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Logics of Nonactual Possible Worlds*

Jie Fan

Abstract. In Jia Chen (2020), a logic of strong possibility and weak necessity, which we call
‘logic of nonactual possible worlds’ here, is proposed and axiomatized over various frames.
However, the completeness proof therein is quite complicated, which involves the use of copies
of maximal consistent sets in the construction of the canonical model, among other consider
ations. In this paper, we demonstrate that the completeness of some systems thereof can be
reduced to those of the familiar systems in the literature via translations, which builds a bridge
among these systems. We also explore the frame definability of such a logic.

1 Introduction

Standard modal logic concerns about notions of necessity and possibility. Intu
itively, a proposition is possible, if it is true at some accessible possible world; it is
necessary, if it is true at all accessible possible worlds. For standard modal logic, refer
to any textbook on modal logic, e.g. [1]. Here possible worlds include not only the
actual (i.e. real) world, but also those nonactual ones. The existence of nonactual
possible worlds is supported by modal realists, represented by David Lewis (e.g. [8]).

The notion of nonactual possible worlds is related to the actualism vs. possi
bilism dispute. According to actualism, everything that there is, everything that has
being in any sense, is actual, which states in terms of possible worlds that everything
that exists in any world exists in the actual world. By contrast, possibilism thinks that
there are things that exist in other possible worlds but fail to exist in the actual world,
which are called ‘mere possibilia’. Nonactual possible worlds are prime examples
of such mere possibilia. ([10])

The notion of nonactual possible worlds is also related to counterfactual reason
ing and imagination. For instance, as known, Donald Trump was not elected as the
46th U.S. president. But we can imagine what would happen if Donald Trump had
been elected as the 46th U.S. president. Nonactual possible worlds are indispensable
in such imagination and counterfactual reasoning. Moreover, although the world we
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are living in, that is, the real world, is also a possible world, in some cases, however,
we are more interested in those nonactual possible worlds than the actual one.1

In this paper, we investigate a logic of nonactual possible worlds, which dates
back to [6], under the name of ‘a logic of strong possibility and weak necessity’.2 In
tuitively, a proposition is strongly possible, if it is true at some accessible nonactual
possible world; it is weakly necessary, if it is true at all accessible nonactual possi
ble worlds. The logic is axiomatized over various classes of frames. However, the
completeness proofs via a variant of the usual canonical model construction thereof
are quite complicated, which involves the use of copies of maximal consistent sets,
among other considerations.

Observing the proof systems of the logic of nonactual possible worlds and the◻
based normal modal logics, we can see the similarities in form between their minimal
logics (denoted ⊡K and K, respectively) and symmetric logics (denoted ⊡B and B,
respectively). This inspires us that we may use a method to show the completeness of
⊡K and ⊡B rather than canonical model constructions. The method in question is the
reduction via translations. In details, by finding suitable translation functions, we can
obtain the axiom schemas and inference rules of ⊡K fromK and ⊡B from B, and vice
versa. Another observation is that, although the semantics of ⊡ and ◻ are different
in general, they are the same (i.e. equivalent) on irreflexive models. Based on the
two observations, we can reduce the determination results (that is, soundness and
completeness) of ⊡K and ⊡B to those ofK and B, respectively. This much simplifies
the completeness proof of ⊡K and ⊡B.

Our logic is also related to the modal logic for elsewhere ([7]), which is also
called the logic of somewhere else ([14, p. 69]), the modal logic of inequality ([11]),
and the modal logic of other worlds ([4]). This logic is axiomatized over the class of
all frames ⟨W,R⟩ in which for all x, y ∈ W , xRy if and only if x ≠ y (in short, R
is nonidentity) in [12], and a more elegant axiomatization, denoted KAB, is given
in [7]. When it comes to form, the symmetric and transitive logic (denoted ⊡B4
below) has the same axioms and inference rules asKAB. Moreover, their semantics
are the same on the models which we call ‘conversely irreflexive models’. As we
shall show, the determination result of the former system can be reduced to that of the
latter.

As a matter of fact, the semantics of everywhereelse and somewhereelse oper

1For instance, the worlds in science fiction and film are usually nonactual possible worlds, and in
deontic logic, we usually hope to find deontically ideal worlds, which are again nonactual possible
worlds.

2If it is proper to call the standard modal logic ‘the logic of possible worlds’, then we may also call
the logic of strong possibility and weak necessity ‘the logic of nonactual possible worlds’, in which we
are mainly concerned with those nonactual possible worlds. Note that the term ‘weak necessity’ is also
used in the deontic setting, see for instance [13]. Partly because of this, we prefer to use the term ‘the
logic of nonactual possible worlds’ rather than ‘the logic of strong possibility and weak necessity’.
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ators can be thought of as special instances of weak necessity and strong possibility
operators, respectively, when the accessibility relation is universal.

The remainder of the paper is organized as follows. Sec. 2 introduces the syntax
and semantics of the logicL(⊡) of nonactual possible worlds and some related logics.
Sec. 3 reviews axiomatizations of the modal logic for elsewhere and L(⊡). Sec. 4
investigates its frame definability. Sec. 5 presents several translation functions, which
either reduce the determination results of some axiomatizations of L(⊡) to those in
the literature, or help us find a simpler axiomatization of L(⊡) over transitive frames.
We conclude with some future work in Sec. 6.

2 Syntax and semantics

Throughout the paper, we fix P to be a nonempty set of propositional variables
and let p ∈ P. We first define a large language, which has the language of the logic of
nonactual possible worlds as fragments.

Definition 1 (Languages). The language L(⊡,◻,D) is defined recursively as fol
lows:

φ ::= p ∣ ¬φ ∣ (φ ∧ φ) ∣ ⊡φ ∣ ◻φ ∣ Dφ

With the sole modal construct ⊡φ, we obtain the language L(⊡) of the logic of non
actual possible worlds, alias the logic of strong possibility and weak necessity; with
the sole modal construct ◻φ, we obtain the language L(◻) of standard modal logic;
with the sole modal construct Dφ, we obtain the language L(D) of the logic of else
where.

Intuitively, ⊡φ, ◻φ, and Dφ are read, respectively, “it is weakly necessary that
φ”, “it is necessary that φ”, and “it is the case that φ everywhere else”. Other con
nectives are defined as usual. In particular, ⟐φ, ◇φ, and Dφ are read “it is strongly
possible that φ”, “it is possible that φ”, and “it is the case that φ somewhere else”,
and abbreviate ¬⊡¬φ, ¬◻¬φ, and ¬D¬φ respectively. We will mainly focus on the
logic L(⊡) in the sequel.

Instead of using D, we could have used ⊡ for the operator of everywhere else, as
in some literature, e.g. [4, 7]. But we have already used this notation for the operator
of weak necessity, thus we here adopt the notation D from [11] and [1, Sec. 7.1]
instead.

The languageL(⊡,◻,D) is interpreted over (Kripke) models. Amodel is a triple
M = ⟨W,R,V ⟩, whereW is a nonempty set of possible worlds,R is a binary relation
overW , called ‘accessibility relation’, and V is a valuation assigning some subset of
W to each propositional variable in P. A pointed model is a pair of a model with
a world in it. A frame is a model without a valuation. ModelM is said to be a K
model (resp.,Dmodel, T model,Bmodel, 4model, 5model,B4model,B5model,
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S5model) if its accessibility relation is arbitrary (resp., serial, reflexive, symmetric,
transitive, Euclidean, symmetric and transitive, symmetric and Euclidean, reflexive
and Euclidean). A Kframe and the like are defined similarly.

Given a modelM = ⟨W,R,V ⟩ and a worldw ∈W , the semantics ofL(⊡,◻,D)
is defined inductively as follows:

M,w ⊧ p ⇐⇒ w ∈ V (p)

M,w ⊧ ¬φ ⇐⇒ M,w ⊭ φ
M,w ⊧ φ ∧ ψ ⇐⇒ M,w ⊧ φ andM,w ⊧ ψ
M,w ⊧ ⊡φ ⇐⇒ for all v ∈W, if w ≠ v and wRv, thenM, v ⊧ φ.
M,w ⊧ ◻φ ⇐⇒ for all v ∈W, if wRv, thenM, v ⊧ φ.
M,w ⊧ Dφ ⇐⇒ for all v ∈W, if w ≠ v, thenM, v ⊧ φ.

Notions of truth, model validity, frame validity and semantic consequence are
defined as usual.

Observe that the semantics of ⊡ can be seen as a ‘combination’ of those of ◻
and D, in the sense that the antecedent of the interpretation of ⊡φ (namely ‘w ≠ v
and wRv’), is a conjunction of those of the interpretation of ◻φ and Dφ. Besides, the
semantics of D can be seen as a special case of ⊡ when the accessibility relation R is
universal.

One may see that the semantics of ⊡ and ◻ are different in general. However,
they are the same on the models in which the following condition are satisfied:

(Irref) for all w, v ∈W , if wRv, then w ≠ v.

It should be easy to verify that (Irref) amounts to saying that themodels are irreflexive:

for all w ∈W , it is not the case that wRw.

Also, even though the semantics of ⊡ and D are different in general, they are the
same on the models that have the following property:

(Ci) for all w, v ∈W , if w ≠ v, then wRv.

As easily seen, (Ci) is just the converse of (Irref). For this reason, we use the name
(Ci), to stand for C(onverse) i(rreflexivity). Both (Irref) and (Ci) play important roles
in our paper.

One may easily compute the semantics of the defined operators as follows.

M,w ⊧⟐φ ⇐⇒ there exists v such that w ≠ v and wRv andM, v ⊧ φ.
M,w ⊧◇φ ⇐⇒ there exists v such that wRv andM, v ⊧ φ.
M,w ⊧ Dφ ⇐⇒ there exists v such that w ≠ v andM, v ⊧ φ.

Note that ⊧ ◻φ → ⊡φ. That is why ⊡ is called the operator of weak necessity.
This follows by the monotony of ◻ that ⊧ ◻nφ → ⊡nφ for all n ∈ N. It may be
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worth remarking that over reflexive models, ◻ is definable in terms of ⊡, as ◻φ =df

⊡φ∧φ. This will guide us to propose a translation between L(◻) and L(⊡), and then
a transitive axiom in the latter language.

3 Existing results on axiomatizations of L(D) and L(⊡)

3.1 Existing results on axiomatizations of L(D)

The minimal normal logic of L(D), denoted SWB+A5 in [14], orKAB in [7],
orDL− in [11], or KB4′ in [4], consists of the following axioms and inference rules.
Here we follow [7] and call the systemKAB.

(TAUT) all instances of propositional tautologies
(DK) D(φ→ ψ)→ (Dφ→ Dψ)
(D4) Dφ ∧ φ→ DDφ
(DB) φ→ DDφ
(MP) From φ and φ→ ψ infer ψ
(DN) From φ infer Dφ

It is shown in [7] thatKAB is determined by (that is, sound and complete w.r.t.)
not only the class of all frames under the semantics ofL(D), but also two extra classes
of frames (see Thm. 1 below). Here the more unusual condition of aliotransitivity can
be expressed in firstorder logic as

∀x∀y∀z(x ≠ z ∧ xRy ∧ yRz → xRz).

Theorem 1. ([7])

• KAB is sound and strongly complete with respect to the class of aliotransitive
and symmetric frames;

• KAB is sound and strongly complete with respect to the class of (Ci)frames;
• KAB is sound and strongly complete with respect to the class of frames where
the accessibility relation is nonidentity.

In what follows, we will make use of the determination result of KAB by the
class of (Ci)frames to obtain that of ⊡B4 below by the class of B4frames, through
a method of reduction via translations.
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3.2 Existing results on axiomatizations of L(⊡)

Recall that the minimal logic of L(⊡), denoted ⊡K, which consists of the fol
lowing axioms and inference rules, is given in [6, p. 62].

(TAUT) all instances of propositional tautologies
(⊡K) ⊡(φ→ ψ)→ (⊡φ→ ⊡ψ)
(MP) From φ and φ→ ψ infer ψ
(⊡N) From φ infer ⊡φ

It is easy to see that ⊡K is normal, thus it is monotone, namely, if ⊢ φ→ ψ, then
⊢ ⊡φ→ ⊡ψ.

Theorem 2. ([6, Thm. 4])⊡K is sound and strongly complete with respect to the class
K of all frames, the class D of all serial frames, the class T of all reflexive frames.
In symbols, for all X ∈ {K,D,T }, for all Γ ∪ {φ} ⊆ L(⊡), we have

Γ ⊢⊡K φ iff Γ ⊧X φ.

It is then extended to other systems and various soundness and strong complete
ness results obtain.

Axioms Systems
(⊡B) φ→ ⊡⟐φ ⊡B = ⊡K+ (⊡B);⊡4 = ⊡K+ (⊡4)
(⊡B′) ⊡(φ→ ⊡⟐φ) ⊡5 = ⊡K+ (⊡B′) + (⊡5)
(⊡4) (⊡φ ∧ ψ)→ ⊡⊡(φ ∨ ψ) ⊡B4 = ⊡K+ (⊡B) + (⊡4)
(⊡5) ⟐φ→ ⊡(φ ∨⟐φ) ⊡B5 = ⊡K+ (⊡B) + (⊡5)

Theorem 3. ([6, Thm. 5, Thm. 6])

(1) ⊡B is sound and strongly complete with respect to the class of Bframes, to the
class of DBframes, and to the class of T Bframes.

(2) ⊡4 is sound and strongly complete with respect to the class of 4frames, to the
class of D4frames, and to the class of S4frames.

(3) ⊡5 is sound and strongly complete with respect to the class of 5frames, and to
the class of D5frames.

(4) ⊡B4 (and its equivalent system ⊡B5) is sound and strongly complete with re
spect to the class of B4frames (equivalently, the class of B5frames) and to the
class of S5frames.3

However, the proof of the strong completeness of ⊡K (and thus its extensions)
in [6] is quite complicated, needing, among other things, to make use of copies of

3Note that it is claimed without proof in [6] that ⊡B4 and ⊡B5 are equivalent. In what follows, we
will give a proof.
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maximal consistent sets in the construction of the canonical model. For the details,
we refer to [6] or Appendix below.

Note that in terms of the form, the axioms and inference rules of the system
⊡K are similar to those of the minimal normal modal logic K, which consists of the
following axioms and inference rules:

(TAUT) all instances of propositional tautologies
(◻K) ◻(φ→ ψ)→ (◻φ→ ◻ψ)
(MP) From φ and φ→ ψ infer ψ
(◻N) From φ infer ◻φ

Also, when it comes to the form, the axioms and inference rules of the system⊡B
is similar to those of the normal modal logicB, which is the smallest normal extension
of K with an extra axiom φ→ ◻◇φ, denoted ◻B.

In what follows, wewill give a simpler proof for the completeness of⊡K and⊡B,
by reducing the soundness and strong completeness of the two systems, respectively,
to those of K and B.

Moreover, we can see other⊡axioms are not similar in form to their◻counterparts
that are used to provide completeness of normal modal logics. We will explain why
this is the case, which will in turn explain that the completeness of the other four sys
tems, namely⊡4, ⊡5, ⊡B4 and⊡B5, cannot be reduced to those of their corresponding
◻systems via the translation function used in the case of ⊡K and ⊡B.

Furthermore, although the axiom (⊡4) in the proof system ⊡B4 is not similar
in form to its counterpart in ◻based normal modal logics, one of its simpler equiva
lences (denoted (⊡4′) below) is indeed similar in form to the axiom (D4) in the proof
system KAB introduced above. By giving two translation functions, among some
semantic considerations, we will finally demonstrate in Sec. 5.2 that the soundness
and completeness of ⊡B4 can be reduced to those ofKAB.

4 Irreflexive reduction

This section proposes a notion called ‘irreflexive reduction’. This notion will
play a crucial role in the frame definability, and more importantly, in the completeness
of the proof systems ⊡K and ⊡B of L(⊡) below.

Intuitively, the irreflexive reduction of a frame is obtained from the original
frame by deleting all reflexive arrows. It is easy to see that every frame has a unique
irreflexive reduction.4

4The notion of irreflexive reduction differs from the notion of mirror reduction in [9], in that the
irreflexive reduction is also a mirror reduction, but not vice versa. Every frame may have many mirror
reductions, but has only one irreflexive reduction.
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Definition 2 (Irreflexive reduction). Let F = ⟨W,R⟩ be a frame. Frame F−T =

⟨W,R−T ⟩ is said to the irreflexive reduction of F , if

R−T = R/{(w,w) ∣ w ∈W}.

Moreover, say thatM−T = ⟨F−T , V ⟩ is the irreflexive reduction ofM = ⟨F , V ⟩, if
F−T is the irreflexive reduction of F . We say that a class of frames C is closed under
irreflexivization, if F ∈ C implies F−T ∈ C.

The satisfiability and frame validity of L(⊡)formulas are invariant under the
notion of irreflexive reduction. We omit the proof details due to space limitation.

Proposition 1. Let F−T = ⟨W,R−T ⟩ be the irreflexive reduction of F = ⟨W,R⟩,
and letM = ⟨F , V ⟩ andM−T = ⟨F−T , V ⟩. Then

(a) For all w ∈W , for all φ ∈ L(⊡), we have

M,w ⊧ φ ⇐⇒ M−T ,w ⊧ φ.

(b) For all φ ∈ L(⊡), we have

F ⊧ φ ⇐⇒ F−T ⊧ φ.

It is claimed without proof in [6, p. 65] that the property of symmetry is definable
inL(⊡), by p→ ⊡⟐p, but other familiar frame properties, such as seriality, reflexivity,
transitivity, Euclideanness, are undefinable in this language. Here we give a proof for
the undefinability results with the notion of irreflexive reduction.

A frame property P is said to be definable in a language, if there exists a set of
formulas Γ in this lanaguage such that for all frames F , we have F ⊧ Γ iff F has the
property P . We write simply F ⊧ φ if Γ is a singleton {φ}.

Theorem 4. Seriality, reflexivity, transitivity, Euclideanness, and convergence are all
not definable in L(⊡).

Proof. Consider the following frames:

F1 : s1
��

F ′1 : s1

F2 : s2 //��
t2oo
��

F ′2 s2 // t2oo

It is easy to check that F ′1 and F ′2 are, respectively, the irreflexive reductions of
F1 andF2. By item (b) of Prop. 1, for all φ ∈ L(⊡),F ′1 ⊧ φ iffF1 ⊧ φ, andF ′2 ⊧ φ iff
F2 ⊧ φ. Now observe that F1 is serial and reflexive, but F ′1 is not; F2 is transitive,
Euclidean, and convergent, but F ′2 is not. Therefore, none of seriality, reflexivity,
transitivity, Euclideanness, and convergence is definable in L(⊡). ◻
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The following results will be used in the completeness proof. Given a class of
frames C, define C−T = {F−T : F ∈ C}, where F−T is the irreflexive reduction of
F . In other words, C−T is the set of the irreflexive reduction of each frame in C.

Lemma 1. LetC andC′ be two classes of frames. IfC−T = C′−T , then for allΓ∪{φ} ⊆
L(⊡), we have

Γ ⊧C φ iff Γ ⊧C′ φ.

Proof. By Prop. 1(a), we can show that Γ ⊧C φ iff Γ ⊧C−T φ, and Γ ⊧C′ φ iff
Γ ⊧C′−T φ. Since C−T = C′−T , we conclude that Γ ⊧C φ iff Γ ⊧C′ φ. ◻

Given any class of frames X , one may check that if T ⊆ X , then X −T = T −T ,
and if S5 ⊆ X ⊆ B4, then B4−T = X −T = S5−T . Then by Lemma 1, we immediately
have the following special semantic properties of L(⊡).

Proposition 2. Let Γ ∪ {φ} ⊆ L(⊡).
(1) Γ ⊧X φ ⇐⇒ Γ ⊧T φ for T ⊆ X ;
(2) Γ ⊧B4 φ ⇐⇒ Γ ⊧X φ ⇐⇒ Γ ⊧S5 φ for S5 ⊆ X ⊆ B4.

We close this section with an important result, which says thatL(⊡) is insensitive
to reflexivity, that is, adding or deleting reflexive arrows does not change the validity
of L(⊡)formulas in a given frame (satisfiability, for that matter).

Proposition 3. LetM1 = ⟨W,R1, V ⟩ andM2 = ⟨W,R2, V ⟩ be models such thatR1

and R2 only differ in pairs of reflexive arrows. Then for all w ∈W , for all φ ∈ L(⊡),
we have

M1,w ⊧ φ ⇐⇒ M2,w ⊧ φ.

Proof. Note thatM1 andM2 must have the common irreflexive reduction. Then
use Prop. 1(a). ◻

5 Reducing completeness via translations

In this section, we reduce some proof systems in L(⊡) to the more familiar ones
in the literature, by proposing several translation functions. Given any translation
function f and any set of formulas Γ, we define Γf = {φf ∣ φ ∈ Γ}.

5.1 Reducing completeness of ⊡K and ⊡B

In this part, we reduce the (soundness and) strong completeness of the unfamiliar
proof systems ⊡K and ⊡B to those of the familiar ones K and B, respectively, by
giving a pair of translation functions, namely◻translation (⋅)◻ and⊡translation (⋅)⊡.
The strategy can be summed up as follows. For all Γ ∪ {φ} ⊆ L(⊡),

Γ ⊢⊡K φ
(1)
⇐⇒ Γ◻ ⊢K φ◻

(2)
⇐⇒ Γ◻ ⊧K φ◻

(3)
⇐⇒ Γ ⊧K φ,
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Γ ⊢⊡B φ ⇐⇒ Γ◻ ⊢B φ◻ ⇐⇒ Γ◻ ⊧B φ◻ ⇐⇒ Γ ⊧B φ.

In what follows, we will show the case for ⊡K in detail. The proof for ⊡B is analo
gous.

Definition 3 (◻translation, ⊡translation). Define the ◻translation (⋅)◻ : L(⊡) →
L(◻) and the ⊡translation (⋅)⊡ : L(◻)→ L(⊡) as follows:

p◻ = p p⊡ = p

(¬φ)◻ = ¬φ◻ (¬φ)⊡ = ¬φ⊡
(φ ∧ ψ)◻ = φ◻ ∧ ψ◻ (φ ∧ ψ)⊡ = φ⊡ ∧ ψ⊡
(⊡φ)◻ = ◻φ◻ (◻φ)⊡ = ⊡φ⊡

One may easily see that both (⋅)◻ and (⋅)⊡ are definitional translations, since
they are variablefixed and compositional.5 Intuitively, the ◻translation replaces all
occurrences of ⊡ in every L(⊡)formula with ◻, and the ⊡translation replaces all
occurrences of ◻ in every L(◻)formula with ⊡. It is straightforward to show by
induction that (φ◻)⊡ = φ for all φ ∈ L(⊡) and (ψ⊡)◻ = ψ for all ψ ∈ L(◻). In
general, (Γ◻)⊡ = Γ for all Γ ⊆ L(⊡) and (Σ⊡)◻ = Σ for all Σ ⊆ L(◻).

The following result is an immediate consequence of the purely notational dif
ference between the axiomatizations K and ⊡K.

Lemma 2. For all Γ ∪ {φ} ⊆ L(⊡), Γ ⊢⊡K φ iff Γ◻ ⊢K φ◻.

This completes the step (1) in the above strategy. The step (2) is immediate by
the soundness and strong completeness of K. It remains only to show the step (3).
For this, we need some preparation.

Recall that we remarked that the semantics of ◻ and ⊡ are the same on the ir
reflexive models. Here is a formal exposition, which can be shown by induction on
L(⊡)formulas.

Proposition 4. For all irreflexive modelsM, for all worldsw inM, for allφ ∈ L(⊡),
we have

M,w ⊧ φ iffM,w ⊧ φ◻.

Recall from Def. 2 thatM−T is the irreflexive reduction ofM. The following
result is a direct consequence of Prop. 1(a), Prop. 4 and the fact thatM−T is irreflex
ive.

Corollary 1. For all modelsM, for all worlds w inM, for all φ ∈ L(⊡), we have

M,w ⊧ φ iffM−T ,w ⊧ φ◻.

Consequently, for all Γ ⊆ L(⊡),M,w ⊧ Γ iffM−T ,w ⊧ Γ◻.
5As for the notion of definitional translations, we refer to [5, p. 265].



Jie Fan / Logics of Nonactual Possible Worlds 27

Lemma 3. For all Γ ∪ {φ} ⊆ L(⊡), we have

Γ ⊧K φ ⇐⇒ Γ◻ ⊧K φ◻.

Proof. Suppose that Γ ⊭K φ. Then there exists a modelM and a world w such that
M,w ⊧ Γ andM,w ⊭ φ. By Coro. 1,M−T ,w ⊧ Γ◻ andM−T ,w ⊭ φ◻. Therefore,
Γ◻ ⊭K φ◻.

Now assume that Γ◻ ⊭K φ◻. Then there existsM and w such thatM,w ⊧ Γ◻

andM,w ⊭ φ◻. Since Γ◻ ∪ {φ◻} ⊆ L(◻), by a wellknown result6 in the modal
logic literature (see e.g. [2, p. 48]), there must be an irreflexive modelM′ and w′

such thatM′,w′ ⊧ Γ◻ andM′,w′ ⊭ φ◻. Note thatM′ = (M′)−T . This means that
(M′)−T ,w′ ⊧ Γ◻ and (M′)−T ,w′ ⊭ φ◻. By Coro. 1 again, we infer thatM′,w′ ⊧ Γ
andM′,w′ ⊭ φ, and therefore Γ ⊭K φ. ◻

With the above results in hand, we obtain the soundness and strong completeness
of ⊡K. As a matter of fact, we can show the following general result.

Theorem 5. Let T ⊆ X ⊆ K. Then ⊡K is sound and strongly complete with respect to
the class of X frames. That is, for all Γ ∪ {φ} ⊆ L(⊡), we have that: Γ ⊢⊡K φ ⇐⇒
Γ ⊧X φ.

Proof. Let Γ ∪ {φ} ⊆ L(⊡). We have the following equivalences:

Γ ⊢⊡K φ ⇐⇒ Γ◻ ⊢K φ◻ ⇐⇒ Γ◻ ⊧K φ◻ ⇐⇒ Γ ⊧K φ ⇐⇒ Γ ⊧X φ ⇐⇒ Γ ⊧T φ,

where the first equivalence follows from Lemma 2, the second from the soundness
and strong completeness ofK, the third from Lemma 3, and the last two equivalences
follow from Prop. 2(1). ◻

Corollary 2. [6, Thm. 4] ⊡K is sound and strongly complete with respect to the class
K of all frames, to the class D of all serial frames, and to the class T of all reflexive
frames.

As with the reduction of the sound and strong completeness of ⊡K to those of
K, we can also reduce the soundness and strong completeness of ⊡B to those of B.
Note that [2, p. 48] also tells us that every symmetric model can be transformed into a
pointwiseequivalent irreflexive symmetric model, thus we can show a similar result
to Lemma 3.

6The result is as follows. For each modelM and w inM, there is an irreflexive modelM′ and w′

inM′ such that for each φ ∈ L(◻),

M,w ⊧ φ iffM′,w′ ⊧ φ.

That is, every model can be transformed into a pointwiseequivalent irreflexive model.



28 Studies in Logic, Vol. 16, No. 6 (2023)

Theorem 6. [6, Thm. 5(1)] ⊡B is sound and strongly complete with respect to the
class of Bframes, the class of DBframes, and also the class of T Bframes.

Similarly, the soundness and completeness of the bimodal logics of L(◻,⊡)7,
namely K+ and KB+ in [6], can be reduced to those of normal modal logics K and
B, respectively, by translating ⊡φ to ◻φ. We omit the proof details due to space
limitation.

We have seen from Sec. 3 that the axioms (⊡K) and (⊡B) are similar in form to
their counterparts in ◻based normal modal logics, that is, (◻K) and (◻B), respec
tively. However, this is not the case for other axioms. One may ask why it is so. In
what follows, we provide an explanation for this phenomenon.

Proposition 5. Let C be a class of frames. If (i) C is closed under irreflexivization,
then (ii) for all φ ∈ L(◻), if C ⊧ φ, then C ⊧ φ⊡.

Proof. Suppose that (i) holds, to show that (ii) holds. For this, let φ ∈ L(◻) and
assume that C ⊭ φ⊡, it suffices to prove that C ⊭ φ.

By assumption, there is aCmodelM = ⟨W,R,V ⟩ andw ∈W such thatM,w ⊭
φ⊡. By Coro. 1 and φ⊡ ∈ L(⊡),M−T ,w ⊭ (φ⊡)◻, that is,M−T ,w ⊭ φ. Note that
M−T is also a Cmodel, which follows from the fact thatM is a Cmodel and (i).
Thus C ⊭ φ. ◻

Since ◻K and ◻B are, respectively, valid on the class of all frames and the class
of symmetric frames, and both frame classes are closed under irreflexivization, ⊡K
and ⊡B are valid with respect to the corresponding classes of frames.

Corollary 3.

(1) ⊡(φ→ ψ)→ (⊡φ→ ⊡ψ) is valid on the class of all frames.
(2) φ→ ⊡⟐φ is valid on the class of symmetric frames.

We have seen from Prop. 5 that (i) is a sufficient condition of (ii). One may then
naturally ask whether (i) is also a necessary condition of (ii). In general, the answer
would be negative.

Proposition 6. Let C be the class of all frames which has at least one reflexive point.
Then (i) of Prop. 5 fails, but (ii) of Prop. 5 holds.

Proof. One may check that C is not closed under irreflexivization, thus (i) of Prop. 5
fails. In what follows, we show that for all φ ∈ L(◻), (1) C ⊧ φ implies ⊧ φ, (2) ⊧ φ
implies ⊧ φ⊡, and (3) ⊧ φ⊡ implies C ⊧ φ⊡. This entails that C ⊧ φ implies C ⊧ φ⊡,
namely (ii) of Prop. 5. (3) is straightforward. It remains only to show (1) and (2).

7The language L(◻,⊡) is the extension of L(⊡) with the modal construct ◻φ.
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For (1): suppose that ⊭ φ, then ¬φ is satisfiable. By finite model property of
L(◻), there exists a finite model, sayM, and w ∈ M, such thatM,w ⊧ ¬φ. Let
M′ = ⟨W ′,R′, V ′⟩ such that W ′ = {s} where s ∉ M (since M is finite, such
s must exist), R′ = {(s, s)}. Now consider the disjoint union ofM andM′, say
M′′. SinceM′′ contains the reflexive point s, its underlying frame belongs to C.
Moreover, as modal satisfaction is invariant under disjoint unions (see e.g. [1]), we
haveM′′,w ⊧ ¬φ, and therefore C ⊭ φ.

For (2): assume that ⊭ φ⊡, then there is a model N and u such that N , u ⊭ φ⊡.
Since φ⊡ ∈ L(⊡), by Coro. 1, N −T , u ⊭ (φ⊡)◻. We have shown previously that
(φ⊡)◻ = φ. Thus N −T , u ⊭ φ, and therefore ⊭ φ, as desired. ◻

Despite this, belowwe shall show that the converse of Prop. 5 indeed holds when
C is the class of serial frames, the class of reflexive frames, the class of transitive
frames, or the class of Euclidean frames. Note that none of such class of frames is
closed under irreflexivization, which can be seen from the figures in the proof of
Thm. 4.

Proposition 7. Let C be the class of Dframes, the class of T frames, the class of
4frames, or the class of 5frames. Then there is a φ ∈ L(◻) such that C ⊧ φ but
C ⊭ φ⊡.

Proof. If C is the class of Dframes, we let φ = ◻p → ◇p. On one hand, it is well
known that C ⊧ φ. On the other hand, C ⊭ φ⊡, where φ⊡ = ⊡p → ⟐p. To see this,
consider a model, sayM1, which contains only a single world that is reflexive, say
w1 (where the valuation is inessential). We can check thatM1 is serial andM1,w1 ⊧
⊡p ∧ ⊡¬p.

If C is the class of T frames, we let φ = ◻p → p. It is well known that C ⊧ φ.
However, C ⊭ φ⊡, where φ⊡ = ⊡p → p. To see this, consider a model, sayM2,
which consists of a single reflexive world, say w2, falsifying p. It is easy to see that
M2 is reflexive. Moreover, one can show thatM2,w2 ⊧ ⊡p ∧ ¬p.

If C is the class of the class of 4frames, we let φ = ◻p → ◻◻p. On one hand,
C ⊧ φ. On the other hand, C ⊭ φ⊡, where φ⊡ = ⊡p → ⊡⊡p. To see this, consider
a model, sayM3, which consists of two worlds w3 and v such that the accessibility
relation is universal and p is only true at v. One may check thatM3 is transitive and
M3,w3 ⊧ ⊡p ∧ ¬⊡⊡p.

If C is the class of 5frames, we let φ = ◇p → ◻◇p. On one hand, we have
C ⊧ φ. On the other hand, C ⊭ φ⊡, where φ⊡ = ⟐p → ⊡⟐p. To see this, consider
a modelM4, which consists of two worlds w4 and u such that w4 accesses to u and
u accesses to itself and there are no other accesses, and p is only true at u. It is clear
thatM4 is Euclidean. Moreover, one may verify thatM4,w4 ⊧⟐p ∧ ¬⊡⟐p. ◻
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5.2 Reducing completeness of ⊡B4

Wenow reduce the soundness and strong completeness of⊡B4 to those ofKAB.
The strategy is as before, except for an additional step: for all Γ ∪ {φ} ⊆ L(⊡),

Γ ⊢⊡B4 φ
(∗)
⇐⇒ Γ ⊢⊡B4′ φ

(∗∗)
⇐⇒ Γt ⊢KAB φt (∗∗∗)

⇐⇒ Γt ⊧Ci φt (∗∗∗∗)
⇐⇒ Γ ⊧B4 φ,

where (⋅)t is defined below.
To obtain the desired system ⊡B4′, we define the following translation function.

Definition 4. Define the ⋆translation (⋅)⋆ : L(◻)→ L(⊡) as follows:

p⋆ = p

(¬φ)⋆ = ¬φ⋆
(φ ∧ ψ)⋆ = φ⋆ ∧ ψ⋆
(◻φ)⋆ = ⊡φ⋆ ∧ φ⋆

Recall that the transitivity axiom in L(◻) is ◻φ → ◻◻φ. Using the above ⋆
translation, we obtain the following formula:

(⊡4′′) (⊡φ ∧ φ)→ ⊡(⊡φ ∧ φ) ∧ (⊡φ ∧ φ).

In the system ⊡K, this formula can be simplified to the following equivalent one,
denoted (⊡4′):

(⊡φ ∧ φ)→ ⊡⊡φ.

Define ⊡B4′ = ⊡B+(⊡4′). We choose (⊡4′) instead of (⊡4) (namely, ⊡φ∧ψ →
⊡⊡(φ ∨ ψ)) in the system ⊡B4, partly because this axiom is simpler than the latter,
and partly because it is more convenient in showing that ⊡B4 is equivalent to ⊡B5;
more importantly, it is similar in form to the axiom (D4) inKAB, which is useful in
the completeness proof of ⊡B4.

Proposition 8. ⊡4 and ⊡4′ are interderivable in ⊡K.8

Proof. Firstly, (⊡4)Ô⇒ (⊡4′): let ψ in (⊡4) be φ. Then apply the rule φ↔ ψ

⊡φ↔ ⊡ψ
twice, which is derivable from the axiom ⊡K and the inference rule ⊡N.

Secondly, (⊡4′) Ô⇒ (⊡4): suppose that (⊡4′). We have the following proof
sequences in ⊡K.

(1) ⊡(φ ∨ ψ) ∧ (φ ∨ ψ)→ ⊡⊡(φ ∨ ψ) (⊡4′)
(2) ⊡φ→ ⊡(φ ∨ ψ) ⊡ is monotone
(3) ψ → φ ∨ ψ TAUT
(4) ⊡φ ∧ ψ → ⊡⊡(φ ∨ ψ) (1) − (3)

◻
8This is claimed without proof in [6, p. 65].



Jie Fan / Logics of Nonactual Possible Worlds 31

Corollary 4. ⊡4 = ⊡K+(⊡4′); ⊡B4 = ⊡B4′. Therefore, Γ ⊢⊡B4 φ ⇐⇒ Γ ⊢⊡B4′ φ.

We have thus finished the step (∗). To complete the step (∗∗), we introduce a
pair of translations.

Definition 5. Define the translation (⋅)t : L(⊡) → L(D) and the translation (⋅)s :

L(D)→ L(⊡) as follows.

pt = p ps = p

(¬φ)t = ¬φt (¬φ)s = ¬φs

(φ ∧ ψ)t = φt ∧ ψt (φ ∧ ψ)s = φs ∧ ψs

(⊡φ)t = Dφt (Dφ)s = ⊡φs

Again, both (⋅)t and (⋅)s are definitional translations. Intuitively, the ttranslation
replaces all occurrences of ⊡ in every L(⊡)formula with D, and the stranslation
replaces all occurrences of D in every L(D)formula with ⊡. Moreover, (φt)s = φ

for each φ ∈ L(⊡), and (φs)t = φ for each φ ∈ L(D). This also extends to the set of
formulas; that is, (Γt)s = Γ for each Γ ⊆ L(⊡), and (Γs)t = Γ for each Γ ⊆ L(D).

As with Lemma 2, we can show the following.

Lemma 4. Let Γ ∪ {φ} ⊆ L(⊡). Then Γ ⊢⊡B4′ φ iff Γt ⊢KAB φt.

It remains only to show the step (∗ ∗ ∗∗). For this, we need some preparations.
First, as mentioned before, the semantics of ⊡ and D are the same over Cimodels.
Here is a formal exposition, which can be shown by induction on L(D)formulas.

Proposition 9. For all CimodelM = ⟨W,R,V ⟩ and w ∈W , for all φ ∈ L(D), we
have

M,w ⊧ φ ⇐⇒ M,w ⊧ φs.

Proposition 10. For each CimodelM = ⟨W,R,V ⟩ and w ∈ W , there exists some
B4modelM′ such that for all φ ∈ L(D),

M,w ⊧ φ ⇐⇒ M′,w ⊧ φs.

Proof. We take the reflexive closure ofM, denotedM+T . One may easily show
thatM+T is transitive and symmetric. Moreover, by Prop. 9,M,w ⊧ φ iffM,w ⊧
φs. Note that φs ∈ L(⊡). By Prop. 3,M,w ⊧ φs iffM+T ,w ⊧ φs. Therefore,
M,w ⊧ φ iffM+T ,w ⊧ φs. ◻

The following result plays a crucial role in the completeness proof via reduction
below.

Proposition 11. For each B4model N = ⟨W,R,V ⟩ and w ∈ W , there exists some
Cimodel N ′ such that for all φ ∈ L(⊡),

N ,w ⊧ φ ⇐⇒ N ′,w ⊧ φt.
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Proof. We take the submodel ofN generated by w, denotedNw = ⟨U,R′, V ′⟩. We
can show that L(⊡)formulas are invariant under the generated submodels, as in the
case of the standard modal logic. Also, the properties of symmetry and transitivity are
preserved under generated submodels, thus Nw is also a B4model. Now we show
that Nw is a Cimodel, which is divided into two steps:9

(a) for allm ∈ N, for all x ∈ U , if w ≠ x and w(R′)mx, then wR′x.
(b) for all x, y ∈ U , if x ≠ y, then xR′y.

The proof for (a) is by induction on m ∈ N. The case m = 0 holds vacuously. Sup
pose, as induction hypothesis, that (a) holds for some fixedm, we show (a) also holds
form+ 1. For this, we assume that w ≠ x and w(R′)m+1x. Then there exists u ∈ U
such that w(R′)mu and uR′x. If w = u, then it is clear that wR′x. Otherwise, that
is, w ≠ u, then by induction hypothesis, it follows that wR′u. Now by transitivity of
R′ and wR′u and uR′x, we obtain wR′x.

The proof for (b) is as follows. Suppose that x ≠ y for all x, y ∈ U . Then there
arem,n ∈ N such that w(R′)mx and w(R′)ny.

If w = x, then w ≠ y, by (a), it follows that wR′y, and thus xR′y.
If w = y, then w ≠ x, by (a) again, wR′x, that is, yR′x. Now by symmetry of

R′, we infer xR′y.
If w ≠ x and w ≠ y, then by (a) again, we obtain wR′x and wR′y. Since R′ is

symmetric and transitive, R′ is Euclidean, thus xR′y.
So far we have shown thatNw is a Cimodel. It suffices to show thatNw,w ⊧ φ

iff Nw,w ⊧ φt for all φ ∈ L(⊡). The proof proceeds with induction on φ. The non
trivial case is ⊡φ. This follows directly from the previous remark that the semantics
of ⊡ and D are the same on the Cimodels. ◻

Lemma 5. Let Γ ∪ {φ} ⊆ L(⊡). Then Γ ⊧B4 φ iff Γt ⊧Ci φt.

Proof. ‘Only if’: suppose that Γt ⊭Ci φt. Then there is a CimodelM and w in
M such thatM,w ⊧ Γt andM,w ⊭ φt. By Prop. 10, there exists a B4modelM′

such thatM′,w ⊧ (Γt)s andM′,w ⊭ (φt)s. That is,M′,w ⊧ Γ andM′,w ⊭ φ.
Therefore, Γ ⊭B4 φ.

‘If’: assume that Γ ⊭B4 φ. Then there exists a B4model N and w in N such
thatN ,w ⊧ Γ andN ,w ⊭ φ. Now by Prop. 11, there exists some CimodelN ′ such
that N ′,w ⊧ Γt and N ′,w ⊭ Γt. Therefore, Γt ⊭Ci φt. ◻

With the above results in mind, we can obtain the soundness and strong com
pleteness of ⊡B4. As a matter of fact, we can show the following general result.

9The proofs of the two steps are shown as in [7, p. 185], where the proofs are for the canonical model,
rather than an arbitrary B4model, though.
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Theorem 7. Let S5 ⊆ X ⊆ B4. Then⊡B4 is sound and strongly complete with respect
to the class of X frames. That is, for any Γ ∪ {φ} ⊆ L(⊡), Γ ⊢⊡B4 φ iff Γ ⊧X φ.

Proof. We have the following proof equivalences:

Γ ⊢⊡B4 φ ⇐⇒ Γ ⊢⊡B4′ φ ⇐⇒ Γt ⊢KAB φt ⇐⇒ Γt ⊧Ci φt

⇐⇒ Γ ⊧B4 φ ⇐⇒ Γ ⊧X φ ⇐⇒ Γ ⊧S5 φ,

where the first equivalence follows from Coro. 4, the second from Lemma 4, the third
from Thm. 1, the fourth from Lemma 5, and the last two follow from Prop. 2(2). ◻

Corollary 5. ⊡B4 is sound and strongly complete with respect to the class of X 
frames, where X ∈ {B4,B4D,S5}.

Theorem 8. ⊡B5 is sound and strongly complete with respect to the class of X 
frames, where S5 ⊆ X ⊆ B4.

Proof. By Coro. 4 and Thm. 7, it suffices to show that ⊡B4′ = ⊡B5.
We first show that⊡5 is provable in⊡B4′. We have the following proof sequence

in ⊡B4′, where (⊡4′)d means the dual formula of ⊡4′.

(i) ⟐φ→ ⊡⟐⟐φ (⊡B)
(ii) ⟐⟐φ→ (⟐φ ∨ φ) (⊡4′)d
(iii) ⊡⟐⟐φ→ ⊡(⟐φ ∨ φ) (ii),⊡ is monotone
(iv) ⟐φ→ ⊡(⟐φ ∨ φ) (i)(iii)

Next, we show that ⊡4′ is provable in ⊡B5. We have the following proof se
quence in ⊡B5, where (⊡5)d means the dual formula of ⊡5.

(i) (⊡φ ∧ φ)→ ⊡⟐(⊡φ ∧ φ) (⊡B)
(ii) ⟐(⊡φ ∧ φ)→ ⊡φ (⊡5)d
(iii) ⊡⟐(⊡φ ∧ φ)→ ⊡⊡φ (ii),⊡ is monotone
(iv) (⊡φ ∧ φ)→ ⊡⊡φ (i)(iii)

◻

It is worth remarking that from axiom 5 (namely,◇φ→ ◻◇φ), the ⋆translation
in Def. 4 gives us the following axiom, denoted ⊡5′:

⟐φ ∨ φ→ ⊡(φ ∨⟐φ)

It should be not hard to verify that ⊡B+ ⊡5′ = ⊡B5.
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6 Conclusion and future work

Our contribution is mainly technical. We investigate the frame definability of
the logic of nonactual possible worlds L(⊡). Most importantly, by defining suitable
translation functions, we reduced the determination results of⊡K,⊡B,⊡B4 to those of
K, B, KAB, respectively. For us, this method, namely reductionviatranslations, is
simpler than the direct proof method of using copies of maximal consistent sets in [6].
The hardest of this method lies in the reduction of the semantic consequence relation.
This establishes some metaproperties of L(⊡), for instance, decidability. This also
build a bridge between L(⊡) and L(◻), and L(⊡) and L(D). We also explained why
other ⊡axioms cannot be obtained from the corresponding ◻axioms by using ⊡
translation. We can also extend the axiomatization results to the dynamic cases.

Coming back to Prop. 3, we can see that L(⊡) is insensitive to reflexivity, that
is, adding or deleting reflexive arrows does not change the validity (satisfiability,
for that matter) of ⊡formulas in a given frame. This is similar to the case for the
logic of essence and accident L(○) ([9]). Due to this crucial observation, similar to
L(○) in [3], one may give a generalized completeness and soundness result for L(⊡).
Besides, one can investigate if the soundness and strong completeness ofKAB in [7]
can be reduced to some system in L(◻) by a certain translation. Moreover, one may
explore the applications of L(⊡) in counterfactual reasoning and imagination. We
leave this for future work.

7 Appendix

This appendix is intended to describe the completeness proof of ⊡K.
Due to the similarity of ⊡K and K, a natural question would be whether the

completeness of ⊡K can be shown as that of K; in more detail, in the construction of
the canonical model, the canonical relation is defined as wRcv iff ⊡−(w) ⊆ v, where
⊡−(w) = {φ ∈ L(⊡) : ⊡φ ∈ w}. The answer is negative. Consider the set

Γ = {⊡φ↔ φ : φ ∈ L(⊡)}.

Note that Γ is consistent.10 Then by Lindenbaum’s Lemma, there exists a maximal
consistent set u such that Γ ⊆ u. Therefore, one may check that

{φ : ⊡φ ∈ u} = u.

Then according to the previous definition of Rc and the properties of maximal con
sistent sets, Rc(u) = {u}. That is, u has itself as its sole Rcsuccessor.

10For this, it suffices to show that Γ is satisfiable. Construct a modelM = ⟨W,R,V ⟩, which consists
of two worlds s and t, sRt and tRs, and any propositional variable is true at both worlds. By induction
on the structure of formulas, we can verify thatM, s ⊧ φ iffM, t ⊧ φ for any φ ∈ L(⊡). It then follows
thatM, s ⊧ ⊡φ↔ φ for all φ ∈ L(⊡). Therefore, Γ is satisfiable.
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Now that u cannot ‘see’ any of possible worlds other than itself, the semantics
tell us that u ⊧ ⊡�. However, as � ∉ u, we should have ⊡� ∉ u. Therefore, the truth
lemma fails.

In fact, not only those maximal consistent supersets of Γ above, but some max
imal consistent supersets of {⊡φ → φ : φ ∈ L(⊡)} will lead to a failure of the truth
lemma, and will require special attention (Def. 6 below) for the sake of our complete
ness proof. For instance, consider a maximal consistent set that contains the following
set of formulas Φ:

{⊡φ→ φ : φ ∈ L(⊡)}
∪ {⊡(φ1 ∨⋯ ∨ φn) : φ1 ∈ Γ1, . . . , φn ∈ Γn}
∪ {⟐φ : φ ∈ Γ1 ∪⋯ ∪ Γn}

where Γi,Γj are pairwise different maximal consistent sets for every i, j ∈ [1, n] such
that i ≠ j.11

All such maximal consistent sets have a common subset, that is, {⊡φ → φ : φ ∈
L(⊡)}. Chen ([6]) refers to such special sets as ‘problematic’ and collect them as
T(L), in symbols,

T(L) = {w ∈MCS : {⊡φ→ φ : φ ∈ L(⊡)} ⊆ w},

and then let T(L) = MCS(L)/T(L), where L is a consistent normal extension of
⊡K, and MCS consists of all maximal Lconsistent sets. One may check that for all
w ∈MCS, w ∈ T(L) iff ⊡−(w) ⊆ w.

Definition 6. [6, Def. 2] Given any consistent normal extension L of ⊡K, define
the canonical modelML = ⟨WL,RL, V L⟩, where

• WL = ({0,1} ×T(L)) ∪ ({2} ×T(L))
• RL = {((n1,w1), (n2,w2)) ∈ WL ×WL ∣ (n1,w1) = (n2,w2) or ⊡− (w1) ⊆
w2}

• V L(p) = {(n,w) ∈WL ∣ p ∈ w}.

The reason for using copies in the case of w ∈ T(L), is that, as explained before,
as w may have itself as its sole successor, copies can guarantee w to have a different
successor.

11We show such a maximal consistent set indeed exists via constructing a model. Consider a model
which consists of n + 1 worlds w1,w2, . . . ,wn+1 such that w1 and w2 can ‘see’ each other, both of
which can ‘see’ all other worlds, w1 and w2 agree on all propositional variables, the valuations on
other worlds are not the same as w1 and w2, and also different with each other. One should easily
verify that w1 and w2 agree on all L(⊡)formulas. Let Γi = {φ ∈ L(⊡) : M,wi+1 ⊧ φ} for each
i ∈ {1, . . . , n} and Γ = Γ1. We can then show that Γ and all Γi are maximally consistent, Γi ≠ Γj for
every i, j ∈ {1, . . . , n} such that i ≠ j, and Φ ⊆ Γ.
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Lemma 6. [6, Lem. 3] Let L be any consistent normal extension of ⊡K. For all
(n,w) ∈WL and for all φ ∈ L(⊡), we have

φ ∈ w ⇐⇒ ML, (n,w) ⊧ φ.

Proof. By induction on φ ∈ L(⊡). The nontrivial case is ⊡φ.
Suppose that ⊡φ ∈ w, to show thatML, (n,w) ⊧ ⊡φ. By supposition, φ ∈

⊡−(w). For all (m,v) ∈ WL such that (n,w) ≠ (m,v) and (n,w)RL(m,v), by
definition of RL, we have ⊡−(w) ⊆ v, and then φ ∈ v. By the induction hypothesis,
ML, (m,v) ⊧ φ, for all such (m,v). Therefore,ML, (n,w) ⊧ ⊡φ.

Conversely, assume that ⊡φ ∉ w. It is easy to show that ⊡−(w)∪{¬φ} is consis
tent. Then by Lindenbaum’s Lemma, there exists u ∈MCS(L) such that ⊡−(w) ⊆ u
and φ ∉ u. We distinguish two cases according to the value of n:

• n = 2. In this case, w ∉ T(L). This means that for some χ we have ⊡χ ∈ w but
χ ∉ w. As ⊡χ ∈ w, χ ∈ u, thus w ≠ u. If u ∈ T(L), we set m = 0; otherwise,
set m = 2. Then (m,u) ∈ WL. Because w ≠ u, we have (n,w) ≠ (m,u);
since ⊡−(w) ⊆ u, we infer that (n,w)RL(m,u). From φ ∉ u and induction
hypothesis, it follows thatML, (m,u) ⊭ φ. Therefore,ML, (n,w) ⊭ ⊡φ.

• n ∈ {0,1}. In this case,w ∈ T(L). If u ∈ T(L), we setm = 1−n; otherwise, set
m = 2. Then (m,u) ∈ WL, and m ≠ n. Then we can also show that (n,w) ≠
(m,u), (n,w)RL(m,u) andML, (m,u) ⊭ φ. Therefore,ML, (m,u) ⊭ ⊡φ.

◻

Theorem. [6, Thm. 4] ⊡K is sound and strongly complete with respect to the class
K of all frames, the class D of all serial frames, the class T of all reflexive frames.
In symbols, for all X ∈ {K,D,T }, for all Γ ∪ {φ} ⊆ L(⊡), we have

Γ ⊢⊡K φ iff Γ ⊧X φ.

Proof. The soundness is straightforward. For completeness, note thatM⊡K is re
flexive. Thus it suffices to show that every ⊡Kconsistent set is satisfiable.

First, Lindenbaum’s Lemma tells us that every ⊡Kconsistent set can be ex
tended to a maximal ⊡Kconsistent set, say w. If w ∈ T(⊡K), then by Lemma 6, we
haveM⊡K, (0,w) ⊧ w; ifw ∈ T(⊡K), then by Lemma 6 again, we haveM⊡K, (2,w) ⊧
w. This indicates that w is satisfiable. Therefore every ⊡Kconsistent set is satisfi
able, as desired. ◻
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非现实可能世界的逻辑

范杰

摘 要

在陈佳（2020）中，强可能性与弱必然性的逻辑被提出，并在许多框架类上
被公理化。本文将称该逻辑为“非现实可能世界的逻辑”。然而，那里的完全性证

明非常复杂，其中涉及到在典范模型的构造中极大一致集副本的使用，以及其他

的考虑。在本文中，我们证明陈佳（2020）中某些系统的完全性可以通过翻译归
约为文献中一些熟悉系统的完全性，从而在这些系统之间架起一座桥梁。我们也

将探讨该逻辑的框架可定义性问题。
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