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A Logic for Probabilities of Successive Events*

Yanjun Li Jiajie Zhao

Abstract. In the set language of probability theory, besides complement, intersection, and
union, there is another important operation: product. The product of two basic events expresses
that these events occur in succession. However, there is limited research about successive events
in the literature on probability logic. In this paper, we propose a modal logic (called DML) to
capture the reasoning about successive events in probability theory, and then we construct a
probability logic (called PLDML) based on DML. We compare DML with standard modal
logic on Kripke semantics and show that DML is equivalent to the normal modal logic on
deterministic models. We also give a deductive system of PLDML and show its completeness.

1 Introduction

In probability theory, an event is expressed by a set. In the literature on logic for
probabilities, the basic events and their Boolean combinations are wellstudied. For
example, the negation of an event A means that A does not happen. The conjunction
of two events A and B means both A and B happen. The disjunction of two events
A and B means that either A or B happens. However, successive events cannot be
expressed by Boolean operators. In set language, successive events can be expressed
by the product of basic events.

Successive events are several events occurring in succession. It is worth pointing
out that events occurring in succession might occur at the same time. Succession here
is to indicate order not time. Consider the example of tossing a die, and we assume
that all dies are fair. There are 6 possible results. The die might fall with 1, 2, 3, 4, 5,
or 6 up. Let E be the event that the die falls with an even number up, that is,

Ee = {2, 4, 6}.

The probability of Ee is 1
2 . Let E>3 be the event that the die falls with a number

bigger than 3 up, that is,
E>3 = {4, 5, 6}.
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The probability of E>3 is 1
2 . Now if two persons respectively toss a die at the same

time, the result that the first die falls with an even number up and the second die falls
with a number bigger than 3 up is successive events, which is represented by

Ee × E>3 = {(2, 4), (2, 5), (2, 6)
(4, 4), (4, 5), (4, 6)

(6, 4), (6, 5), (6, 6)}.

The probability ofEe×E>3 is the product of the probability ofEe and the probability
of E>3, namely 1

2 × 1
2 = 1

4 .
The research on logic for probabilities can date back to Fagin et al. ([3, 4]).

They propose a probability logic where linear inequalities involving probabilities are
allowed. For example, a typical formula ”w(ϕ) − 2w(ψ) ≥ 0” (or equivalently
w(ϕ) ≥ 2w(ψ)) means that ”the probability of ϕ is at least twice the probability of
ψ”. The deductive system of the probability logic given by [3, 4] is an extension of
both propositional logic and linear inequality logic with some probability axioms and
rules. The deductive system is weakly complete.

Another way of formalizing probability is to interpret modal operators of modal
logic as probability (see [5, 7, 8]). A modal formula P>r ϕ means that the probability
of ϕ is strictly greater than r. In the model, the probability function assigns each
measurable set a number in a base, where a base is a finite subset of the set [0, 1] that
satisfies some conditions. Due to the fact that the base is finite, this probability has
the property of compactness, and it also has strong completeness.

Zhou ([16, 17]) proposes a probability logic which is an extension of proposi
tional logic with probability operators. A formula Lrϕ means that the probability
of ϕ is no less than r, where r is a rational number between 0 and 1. The deduc
tive system of this probability logic is an extension of propositional logic with some
probability axioms and rules. One of these probability rules is a ωrule, which has an
infinite number of premises and one conclusion. Zhou shows the weak completeness
and confirms a conjecture of Larry Moss that the infinitary rule can be replaced by a
finitary rule.

Different from [16, 17], Ognjanović et al. (see [10, 11, 12, 13]) proposes a
probability logic with not only ωrule but also infinitary derivations. A derivation (or
a proof) in Ognjanović’s system is a wellfounded tree in which some nodes might
have an infinite number of successors (see [9]). Based on infinitary derivations, this
probability logic is shown to have strong completeness.

None of the papers mentioned above considers the probability of successive
events in their logical language. In this paper, we propose a modal logic for rea
soning about successive events and construct a probability logic based on it. The
main contributions are listed as follows:
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• We consider a fragment of the language of linear temporal logic, in which suc
cessive events can be expressed.

• We propose a semantics that combines the semantics of linear temporal logic
(see [15]) and the update semantics of public announcement logic (see [6, 14]).

• We compare this semantics with standard Kripke semantics.
• We construct a probability logic based on this logic and give a complete deduc
tive system.

The paper is organized as follows. Section 2 introduces the modal logic DML to
capture the reasoning about successive events. Section 3 gives the alternative Kripke
semantics of DML. Section 4 proposes a probability logic based on DML and gives
a deductive system PLDML. Section 5 shows the weak completeness of PLDML. Sec
tion 6 concludes with some remarks.

2 A Modal Logic for Sequential Events

In this section, we introduce the logic, calledDML (DeterministicModal Logic),
to capture the reasoning about successive events in probability theory.

Let P be a set of propositional letters.

Definition 1 (Language of DML). The language of DML, denoted by LDML, is
defined by the following BNF (where p ∈ P):

ϕ ::= ⊤ | p | ¬ϕ | (ϕ ∧ ϕ) | ⃝ϕ.

The auxiliary connectives ⊥,→,∨ are defined as abbreviations as usual.
The formula ⃝ϕ means that the event ϕ will happen in the next step. What is

more, the formula ϕ∧⃝nψ where n is the modal depth of ϕ means that the events ϕ
and ψ successively happen. We use (ϕ;ψ) to denote the formula ϕ ∧⃝ψ.

The language LDML is a fragment of linear temporal logic without the until
modality U .

Definition 2 (Model of DML). A DMLmodel (or simply a model) is a tripleM =

⟨S,Ω, V ⟩ where

• S is a nonempty set of states;
• Ω ⊆ S∗ is a nonempty set of sequences over S that is prefixfree;
• V : P → 2S is a valuation that labels each propositional letter with a set of
states.

For each ρ ∈ Ω, (M, ρ) is called a pointed model.

Intuitively, each s ∈ S stands for a basic event, and each ρ ∈ Ω stands for
a sequence of successive events. Please note that Ω is a subset of S∗. This means
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that only some successive events are allowed, which is in line with practice. For
example, in sampling without replacement, only some basic events (not all possible
basic events) can occur in succession.

The length of the sequence ρ is denoted as |ρ|. The nth character of the sequence
ρ is denoted as ρ[n]. The suffix of ρ starting at the ith character is denoted as ρi. For
example, let ρ = s1s2s3s4. We then have that |ρ| = 4, ρ[1] = s1, and ρ3 = s3s4.

Given a model M = ⟨S,Ω, V ⟩, we use M−n to denote the model ⟨S,Ω−n, V ⟩
where Ω−n = {ρn+1 | ρ ∈ Ω}. It is obvious that (M−n)−m = M−(n+m). What is
more, we use [ρ]M (or simply [ρ]) to denote the set {σ ∈ Ω | ρ is a prefix of σ}.

The intuition of the updated model M−n is that after moving forward n steps,
we will only consider the sequence of successive events that could be generated from
this moment. In spirit, it is similar to the update model in public announcement logic.

Definition 3 (Semantics of DML).

M, ρ ⊨ ⊤ always
M, ρ ⊨ p ⇐⇒ ρ[1] ∈ V (p)

M, ρ ⊨ ¬ϕ ⇐⇒ M, ρ ⊭ ϕ
M, ρ ⊨ ϕ ∧ ψ ⇐⇒ M, ρ ⊨ ϕ andM, ρ ⊨ ψ
M, ρ ⊨ ⃝ϕ ⇐⇒ |ρ| > 1 andM−1, ρ2 ⊨ ϕ

We use JϕKM (or simply JϕK) to denote the set {ρ | M, ρ ⊨ ϕ}.
This semantics is different from the semantics of linear temporal logic. The key

feature of this semantics is that a formula captures to a set of sequences of successive
events. This makes DML to be a natural generalization of propositional logic for
basic events, where a propositional formula corresponds to a set of basic events. This
feature can be illustrated more clearly by the following examples.

Example 1 (Sampling with replacement). Imagine there is an opaque box, contain
ing 4 red balls (R) and 1 black ball (B). You draw one ball from the box per time with
a replacement. Now consider the case you draw from the box twice, which can be
depicted by Figure 1.

Let the propositional letter pR denote “draw a red ball”, and let pB denote “draw
a black ball”. So we can construct the modelM = ⟨S,Ω, V ⟩ as follows:

• S = {s1, s2, s3, s4, s5, s6},
• Ω = {s1s3, s1s4, s2s5, s2s6},
• V (pR) = {s1, s3, s5}, and V (pB ) = {s2, s4, s6}.

The formula pR represents the event that draws a red ball at the first time. By
the semantics of DML, we get that JpRK = {s1s3, s1s4} = {[s1]}.

The formula ⃝pR represents the event that draws a red ball at the second time.
By the semantics of DML, we get that J⃝pRK = {s1s3, s2s5}.
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The formula pR ; pB represents the successive events that firstly draw a red ball
and secondly draw a black ball. By the semantics of DML, we get that JpR ; pBK =

{s1s3}.

Figure 1: Sampling with replacement

s3(R)
s1(R)

s4(B)
ϵ

s5(R)
s2(B)

s6(B)

In the remainder of this section, we will consider two operations on models:
generated submodel and disjoint union. These two operations will play important
roles in the proof in Section 5.

Definition 4 (Generated submodel). Given M = ⟨S,Ω, V ⟩ and ρ ∈ Ω, the model
M|ρ = ⟨S′,Ω′, V ′⟩ is defined as follows:

• S′ = {s ∈ S | s occurs in ρ};
• Ω′ = {ρ};
• s ∈ V ′(p) if and only if s ∈ V (p).

To show that the generated submodel preserves the truth of formulas, we will
need the following proposition which can be easily checked.

Proposition 1. Given two models M1 = ⟨S1,Ω1, V1⟩ and M2 = ⟨S2,Ω2, V2⟩, we
have thatM1, ρ ⊨ ϕ if and only ifM2, ρ ⊨ ϕ if the following conditions are satisfied:

• ρ ∈ Ω1 ∩ Ω2

• s ∈ V1(p) if and only if s ∈ V2(p) for each s occurs in ρ and each p.

Proposition 2. For each formula ϕ ∈ LDML, we have that M, ρ ⊨ ϕ if and only if
M|ρ, ρ ⊨ ϕ.

Proof. It can be proved by induction on ϕ. The base step and Boolean cases are
straightforward. We will only consider the case that ϕ is of the form⃝ψ.

Lefttoright: Assume that M, ρ ⊨ ⃝ψ. This means |ρ| > 1 andM−1, ρ2 ⊨
ψ. By inductive hypothesis, (M−1)|ρ2 , ρ2 ⊨ ψ. Then by proposition 1, we can get
(M|ρ)−1, ρ2 ⊨ ψ. By the semantics, we then have thatM|ρ, ρ ⊨ ⃝ψ.
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Righttoleft: AssumeM|ρ, ρ ⊨ ⃝ψ. This means |ρ| > 1 and (M|ρ)−1,

ρ2 ⊨ ψ. Then by proposition 1, we can get (M−1)|ρ2 , ρ2 ⊨ ψ. By inductive hypoth
esis,M−1, ρ2 ⊨ ψ. By the semantics, we then have thatM, ρ ⊨ ⃝ψ. □

Definition 5 (Disjoint union). Let {M1, · · · ,Mn} be a finite set of models such
that there is no common state between each two of them. The model

⊎
1≤j≤nMj =

⟨S′,Ω′, V ′⟩ is defined as follows:

• S′ =
∪

1≤j≤n Sj ;
• Ω′ =

∪
1≤j≤nΩj ;

• s ∈ V ′(p) if and only if s ∈ Vj(p) where s is a state ofMj .

Proposition 3. Given a finite set of models, {M1, · · · ,Mn}, for each formula ϕ ∈
LDML, we have that Mi, ρ ⊨ ϕ if and only if

⊎
1≤j≤nMj , ρ ⊨ ϕ where 1 ≤ i ≤ n.

Proof. It can be proved by induction on ϕ. We will only consider the case that ϕ is
of the form⃝ψ.

Lefttoright: Assume that Mi, ρ ⊨ ⃝ψ. This means |ρ| > 1 andM−1
i , ρ2 ⊨

ψ. By the inductive hypothesis, (
⊎

1≤j≤nMj)
−1, ρ2 ⊨ ψ. Thus it follows by the

semantics that
⊎

1≤j≤nMj , ρ ⊨ ⃝ψ.
Righttoleft: Assume that

⊎
1≤j≤nMj , ρ ⊨ ⃝ψ. By the semantics, it follows

that |ρ| > 1 and (
⊎

1≤j≤nMj)
−1, ρ2 ⊨ ψ. Please note that (

⊎
1≤j≤nMj)

−1 =

(
⊎

1≤j≤nM
−1
j ). By the inductive hypothesis, we have that M−1

i , ρ2 ⊨ ψ. Thus It
follows by the semantics thatMi, ρ ⊨ ⃝ψ. □

3 Kripke Semantics of LDML

In this section, we consider the standardKripke semantics of the languageLDML,
and show that DML is equivalent to the normal modal logic on the class of determin
istic models.

Definition 6 (Kripke model). A Kripke model for LDML is a triple K = ⟨S,R, V ⟩
where S and V are the same as Definition 2, and R is a deterministic binary relation
on S, that is, if sRt and sRv then t = v. For each s ∈ S, ⟨K, s⟩ is called a pointed
Kripke model.

From the definition above, it can be seen that in this paper we assume that all
Kripke models are deterministic. This is because we only consider deterministic
Kripke models in this paper.

Definition 7 (Kripke semantics). The Kripke semantics of LDML, which in this pa
per is denoted as ⊩, is standard (cf. [1]), where the modal formula⃝ϕ is interpreted
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as an existential modal formula :

K, s ⊩ ⃝ϕ⇔ there exists t such that sRt and K, t ⊩ ϕ.

From the definition above, it can be seen that the interpretation of ⃝ϕ is the
same as the existential modal formula (normally denoted as 3ϕ) in standard modal
logic. So, in this paper, we will abbreviate the formula ¬⃝¬ϕ as 2ϕ.

Given a Kripke model K = ⟨S,R, V ⟩, a (possibly infinite) sequence of states
s1s2 · · · is called a Kpath if and only if snRsn+1 for all n ≥ 1. Especially, each
s ∈ S is a Kpath. A Kpath ρ is called a full Kpath if and only if either it is of
infinite length or ρ = s1 · · · sn and there is no such t ∈ S that snRt.

The following proposition states that for each Kripke model, there are equivalent
DMLmodels.

Proposition 4. Given a Kripke model K = ⟨S,R, V ⟩, for each set Ω of full Kpaths,
we have that ⟨S,Ω, V ⟩, ρ ⊨ ϕ if and only if K, s ⊩ ϕ where ρ[1] = s.

Proof. We prove it by induction on ϕ. The basic step and Boolean cases are straight
forward. If ϕ := ⃝ψ, there are two cases: |ρ| = 1 or |ρ| > 1.

For the case of |ρ| = 1, by theDMLsemantics, we always have that ⟨S,Ω, V ⟩, ρ ̸⊨
⃝ψ. Meanwhile, since ρ is a full Kpath and |ρ| = 1, this follows that there is no
such state t that sRt in K. Thus, we also always have that K, s ̸⊩ ⃝ψ.

For the case of |ρ| > 1, the proof is as follows:
If ⟨S,Ω, V ⟩, ρ ⊨ ⃝ψ, it follows that ⟨S,Ω−1, V ⟩, ρ2 ⊨ ψ. By the inductive

hypothesis, K, s2 ⊩ ψ where s2 = ρ[2]. Due to ρ[1] = s ∈ S, we can get sRs2.
Then by Kripke semantics, we have that K, s ⊩ ⃝ψ.

IfK, s ⊩ ⃝ψ, it follows that there exists a state s2 such that sRs2 andK, s2 ⊩ ψ.
By the inductive hypothesis, ⟨S,Ω′, V ⟩, ρ′ ⊨ ψ where ρ′[1] = s2. By Proposition 1,
we then have that ⟨S, {ρ′}, V ⟩, ρ′ ⊨ ψ. Since ρ′ is a full Kpath starting from s2 and
sRs2, it follows that sρ′ is also a full Kpath. Then by the DMLsemantics, we have
that ⟨S, {sρ′}, V ⟩, sρ′ ⊨ ⃝ψ. □

Next, we will show that for each DMLmodel, there is an equivalent Kripke
model.

Definition 8 (M•). Given a DMLmodel M = ⟨S,Ω, V ⟩, a Kripke model M• is
defined as ⟨S•, RΩ, V •⟩ where

• S• = {σ | there exists ρ ∈ Ω such that σ is a suffix of ρ}. In other words, S•

is the suffixclosure of Ω.
• ρR•σ if and only if σ = ρ2. It is obvious that R• is deterministic.
• σ ∈ V •(p) if and only if σ[1] ∈ V (p).
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Proposition 5. Given a DMLmodel M, we have that the Kripke model (M−1)• is
a generated submodel of the Kripke modelM•.

Proof. The proof is omitted due to space limitations. □

Proposition 6. M, ρ ⊨ ϕ if and only if M•, ρ ⊩ ϕ.

Proof. It can be proved by induction on ϕ. We will only consider the case that ϕ is
of the form⃝ψ.

If M, ρ ⊨ ⃝ψ, it follows that M−1, ρ2 ⊨ ψ. By inductive hypothesis, we
get (M−1)•, ρ2 ⊨ ψ. By proposition 5, (M−1)• is generated submodel of M•. So
M•, ρ2 ⊩ ψ (cf. [1]). Due to ρR•ρ2 inM•, thus we can getM•, ρ ⊩ ⃝ψ.

IfM•, ρ ⊩ ⃝ψ, it follows that there exists ρ′ such that ρR•ρ′ andM•, ρ′ ⊩ ψ.
By the definition ofR•, we know that ρ′ = ρ[2]. Thus,M•, ρ[2] ⊩ ψ. What is more,
by the definition of S•, we know that either ρ ∈ Ω or ρ is a suffix of some σ ∈ Ω.
Either way, we have that ρ[2] is an element of the domain of (M−1)•. Since (M−1)•

is a generated submodel of (M•), we then have that (M−1)•, ρ[2] ⊩ ψ. By inductive
hypothesis, we then have thatM−1, ρ[2] ⊨ ψ. It follows thatM, ρ ⊨ ⃝ψ. □

The following lemma states that the logical consequence of DML is equivalent
to that of standard modal logic on deterministic modal class.

Lemma 1. For each ϕ ∈ LDML, we have that Γ ⊨ ϕ if and only if Γ ⊩ ϕ.

Proof. Suppose Γ ⊨ ϕ, but Γ ̸⊩ ϕ. This follows that there is a pointed Kripke model
K, s such that K, s ⊩ Γ but K, s ̸⊩ ϕ. By proposition 4, we can get a DMLmodel
⟨S,R, V ⟩, ρ such that ⟨S,R, V ⟩, ρ ⊨ Γ and ⟨S,R, V ⟩, ρ ̸⊨ ϕ, which is contradictory
with the premise that Γ ⊨ ϕ. Thus, we have shown that if Γ ⊨ ϕ then Γ ⊩ ϕ.

Suppose Γ ⊩ ϕ, but Γ ̸⊩ ϕ. This follows that there is a pointed DMLmodel
⟨S,R, V ⟩, ρ such that ⟨S,R, V ⟩ ⊨ Γ but ⟨S,R, V ⟩ ̸⊨ ϕ. We then can construct a
Kripke model M• by definition 8. It follows from Proposition 6 that M• ⊩ Γ and
M• ̸⊩ ϕ, which contradicts the premise that Γ ⊩ ϕ. Thus, we have shown that if
Γ ⊩ ϕ then Γ ⊨ ϕ. □

Definition 9 (Deductive system of DML). The deductive systemDML is presented
in Table 1.

It can be seen that DML is an extension of the K system of normal modal logic
with the axiom Det which characterizes the class of deterministic Kripke models.

Theorem 7. The system DML is sound and strongly complete with respect to the
semantics of DML.
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Proof. Since the system DML is sound and strongly complete with respect to the
class of deterministic Kripke models (see [1]), by Lemma 1, it follows that DML is
sound and strongly complete with respect to the semantics of DML. □

Table 1: The system DML

Axioms
Taut All instances of propositional tautologies
K 2(ϕ→ ψ) → (2ϕ→ 2ψ)

Det ⃝ϕ→ 2ϕ

Rules
MP From ϕ and ϕ→ ψ, infer ψ.
N From ϕ, infer 2ϕ.

4 A Prbabilistic Logic Based on DML

In this section, we construct a probability logic based on the logicDML and give
a deductive system of this probability logic.

Definition 10 (Language ofPLDML). The language ofPLDML, denoted asLPLDML ,
is defined as follows (where ψ1, · · · , ψn ∈ LDML and a1, · · · , an, a ∈ Q)

ϕ ::= a1Pψ1 + · · ·+ anPψn ≥ a | ¬ϕ | (ϕ ∧ ϕ)

Formulas of the forms a1Pψ1 + · · ·+ anPψn ▷◁ a where ▷◁∈ {>,<,≤,=} can
be defined in LPLDML (see [4]).

Definition 11 (Probability distribution). Let Ω be a finite set. A function µ : Ω →
[0, 1] is called a probability distribution over Ω if and only if∑

ρ∈Ω
µ(ρ) = 1.

Given a subsetΘ ofΩ, letµ(Θ) =
∑

ρ∈Θ µ(ρ) ifΘ ̸= ∅. IfΘ = ∅, letµ(Θ) = 0.

Definition 12 (Model of PLDML). A PLDMLmodel is a pair (M, µ) where

• M = ⟨S,Ω, V ⟩ is a DMLmodel where Ω is finite;
• µ is a probability distribution over Ω.
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Definition 13 (Semantics of PLDML). The satisfaction relation between a PLDML
model (M, µ) and a formula ϕ ∈ LPLDML , denoted as ⊨, is defined as follows:

M, µ ⊨
∑n

i=1 aiψi ≥ a ⇐⇒
∑n

i=1 aiµ(JψiKM) ≥ a

M, µ ⊨ ¬ϕ ⇐⇒ M, µ ̸⊨ ϕ
M, µ ⊨ ϕ1 ∧ ϕ2 ⇐⇒ M, µ ⊨ ϕ1 andM, µ ⊨ ϕ2

Example 2. Imagine drawing a ball from the box in Example 1, but this timewithout
replacement. Assume that these balls are exactly the same except for the color. So
for your first draw, the probability of getting red is 0.8 (pR), and 0.2 for black (pB ).
For your second draw, the case will be: if you get a red ball on your first draw, the
probability of getting a black ball increases to 0.75, since there are 3 red balls and 1
black ball left. If you get a black ball on your first draw, you will certainly draw a red
ball in your next turn, because there is no black ball anymore. This sampling can be
depicted by Figure 2.

Figure 2: Sampling without replacement

s3(R)
s1(R)

s4(B)
ϵ

s2(B) s5(R)

4
5

1
5

3
4

1
4

1

Let the DMLmodelM = ⟨S,Ω, V ⟩ be defined as follows:

• S = {s1, s2, s3, s4, s5},
• Ω = {s1s3, s1s4, s2s5},
• V (pR) = {s1, s3, s5} and V (pB ) = {s2, s4}.

The probability distribution µ on Ω is defined as follows:

µ(s1s3) =
4

5
× 3

4
=

3

5

µ(s1s4) =
4

5
× 1

4
=

1

5

µ(s2s5) =
1

5
× 1 =

1

5

We then have the following:

• M, µ ⊨ PpR = 4
5 , because of µ(JpRK) = µ({[s1]}) = 4

5 . This means that the
probability of the event that you draw a red ball at the first time is 4

5 .
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• M, µ ⊨ P ⃝ pR = 4
5 , because of µ(J⃝pRK) = µ({s1s3, s2s5}) = 4

5 . This
means that the probability of the event that you draw a red ball at the second
time is 4

5 .
• M, µ ⊨ P(pR ; pB ) = 1

5 , because of µ(JpR ; pBK) = µ({s1s4}) = 1
5 . This

means that the probability of the successive events that you firstly draw a red
ball and secondly draw a black ball is 1

5 .

Definition 14 (Deductive system PLDML). The deductive system PLDML is pre
sented in Table 2.

The deductive system DML is similar to the deductive system proposed in [4]
except for the rule Dst. The premise of the rule Dst in this paper is a formula provable
in the system DML.

Table 2: The system PLDML

Axioms
Taut All instances of propositional tautologies
LinIne All instances of linear inequality axioms
NonNeg Pψ ≥ 0

Cert P⊤ = 1

Add P(ψ1 ∧ ψ2) + P(ψ1 ∧ ¬ψ2) = P(ψ1)

Rules
MP From ϕ and ϕ→ ψ, infer ψ.
Dst From ⊢DML ψ1 ↔ ψ2, infer P(ψ1) = P(ψ2).

Proposition 8. If ϕ1 ∈ LDML and ϕ2 ∈ LDML are DMLinconsistent, we then have
that ⊢PLDML P(ϕ1) + P(ϕ2) = P(ϕ1 ∨ ϕ2).

Proof. 1. ⊢DML ϕ1 ∧ ϕ2 → ⊥ (inconsistent)
2. ⊢DML ⊥ → ϕ1 ∧ ϕ2 (Axiom Taut)
3. ⊢DML ϕ1 ∧ ϕ2 ↔ ⊥ (1.2.Axiom Taut)
4. ⊢PLDML P(ϕ1 ∧ ϕ2) = P(⊥) (3.Rule Dst)
5. ⊢PLDML P(⊤ ∧⊥) + P(⊤ ∧ ¬⊥) = P(⊤) (Axiom Add)
6. ⊢DML ⊤ ∧⊥ ↔ ⊥ (Axiom Taut)
7. ⊢DML ⊤ ∧ ¬⊥ ↔ ⊤ (Axiom Taut)
8. ⊢DML P(⊤ ∧⊥) + P(⊤ ∧ ¬⊥) = P(⊥) + P(⊤) (6.7.Axiom LinIne)
9. ⊢PLDML P(⊤) = 1 (Axiom Cert)
10. ⊢PLDML P(⊥) = 0 (5.8.9.Axiom LinIne)
11. ⊢PLDML P(ϕ1 ∧ ϕ2) = 0 (4.10.Axiom LinIne)
12. ⊢PLDML P(ϕ1) = P(ϕ1 ∧ ϕ2) + P(ϕ1 ∧ ¬ϕ2) (Axiom Add)
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13. ⊢PLDML P(ϕ1) = P(ϕ1 ∧ ¬ϕ2) (11.12.Axiom LinIne)
14. ⊢PLDML P(ϕ1 ∨ ϕ2) = P((ϕ1 ∨ ϕ2) ∧ ϕ2) + P(ϕ1 ∨ ϕ2) ∧ ¬ϕ2) (Axiom Add)
15. ⊢DML (ϕ1 ∨ ϕ2) ∧ ϕ2 ↔ ϕ2 (Axiom Taut)
16. ⊢DML (ϕ1 ∨ ϕ2) ∧ ¬ϕ2 ↔ ϕ1 ∧ ¬ϕ2 (Axiom Taut)
17. ⊢PLDML P((ϕ1 ∨ ϕ2) ∧ ϕ2) = P(ϕ2) (15.Rule Dst)
18. ⊢PLDML P((ϕ1 ∨ ϕ2) ∧ ¬ϕ2) = P(ϕ1 ∧ ¬ϕ2) (16.Rule Dst)
19. ⊢PLDML P(ϕ1 ∨ ϕ2) = P(ϕ2) + P(ϕ1 ∧ ¬ϕ2) (14.17.18.Axiom LinIne)
20. ⊢PLDML P(ϕ1 ∨ ϕ2) = P(ϕ1) + P(ϕ2) (13.19.Axiom LinIne)

□

Theorem 9 (Soundness). The system PLDML is sound.

Proof. The key is to show that each axiom is valid and that each rule preserves
validity.

Firstly, we will show that each axiom is valid. We will only focus on the axioms
of probabilities.

• The axiom NonNeg is valid, i.e. ⊨ Pψ ≥ 0.
Let M = ⟨S,Ω, V ⟩ be an arbitrary model and µ be an arbitrary probability
distribution over Ω. Since JψKM is a subset of Ω, it follows by Definition 11
that µ(JψKM) ≥ 0. Thus, we have thatM, µ ⊨ Pψ ≥ 0.

• The axiom Cert is valid, i.e. ⊨ P⊤ = 1.
Due to J⊤KM = Ω, it follows by Definition 11 that µ(J⊤KM) = 1. Thus, we
have thatM, µ ⊨ P⊤ = 1.

• The axiom Add is valid, i.e. ⊨ P(ψ1 ∧ ψ2) + P(ψ1 ∧ ¬ψ2) = Pψ1.
Please note that Jϕ1∧ϕ2KM = Jϕ1KM∩Jϕ2KM, and Jϕ1∧¬ϕ2KM = Jϕ1KM∩J¬ϕ2KM = Jϕ1KM ∩ (Ω \ Jϕ2KM) = Jϕ1KM \ (Jϕ1KM ∩ Jϕ2KM). This
follows that Jϕ1 ∧ ϕ2K and Jϕ1 ∧ ¬ϕ2K are disjoint. By Definition 11, we have
that µ(Jϕ1 ∧ ϕ2KM ∪ Jϕ1 ∧ ¬ϕ2KM) = µ(Jϕ1 ∧ ϕ2KM) + µ(Jϕ1 ∧ ¬ϕ2KM).
What is more, due to Jϕ1 ∧ ϕ2KM ∪ Jϕ1 ∧ ¬ϕ2KM = Jϕ1KM, it follows that
µ(Jϕ1KM) = µ(Jϕ1 ∧ ϕ2KM) + µ(Jϕ1 ∧¬ϕ2KM). Thus, we have thatM, µ ⊨
P(ϕ1 ∧ ϕ2) + P(ϕ1 ∧ ¬ϕ2) = P(ϕ1).

Next, we need to show each rule preserves validity. We will only focus on the
rule Dst.

Suppose that ⊢DML ψ1 ↔ ψ2, by Theorem 7, it follows that the formula ϕ1 ↔
ϕ2 ∈ LPLDML is valid. We then have that Jψ1KM = Jψ2KM for eachDMLmodelM.
Thus, we have that µ(Jϕ1KM) = µ(Jϕ2KM). It follows that M, µ ⊨ P(ϕ1) = P(ϕ2).
□



Yanjun Li , Jiajie Zhao / A Logic for Probabilities of Successive Events 13

5 Completeness of PLDML

Given a formula set Γ, we use Sub(Γ) to denote the minimal extension of Γ such
that Sub(Γ) is subformula closed, and use Sub+(ϕ) to denote the minimal extension
of Sub(ϕ) such that if ψ ∈ Sub(ϕ) and ψ is not a negation formula then ¬ψ ∈
Sub+(ϕ).

If Γ is finite, both Sub(Γ) and Sub+(Γ) are finite.

Definition 15 (DML/PLDMLAtom). Let Γ be a set of LDMLformulas (LPLDML
formulas). A subset s of Sub+(Γ) is called aDMLatom (PLDMLatom) of Sub+(Γ)
if and only if s is a maximalDMLconsistent (PLDMLconsistent) subset of Sub+(Γ).

We use AtDML(Γ) to denote the set of all DMLatoms of Sub+(Γ), and we
use AtPLDML(Γ) to denote the set of all PLDMLatoms. We use ϕΘ to denote the
conjunction of all formulas in Θ if Θ is finite.

Next, we will show that each PLDMLatom is satisfiable. Before that, we need
the following two auxiliary propositions. Due to space limitations, the proofs are
omitted.

Proposition 10. Let Γ be a finite set of LDMLformulas. We have that the disjunction
of all atoms is provable in DML, namely ⊢DML

∨
Θ∈AtDML(Γ)

ψΘ.

Proposition 11. LetΓ be a finite set ofLDMLformulas andψ be a formula inSub+(Γ).
We have that ⊢DML ψ ↔

∨
Θ∈AtDML(Γ),ψ∈Θ ϕΘ.

Lemma 2. Given a finite PLDMLatomΘ, there is a PLDMLmodel (M, µ) such that
M, µ ⊨ ψ for each ψ ∈ Θ.

Proof. Let Γ be the set of LDMLformulas that occurs in Θ. It is obvious that Γ
is finite. So, Sub+(Γ) is finite as well. Therefore, there are finite many DML
atoms of Sub+(Γ). Let the set of all the DMLatoms of Sub+(Γ) be AtDML(Γ) =

{∆1, · · · ,∆n}.
For each 1 ≤ i ≤ n, since ∆i is DMLconsistent, it follows by Theorem 7 that

∆i is satisfiable. Let (Mi, ρ) be a pointed model such that Mi, ρ ⊨ ∆i. To indicate
this fact, we will write the sequence ρ as ρ∆i

.
Firstly, we generate the submodel (Mi)|ρ

∆i
of Mi for each 1 ≤ i ≤ n. By

Proposition 2, it follows that (Mi)|ρ
∆i
, ρ∆i

⊨ ∆i for each 1 ≤ i ≤ n.
Secondly, we do the disjoint union of {(M1)|ρ

∆1
, · · · , (Mn)|ρ

∆n
}. We use

M = ⟨S,Ω, V ⟩ to denote the disjoint union model. By the definition of disjoint
union, it follows thatΩ = {ρ∆1

, · · · , ρ∆n
}. By Proposition 3, it follows thatM, ρ∆i

⊨
∆i for each 1 ≤ i ≤ n. Moreover, since each ∆i is a maximal DMLconsistent sub
set of Sub+(Γ), it follows that any two atoms ∆i and ∆j where 1 ≤ i, j ≤ n are
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DMLinconsistent. Therefore, any two atoms are not satisfiable. Thus, each ∆i is
only satisfied byM, ρ∆i

. So, we have that J∆iKM = {ρ∆i
}.

Next, we need to show that there is a probability distribution µ over Ω such that
M, µ ⊨ Θ.

By a similar process presented in [4], it can be proved that there indeed is a
probability distribution µ over Ω such that

• If (a1Pψ1 + · · ·+ ajPψj ≥ a) ∈ Θ, thenM, µ ⊨ a1Pψ1 + · · ·+ ajPψj ≥ a.
• If (a1Pψ1 + · · ·+ ajPψj ≥ a) ̸∈ Θ, thenM, µ ̸⊨ a1Pψ1 + · · ·+ ajPψj ≥ a.

Due to space limitations, the proof details of this result are omitted. With this result,
it can be shown by induction on ϕ that for each ψ ∈ Sub+(Θ),

M, µ ⊨ ψ if and only if ψ ∈ Θ.

It follows thatM, µ ⊨ ψ for all ψ ∈ Θ. □

Theorem 12 (Weak completeness). The system PLDML is weak complete, that is, if
a formula ϕ ∈ LPLDML is PLDMLconsistent then it is satisfiable.

Proof. Since ϕ is PLDMLconsistent, it follows by Lindenbaum’s lemma that there
is a PLDMLatom Θ of Sub+(ϕ) such that ϕ ∈ Θ. By Lemma 2, we then have that
there is a PLDMLmodelM, µ such thatM, µ ⊨ ψ for all ψ ∈ Θ. Thus, ϕ is satisfied
byM, µ, then it is satisfiable. □

6 Conclusion

In this paper, we propose semantics for amodal language to capture the reasoning
about successive events in probability theory. We prove that this logic (called DML)
is equivalent to the normal modal logic on deterministic Kripke models. We then
construct a probability logic on DML and show the completeness of its deductive
system PLDML.

There is no nesting of probabilistic operators and modal operators in the proba
bility logic PLDML. Hence, one of the natural future directions is to extend PLDML
to allow nesting probabilistic operators and modal operators. This will allow us to
express formulas like ”ϕ; (Pψ = a)”, which could help us to reconsider the no
tion of independence in probability theory. Traditionally, the independence of two
events A and B is defined as µ(AB) = µ(A) × µ(B). This definition is chal
lenged in various aspects (see [2]). We suggest that independence might be defined as
ϕ;Pψ = a↔ P((ϕ∨¬ψ);ψ) = a, which means that the occurrence of ϕ has no effect
on the probability of ψ (see [2]). We will investigate this definition of independence
in future work.
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关于概率中序列事件的逻辑

李延军 赵嘉洁

摘 要

在概率论的集合语言中，除了补、交、并等运算之外，还有一个重要的运算：

乘积。两个基本事件的乘积表示这些事件连续发生。然而，关于概率的逻辑文献

中对序列事件的研究却比较少。在本文中，我们提出了一个模态逻辑（记为DML）
来刻画概率论中关于序列事件的推理，然后我们在 DML逻辑之上构造了一个概
率逻辑（记为 PLDML）。我们将 DML与克里普克语义上的标准模态逻辑进行了
比较，并证明了 DML等价于确定性模型类上的正规模态逻辑。最后，我们还给
出了 PLDML 的演绎系统并证明了其完备性。
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