
sound in both directions in F, i.e. the inequality before the rule is valid in F iff the
inequality(­ies) after the rule is(are) valid in F.

Proof. The proof is the same as [7, Proposition 6.2]. □

Proposition 5. (2) and (3) are equivalent, i.e. the first­approximation rule is sound
in F.

Proof. The proof is the same as [7, Proposition 6.3]. □

The next step is to show the soundness of each rule of Stage 2. For each rule,
before the application of this rule we have a set of inequalities S (which we call the
system), after applying the rule we get a set of inequalities S′, the soundness of Stage
2 is then the equivalence of the following two conditions:

• F ⊩&S ⇒ i0 ≤ ¬i1;
• F ⊩&S′ ⇒ i0 ≤ ¬i1;

where&S denote the meta­conjunction of inequalities of S. It suffices to show
the following property:
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• For any τB­Kripke frameF = (W,R1, . . . , Rn), any binary relationsH1, . . . , Hm,
any valuation V on it, if (F,H1, . . . , Hm, V ) ⊩ S, then there is a valuation V ′

and binary relations H ′
1, . . . , H

′
m such that V ′(i0) = V (i0), V ′(i1) = V (i1)

and (F,H ′
1, . . . , H

′
m, V

′) ⊩ S′;
• For any τB­Kripke frameF = (W,R1, . . . , Rn), any binary relationsH ′

1, . . . , H
′
m,

any valuation V ′ on it, if (F,H ′
1, . . . , H

′
m, V

′) ⊩ S′, then there is a valuation
V and binary relations H1, . . . , Hm such that V (i0) = V ′(i0), V (i1) = V ′(i1)
and (F,H1, . . . , Hm, V ) ⊩ S.

Proposition 6. The splitting rules, the approximation rules for 3,2,→, the residu­
ation rules for ¬,3,2 are sound in F.

Proof. The proof is similar to [7, Proposition 6.4 and 6.11]. □

Proposition 7. The Ackermann rules for propositional variables are sound in F.

Proof. The proof is similar to [7, Proposition 6.17]. □

Proposition 8. The right­handed Ackermann rule for helper modalities is sound in F.

This rule is the key rule of the algorithm ALBARQ since it eliminates helper
modalities. The proof method is similar to the soundness proof of the right­handed
Ackermann rule for propositional variables. Without loss of generality, we assume
that k1 = k2 = m = 1. To prove Proposition 8, it suffices to prove the following
right­handed Ackermann lemma for helpers:

Lemma 1. Assume that β1 is positive in 3H
i ,♦H

i and negative in 2H
i ,■H

i , and
γ1 is negative in 3H

i ,♦H
i and positive in 2H

i ,■H
i , then for any τB­Kripke frame

F = (W,R1, . . . , Rn), any binary relations H1, . . . , Hm, any valuation V on it, the
following are equivalent (where S = {(i1, j1), (i′1, j′1)}):

(1) M := (F,H1, . . . , Hm, V ) ⊩ β1(S/Hi) ≤ γ1(S/Hi);
(2) there is a binary relationH ′

i such thatM′ := (F,H1, . . . , Hi−1,H
′
i,Hi+1, . . . ,

Hm, V ) ⊩ i1 ≤ 3H
i j1,2H

i ¬j′1 ≤ ¬i′1, β1 ≤ γ1.

Proof. From (1) to (2), we can take H ′
i := {(V (i1), V (j1)), (V (i′1), V (j′1))}, then

since S = {(V (i1), V (j1)), (V (i′1), V (j′1))}, we have that M′ ⊩ β1 ≤ γ1. It is easy
to see thatM′ ⊩ i1 ≤ 3H

i j1 andM′ ⊩ 2H
i ¬j′1 ≤ ¬i′1.

From (2) to (1), from M′ ⊩ i1 ≤ 3H
i j1 and M′ ⊩ 2H

i ¬j′1 ≤ ¬i′1, we have that
(V (i1), V (j1)), (V (i′1), V (j′1)) ∈ H ′

i, therefore S ⊆ H ′
i, so by the monotonicity and

antitonicity conditions of the helper modalities in β1 and γ1,

Jβ1(S/Hi)KM′ ⊆ Jβ1KM′ ⊆ Jγ1KM′ ⊆ Jγ1(S/Hi)KM′
.

Since helper modalities with subscript i do not occur in β1(S/Hi) and γ1(S/Hi), we
haveM ⊩ β1(S/Hi) ≤ γ1(S/Hi). □
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7 Success

In this section, we prove that ALBARQ succeeds on all Sahlqvist formulas. The
proof structure is similar to [7].

Theorem 9. ALBARQ succeeds on all Sahlqvist formulas.

Definition 9 (Definite ε­Sahlqvist inequality, similar to Definition 7.2 in [7]). Given
any order­type ε, ∗ ∈ {−,+}, the signed generation tree ∗φ of the termφ(p1, . . . , pn)

is definite ε­Sahlqvist if there is no+∨,−∧ occurring in the outer part on an ε­critical
branch. An inequality φ ≤ ψ is definite ε­Sahlqvist if the trees +φ and −ψ are both
definite ε­Sahlqvist.

Lemma 2. Let {φi ≤ ψi}i∈I = Preprocess(φ → ψ) obtained by exhaustive ap­
plication of the rules in Stage 1 on an input ε­Sahlqvist formula φ → ψ. Then each
φi ≤ ψi is a definite ε­Sahlqvist inequality.

Proof. Same as [7, Lemma 7.3]. □

Definition 10 (Inner ε­Sahlqvist signed generation tree, similar to Definition 7.4 in
[7]). Given an order type ε, ∗ ∈ {−,+}, the signed generation tree ∗φ of the term
φ(p1, . . . , pn) is inner ε­Sahlqvist if its outer part P2 on an ε­critical branch is always
empty, i.e. its ε­critical branches have inner nodes only.

Lemma 3. Given inequalities i0 ≤ φi and ψi ≤ ¬i1 obtained from Stage 1 where
+φi and −ψi are definite ε­Sahlqvist, by applying the rules in Substage 1 of Stage 2
exhaustively, the inequalities that we get are in one of the following forms:

1. pure inequalities which does not have occurrences of propositional variables;
2. inequalities of the form i ≤ α where +α is inner ε­Sahlqvist;
3. inequalities of the form β ≤ ¬i where −β is inner ε­Sahlqvist.

Proof. Similar to [7, Lemma 7.5]. For the sake of the proof of the next lemma
we repeat the proof here. Indeed, the rules in the Substage 1 of Stage 2 deal with
outer nodes in the signed generation trees +φi and −ψi except +∨,−∧. For each
rule, without loss of generality assume we start with an inequality of the form i ≤ α,
then by applying the approximation rules, splitting rules and the residuation rules
for negation in Stage 2, the inequalities we get are either a pure inequality without
propositional variables, or an inequality where the left­hand side (resp. right­hand
side) is i (resp. ¬i), and the other side is a formula α′ which is a subformula of α,
such that α′ has one root connective less than α. Indeed, if α′ is on the left­hand side
(resp. right­hand side) then −α′ (+α′) is definite ε­Sahlqvist.

By applying the rules in the Substage 1 of Stage 2 exhaustively, we can eliminate
all the outer connectives in the critical branches, so for non­pure inequalities, they
become of form 2 or form 3. □
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The next two lemmas are crucial to the success of the whole algorithm, which
also justify the definition of Sahlqvist formulas and inequalities:

Lemma 4. In Lemma 3, all the occurrences of +3H ’s and −2H ’s are in the form of
i ≤ 3H j and 2H¬j ≤ ¬i, and in form 2 and 3, +α and −β only contain positive
occurrences of 2H ’s and negative occurrences of 3H ’s.

Proof. As we can see from the proof of Lemma 3 and the second item of Definition
6 for Sahlqvist inequalities, during the decomposition of the outer part of the Sahlqvist
signed generation trees, all occurrences of+3H ’s and−2H ’s are in the outer part of
the signed generation tree, hence are treated by the approximation rules. Before the
application of the approximation rules, the inequalities are of the form i ≤ 3Hα or
of the form 2Hα ≤ ¬i. By applying the approximation rules, they are in the form
of i ≤ 3H j and 2H¬j ≤ ¬i. For the rest of occurrences of 3H ’s and 2H ’s, they
could only be in form 2 and 3, and 3H ’s occur only negatively and 2H ’s occur only
positively. □

Lemma 5. Assume we have inequalities of the form as described in Lemma 3 and 4,
the right­handed Ackermann rule for helper modalities is applicable and therefore all
helper modalities can be eliminated.

Proof. It is easy to check that the shape of the system exactly satisfies the require­
ment of the application of the right­handed Ackermann rule for helper modalities. In
addition, since in the result of the rule, some inequalities are deleted and the other
inequalities have helper modalities replaced by the same kind of modalities (e.g. di­
amond by diamond, box by box, white connectives by white connectives, black con­
nectives by black connectives), we still have pure inequalities and inequalities of the
form 2 and 3 as described in Lemma 3, but now without helper modalities. □

Lemma 6. Assume we have an inequality i ≤ α or β ≤ ¬i where +α and −β are
inner ε­Sahlqvist, by applying the splitting rules and the residuation rules in Stage 2,
we have inequalities of the following form:

1. α ≤ p, where ε(p) = 1, α is pure;
2. p ≤ β, where ε(p) = ∂, β is pure;
3. α ≤ γ, where α is pure and +γ is ε∂­uniform;
4. γ ≤ β, where β is pure and −γ is ε∂­uniform.

Proof. The proof is similar to [7, Lemma 7.6]. Notice that for each input inequality,
it is of the form i ≤ α or β ≤ ¬i, where+α and−β are inner ε­Sahlqvist. By applying
the splitting rules and the residuation rules, it is easy to check that the inequality will
have one side pure, and the other side still inner ε­Sahlqvist. By applying these rules
exhaustively, one will either have p as the non­pure side (with this p on a critical
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branch), or have an inner ε­Sahlqvist signed generation tree with no critical branch,
i.e., ε∂­uniform. □

Lemma 7. Assume we have inequalities of the form as described in Lemma 6, the
Ackermann rules for propositional variables are applicable and therefore all propo­
sitional variables can be eliminated.

Proof. Immediate observation from the requirements of the Ackermann rules. □

Proof of Theorem 9 Assume we have an Sahlqvist formula φ → ψ as input. By
Lemma 2, we get a set of definite ε­Sahlqvist inequalities. Then by Lemma 3, we get
inequalities as described in Lemma 3 and 4. By Lemma 5, all helper modalities are
eliminated. By Lemma 6, we get the inequalities as described. Finally by Lemma 7,
the inequalities are in the right shape to apply the Ackermann rules for propositional
variables, and thus we can eliminate all the propositional variables and the algorithm
succeeds on the input. □

8 Examples

In this section we show how to run the algorithm ALBARQ on some examples
that we give in the introduction. By the Goldblatt­Thomason theorem [1, Theorem
3.19], a first­order definable class of Kripke frames is modally definable iff it is closed
under taking bounded morphic images, generated subframes, disjoint unions and re­
flects ultrafilter extensions. Since |W | ≤ 1 and R = W ×W are not closed under
taking disjoint unions, they are not definable by ordinary modal formulas, so our re­
sults go beyond Sahlqvist theorem in ordinary modal logic.

Example 3. We have input formula 3Hp → 2Hp. To make the validity quantifi­
cation pattern clear, we add quantifiers for the propositional variables, nominals and
helper modalities:

∀3H∀p(3Hp→ 2Hp)

First we transform the input formula into inequality:

∀3H∀p(3Hp ≤ 2Hp)

Stage 1: By first approximation, we have:

∀3H∀p∀i∀j(i ≤ 3Hp & 2Hp ≤ ¬j ⇒ i ≤ ¬j)

Stage 2: By the approximation rule for 3H , we have:

∀3H∀p∀i∀j∀k(i ≤ 3Hk & k ≤ p & 2Hp ≤ ¬j ⇒ i ≤ ¬j)
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By the approximation rule for 2H , we have:

∀3H∀p∀i∀j∀k∀k′(i ≤ 3Hk & k ≤ p & 2H¬k′ ≤ ¬j & p ≤ ¬k′ ⇒ i ≤ ¬j)

By the right­handed Ackermann rule for3H and2H , we have (notice that there is no
receiving inequalities, so we just eliminate the inequalities i ≤ 3Hk and 2H¬k′ ≤
¬j):

∀p∀i∀j∀k∀k′(k ≤ p & p ≤ ¬k′ ⇒ i ≤ ¬j)

By the right­handed Ackermann rule for p, we have:

∀i∀j∀k∀k′(k ≤ ¬k′ ⇒ i ≤ ¬j)

Stage 3:
By standard translation, we have:

∀i∀j∀k∀k′(k ̸= k′ → i ̸= j)

By first­order logic, we have:

∃k∃k′(k ̸= k′) → ∀i∀j(i ̸= j)

By first­order logic, we have:

∀k∀k′(k = k′) ∨ ∀i∀j(i ̸= j)

which is:
|W | = 1 ∨ |W | = 0

which is:
|W | ≤ 1

Example 4. We have input formula 2Bp → 2Hp. To make the validity quantifi­
cation pattern clear, we add quantifiers for the propositional variables, nominals and
helper modalities:

∀3H∀p(2Bp→ 2Hp)

First we transform the input formula into inequality:

∀3H∀p(2Bp ≤ 2Hp)

Stage 1:
By first approximation, we have:

∀3H∀p∀i∀j(i ≤ 2Bp & 2Hp ≤ ¬j ⇒ i ≤ ¬j)
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Stage 2:
By the approximation rule for 2H , we have:

∀3H∀p∀i∀j∀k(i ≤ 2Bp & 2H¬k ≤ ¬j & p ≤ ¬k ⇒ i ≤ ¬j)

By the right­handedAckermann rule for2H , we have (notice that there is no receiving
inequalities, so we just eliminate the inequality 2H¬k ≤ ¬j):

∀p∀i∀j∀k(i ≤ 2Bp & p ≤ ¬k ⇒ i ≤ ¬j)

By the left­handed Ackermann rule for p, we have:

∀i∀j∀k(i ≤ 2B¬k ⇒ i ≤ ¬j)

The following are not really obtained by rules in ALBARQ, but they are soundly
obtained:

∀j∀k(2B¬k ≤ ¬j)

∀j∀k(j ≤ 3Bk)

Stage 3:
By standard translation we have:

∀j∀kRjk

which is:
R =W ×W

9 Conclusion

In the present paper, we develop the correspondence theory for modal logic with
helpers and bosses, define the Sahlqvist formulas in this setting, give an algorithm
ALBARQ which transforms input Sahlqvist formulas into their first­order correspon­
dents.

There is one issue remains to be dealt with. In the algorithm ALBARQ, we have
the right­handed Ackermann rule for the helper modalities. It seems plausible to also
have the left­handed Ackermann rule for the helper modalities, which is more difficult
since +2H ’s and −3H ’s do not occur in the outer part of the signed generation tree,
they cannot be in the form of i ≤ 3H j or 2H¬j ≤ ¬i, which makes it more difficult
to compute the corresponding minimal/maximal relation. Therefore we leave it to
future work.
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带关系量化的模态逻辑的萨奎斯特对应理论

梁飞 赵之光

摘 要

Lehtinen（2008）引入了新的关于模态公式的有效性概念，其中允许对所谓的
“helper modalities”所对应的二元关系进行量化，并且其中的“boss modalities”类
似于模态逻辑中的普通模态词，即被解释为克里普克（S. Kripke）框架中确定的
二元关系。本文研究了这一有效性概念的对应理论。针对这一有效性定义了一类

萨奎斯特（Sahlqvist）公式，其中每个公式都存在其对应的一阶框架，并给出了相
应的 ALBARQ 算法来计算该类公式的一阶对应。
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