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A Logic for Probabilities of Successive Events*
Yanjun Li Jiajie Zhao

Abstract. In the set language of probability theory, besides complement, intersection, and
union, there is another important operation: product. The product of two basic events expresses
that these events occur in succession. However, there is limited research about successive events
in the literature on probability logic. In this paper, we propose a modal logic (called DML) to
capture the reasoning about successive events in probability theory, and then we construct a
probability logic (called PLpwmr,) based on DML. We compare DML with standard modal
logic on Kripke semantics and show that DML is equivalent to the normal modal logic on
deterministic models. We also give a deductive system of PLpwmr, and show its completeness.

1 Introduction

In probability theory, an event is expressed by a set. In the literature on logic for
probabilities, the basic events and their Boolean combinations are well-studied. For
example, the negation of an event A means that A does not happen. The conjunction
of two events A and B means both A and B happen. The disjunction of two events
A and B means that either A or B happens. However, successive events cannot be
expressed by Boolean operators. In set language, successive events can be expressed
by the product of basic events.

Successive events are several events occurring in succession. It is worth pointing
out that events occurring in succession might occur at the same time. Succession here
is to indicate order not time. Consider the example of tossing a die, and we assume
that all dies are fair. There are 6 possible results. The die might fall with 1, 2, 3,4, 5,
or 6 up. Let E be the event that the die falls with an even number up, that is,

E. = {2,4,6}.

The probability of E. is % Let E~3 be the event that the die falls with a number
bigger than 3 up, that is,
E-3 ={4,5,6}.
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The probability of E-3 is % Now if two persons respectively toss a die at the same
time, the result that the first die falls with an even number up and the second die falls
with a number bigger than 3 up is successive events, which is represented by

Ee x BEs3 = {(2a4)a (2’5)7 (276)
(4,4),(4,5),(4,6)
(6,4),(6,5),(6,6)}.

The probability of E, x E 3 is the product of the probability of F, and the probability
1,1 _1

of F~3, namely 5 x 5 = 7.

The research on logic for probabilities can date back to Fagin et al. ([3, 4]).
They propose a probability logic where linear inequalities involving probabilities are
allowed. For example, a typical formula "w(¢) — 2w(v)) > 0 (or equivalently
w(¢) > 2w(1))) means that “the probability of ¢ is at least twice the probability of
1)”. The deductive system of the probability logic given by [3, 4] is an extension of
both propositional logic and linear inequality logic with some probability axioms and
rules. The deductive system is weakly complete.

Another way of formalizing probability is to interpret modal operators of modal
logic as probability (see [5, 7, 8]). A modal formula P;” ¢ means that the probability
of ¢ is strictly greater than r. In the model, the probability function assigns each
measurable set a number in a base, where a base is a finite subset of the set [0, 1] that
satisfies some conditions. Due to the fact that the base is finite, this probability has
the property of compactness, and it also has strong completeness.

Zhou ([ 16, 17]) proposes a probability logic which is an extension of proposi-
tional logic with probability operators. A formula L,¢ means that the probability
of ¢ is no less than r, where r is a rational number between 0 and 1. The deduc-
tive system of this probability logic is an extension of propositional logic with some
probability axioms and rules. One of these probability rules is a w-rule, which has an
infinite number of premises and one conclusion. Zhou shows the weak completeness
and confirms a conjecture of Larry Moss that the infinitary rule can be replaced by a
finitary rule.

Different from [16, 17], Ognjanovi¢ et al. (see [10, 11, 12, 13]) proposes a
probability logic with not only w-rule but also infinitary derivations. A derivation (or
a proof) in Ognjanovi¢’s system is a well-founded tree in which some nodes might
have an infinite number of successors (see [9]). Based on infinitary derivations, this
probability logic is shown to have strong completeness.

None of the papers mentioned above considers the probability of successive
events in their logical language. In this paper, we propose a modal logic for rea-
soning about successive events and construct a probability logic based on it. The
main contributions are listed as follows:
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* We consider a fragment of the language of linear temporal logic, in which suc-
cessive events can be expressed.

* We propose a semantics that combines the semantics of linear temporal logic
(see [15]) and the update semantics of public announcement logic (see [6, 14]).

* We compare this semantics with standard Kripke semantics.

* We construct a probability logic based on this logic and give a complete deduc-
tive system.

The paper is organized as follows. Section 2 introduces the modal logic DML to
capture the reasoning about successive events. Section 3 gives the alternative Kripke
semantics of DML. Section 4 proposes a probability logic based on DML and gives
a deductive system PLppp,. Section 5 shows the weak completeness of PLpp,. Sec-
tion 6 concludes with some remarks.

2 A Modal Logic for Sequential Events

In this section, we introduce the logic, called DML (Deterministic Modal Logic),
to capture the reasoning about successive events in probability theory.
Let P be a set of propositional letters.

Definition 1 (Language of DML). The language of DML, denoted by Lpnr, is
defined by the following BNF (where p € P):

=T [p[=¢|(@AD)]O¢.

The auxiliary connectives 1, —,V are defined as abbreviations as usual.

The formula ()¢ means that the event ¢ will happen in the next step. What is
more, the formula ¢ A ()™ where n is the modal depth of ¢ means that the events ¢
and 1) successively happen. We use (¢; 1) to denote the formula ¢ A Q1.

The language Lpny, is a fragment of linear temporal logic without the until
modality U.

Definition 2 (Model of DML). A DMIL-model (or simply a model) is a triple M =
(5,9, V) where

+ S is a non-empty set of states;

+ () C S* is a non-empty set of sequences over S that is prefix-free;

« V : P — 29 is a valuation that labels each propositional letter with a set of
states.

For each p € Q, (M, p) is called a pointed model.

Intuitively, each s € S stands for a basic event, and each p € () stands for
a sequence of successive events. Please note that {2 is a subset of S*. This means
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that only some successive events are allowed, which is in line with practice. For
example, in sampling without replacement, only some basic events (not all possible
basic events) can occur in succession.

The length of the sequence p is denoted as | p|. The n-th character of the sequence
p is denoted as p[n]. The suffix of p starting at the i-th character is denoted as p°. For
example, let p = s1595354. We then have that |p| = 4, p[1] = s1, and p3 = s354.

Given a model M = (5,2, V), we use M ™" to denote the model (S, Q2" V)
where Q™" = {p"*t! | p € Q}. It is obvious that (M ")~ = M~(»+™) What is
more, we use [p]™ (or simply [p]) to denote the set {o € Q | p is a prefix of ¢}.

The intuition of the updated model M ™" is that after moving forward n steps,
we will only consider the sequence of successive events that could be generated from
this moment. In spirit, it is similar to the update model in public announcement logic.

Definition 3 (Semantics of DML).

M, pET always
M,pEp < p[l]€V(p)
M,pE-p <= M, pkEo
M,pEopNY <= M,pEgpand M,pE
M, pEQ¢ <<= |p|>1land ML p%E ¢

We use [¢]™ (or simply [¢]) to denote the set {p | M, p E ¢}.

This semantics is different from the semantics of linear temporal logic. The key
feature of this semantics is that a formula captures to a set of sequences of successive
events. This makes DML to be a natural generalization of propositional logic for
basic events, where a propositional formula corresponds to a set of basic events. This
feature can be illustrated more clearly by the following examples.

Example 1 (Sampling with replacement). Imagine there is an opaque box, contain-
ing 4 red balls (R) and 1 black ball (B). You draw one ball from the box per time with
a replacement. Now consider the case you draw from the box twice, which can be
depicted by Figure 1.

Let the propositional letter p,, denote “draw a red ball”, and let p, denote “draw
a black ball”. So we can construct the model M = (S, Q, V') as follows:

* S ={s1,59,53,54, S5, 56 }

e 0= {8183, 8184, 8285, 8286},

* V(pg) = {s1,53,85}, and V(p,) = {s2, 54, 56}

The formula p,, represents the event that draws a red ball at the first time. By
the semantics of DML, we get that [p,, ] = {s1s3, 5154} = {[s1]}.

The formula Op,, represents the event that draws a red ball at the second time.
By the semantics of DML, we get that [Op,] = {s153, s255}.
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The formula p,; p,, represents the successive events that firstly draw a red ball
and secondly draw a black ball. By the semantics of DML, we get that [p,;p,] =

{81 S3 } .
Figure 1: Sampling with replacement

s3(R)

I
e

/
\ S s5(R)

52(B)

\
s6(B)

51(R)

In the remainder of this section, we will consider two operations on models:
generated submodel and disjoint union. These two operations will play important
roles in the proof in Section 5.

Definition 4 (Generated submodel). Given M = (S,, V) and p € , the model
M|, = (S, ., V') is defined as follows:

« §'={s eS| soccursin p};

* U= {p}h;
« s € V'(p)ifand only if s € V(p).

To show that the generated submodel preserves the truth of formulas, we will
need the following proposition which can be easily checked.

Proposition 1. Given two models My = (S1,Q1, V1) and My = (Sa, s, V3), we
have that My, p E ¢ if and only if Ms, p E ¢ if the following conditions are satisfied:

* pE Q1 NQy
» s € Vi(p) ifand only if s € Va(p) for each s occurs in p and each p.

Proposition 2. For each formula ¢ € Lpni, we have that M, p E ¢ if and only if
M‘pa P ': (ZS

Proof. It can be proved by induction on ¢. The base step and Boolean cases are
straightforward. We will only consider the case that ¢ is of the form ().

Left-to-right: Assume that M, p E (. This means |p| > 1and M~ p? E
1. By inductive hypothesis, (M™1)] o2 p? E 4. Then by proposition 1, we can get
(M|,)~Y, p? E 1b. By the semantics, we then have that M|, p E Ot.
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Right-to-left: Assume M|,, p F Ot. This means |p| > 1 and (M|,)~1,
p? E 1. Then by proposition 1, we can get (M™1)| 2, p? E 1. By inductive hypoth-
esis, M1, p? E 7). By the semantics, we then have that M, p E O1). O

Definition 5 (Disjoint union). Let {M;,---, M, } be a finite set of models such
that there is no common state between each two of them. The model Lﬂlg jen M =
(87, V') is defined as follows:

« 8= U1§j§n Sis
* O =Uigcn U
* s € V/(p) ifand only if s € V;(p) where s is a state of M.

Proposition 3. Given a finite set of models, { My, --- , My, }, for each formula ¢ €
Lomr, we have that M, p & ¢ if and only if ), ;<,, M, p E ¢ where 1 <i <n.

Proof. It can be proved by induction on ¢. We will only consider the case that ¢ is
of the form (.

Left-to-right: Assume that M;, p £ (Ot. This means |p| > 1 and Mi_l, P’ E
. By the inductive hypothesis, (lt;<;<, M;)7L, p? E 4. Thus it follows by the
semantics that |4, ;,, M;, p & O¢.

Right-to-left: Assume that 4}, - j<nMj, p E Otp. By the semantics, it follows
that [p| > land (4;<;<, M)~ p? E 1. Please note that (Hcjcn Mj) ™ =
(Wi<j<n /Vlj_l) By the inductive hypothesis, we have that M; !, p? £ 1. Thus It
follows by the semantics that M;, p E O. O

3 Kripke Semantics of L,

In this section, we consider the standard Kripke semantics of the language Lpir,,
and show that DML is equivalent to the normal modal logic on the class of determin-
istic models.

Definition 6 (Kripke model). A Kripke model for Ly, is a triple I = (S, R, V)
where S and V are the same as Definition 2, and R is a deterministic binary relation
on S, that is, if sRt and sRv then ¢t = v. For each s € S, (K, s) is called a pointed
Kripke model.

From the definition above, it can be seen that in this paper we assume that all
Kripke models are deterministic. This is because we only consider deterministic
Kripke models in this paper.

Definition 7 (Kripke semantics). The Kripke semantics of Lpyir,, which in this pa-
per is denoted as I, is standard (cf. [1]), where the modal formula ()¢ is interpreted
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as an existential modal formula :
K, sk (¢ < there exists t such that sRt and IC, ¢ IF ¢.

From the definition above, it can be seen that the interpretation of ()¢ is the
same as the existential modal formula (normally denoted as <¢) in standard modal
logic. So, in this paper, we will abbreviate the formula = () —¢ as O¢.

Given a Kripke model K = (S, R, V), a (possibly infinite) sequence of states
5189 - -+ is called a KC-path if and only if s, Rs,11 for all n > 1. Especially, each
s € Sis a K-path. A K-path p is called a full XC-path if and only if either it is of
infinite length or p = s1 - - - s, and there is no such t € S that s,, Rt.

The following proposition states that for each Kripke model, there are equivalent
DML-models.

Proposition 4. Given a Kripke model K = (S, R, V'), for each set Q) of full K-paths,
we have that (S,Q, V), p E ¢ if and only if K, s |t ¢ where p[1] = s.

Proof. We prove it by induction on ¢. The basic step and Boolean cases are straight-
forward. If ¢ := (1), there are two cases: |p| = 1 or |p| > 1.

For the case of |p| = 1, by the DM L-semantics, we always have that (S, Q, V'), p i
(Ow. Meanwhile, since p is a full K-path and |p| = 1, this follows that there is no
such state ¢ that sRt in . Thus, we also always have that IC, s If (O

For the case of |p| > 1, the proof is as follows:

If (S,Q,V), p E O, it follows that (S, Q71 V) p? E 9. By the inductive
hypothesis, K, sy I 1) where s, = p[2]. Due to p[l] = s € S, we can get sRso.
Then by Kripke semantics, we have that K, s IF (Oq.

IfKC, s IF O, it follows that there exists a state so such that s Rso and /C, so IF 9.
By the inductive hypothesis, (S, ', V), p’ E 1 where p/[1] = s5. By Proposition 1,
we then have that (S, {p’'}, V'), p' £ 1. Since p’ is a full K-path starting from s5 and
sRso, it follows that sp’ is also a full K-path. Then by the DML-semantics, we have

that (S, {s'}, V), s/ F O 0

Next, we will show that for each DML-model, there is an equivalent Kripke
model.

Definition 8 (M?®). Given a DML-model M = (S,Q, V), a Kripke model M* is
defined as (S®, R}, V*) where

+ §* = {0 | there exists p € €2 such that o is a suffix of p}. In other words, S°
is the suffix-closure of €2.

« pR*c if and only if o = p2. It is obvious that R® is deterministic.

* 0 € V*(p)ifand only if o[1] € V(p).
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Proposition 5. Given a DML-model M, we have that the Kripke model (M~1)* is
a generated submodel of the Kripke model M®.

Proof. The proof is omitted due to space limitations. O
Proposition 6. M, p F ¢ if and only if M®, p IF ¢.

Proof. It can be proved by induction on ¢. We will only consider the case that ¢ is
of the form .

If M,p E O, it follows that M~!, p? = 1. By inductive hypothesis, we
get (M~1)*, p? E 1. By proposition 5, (M~1)* is generated submodel of M®. So
M?®, p% I 1) (cf. [1]). Due to pR®p? in M®, thus we can get M*, p |- O

If M®, p IF O, it follows that there exists p’ such that pR®p’ and M®, p’ I ).
By the definition of R®, we know that p’ = p[2]. Thus, M*, p[2] IF ). What is more,
by the definition of S®, we know that either p € Q) or p is a suffix of some o € (.
Either way, we have that p[2] is an element of the domain of (M~1)®. Since (M~1)*
is a generated submodel of (M®*), we then have that (M 1), p[2] IF 9. By inductive
hypothesis, we then have that M ™1, p[2] E 1. It follows that M, p = Q). O

The following lemma states that the logical consequence of DML is equivalent
to that of standard modal logic on deterministic modal class.

Lemma 1. For each ¢ € Lpmr, we have that I' = ¢ if and only if T |- ¢.

Proof. Suppose' E ¢, but' |¥ ¢. This follows that there is a pointed Kripke model
IC, s such that IC, s I " but IC, s | ¢. By proposition 4, we can get a DML-model
(S,R, V), psuchthat (S, R, V), pE T and (S, R, V), p & ¢, which is contradictory
with the premise that I' F ¢. Thus, we have shown that if I' E ¢ then I" I ¢.
Suppose I' I ¢, but I' If ¢. This follows that there is a pointed DML-model
(S,R,V),psuch that (S,R,V) E I but (S,R,V) ¥ ¢. We then can construct a
Kripke model M*® by definition 8. It follows from Proposition 6 that M* |- I" and
M?® I ¢, which contradicts the premise that I' IF ¢. Thus, we have shown that if
['IF ¢ thenT F ¢. O

Definition 9 (Deductive system of DML). The deductive system DML is presented
in Table 1.

It can be seen that DML is an extension of the K system of normal modal logic
with the axiom Det which characterizes the class of deterministic Kripke models.

Theorem 7. The system DMIL is sound and strongly complete with respect to the
semantics of DML.



Yanjun Li, Jiajie Zhao / A Logic for Probabilities of Successive Events 9

Proof. Since the system DML is sound and strongly complete with respect to the
class of deterministic Kripke models (see [1]), by Lemma 1, it follows that DML is
sound and strongly complete with respect to the semantics of DML. (Il

Table 1: The system DML

Axioms

Taut All instances of propositional tautologies
K O(¢ — ¢) — (O¢ — OY)

Det O¢ — 0o

Rules

MP From ¢ and ¢ — 1, infer 4.

N From ¢, infer O¢.

4 A Prbabilistic Logic Based on DML

In this section, we construct a probability logic based on the logic DML and give
a deductive system of this probability logic.

Definition 10 (Language of PLpy,).  The language of PLpr,, denoted as Lpr,p,,
is defined as follows (where 1, -+ , ¥, € Lpmr, and aq, -+, an,a € Q)

¢=arPr+ -+ a, PP, >a| 0| (oA P)

Formulas of the forms a; Py + - - - + a,, P, < a where e {>, <, <, =} can
be defined in Lpy,,,,, (see [4]).

Definition 11 (Probability distribution). Let €2 be a finite set. A function p : 2 —
[0, 1] is called a probability distribution over € if and only if

> ulp)=1.

pEN
Givenasubset © of Q,let ;u(©) = 3~ g pu(p)if© # 0. IfO = , let 14(©) = 0.

Definition 12 (Model of PLpyr). A PLpyr-model is a pair (M, 1) where

« M =(5,Q,V) is a DML-model where €2 is finite;
* u is a probability distribution over {2.
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Definition 13 (Semantics of PLpyr,). The satisfaction relation between a PLpy,-
model (M, 1) and a formula ¢ € Lpy,y,,, , denoted as F, is defined as follows:

MopEY Y jap; > a < S ap([viM) >a
MpE -9 = Mut#o¢
M?M’qul/\du <~ M,,u?gbland/\/l,u':d)g

Example2. Imagine drawing a ball from the box in Example 1, but this time without
replacement. Assume that these balls are exactly the same except for the color. So
for your first draw, the probability of getting red is 0.8 (p,), and 0.2 for black (pj).
For your second draw, the case will be: if you get a red ball on your first draw, the
probability of getting a black ball increases to 0.75, since there are 3 red balls and 1
black ball left. If you get a black ball on your first draw, you will certainly draw a red
ball in your next turn, because there is no black ball anymore. This sampling can be
depicted by Figure 2.

Figure 2: Sampling without replacement
s3(R)

3
/
\
s s4(B)
1

51(R)

™M

CHH/ \D

52(B) s5(R)

Let the DML-model M = (S, 2, V') be defined as follows:

* S ={s1,52,53,54,55},
* Q= {5153,5154, 5255},
* V(pg) = {51,583, 85} and V(p,) = {s2, 54}

The probability distribution x on €2 is defined as follows:

(5155) =2 x 5 = 3
/113—5 1°5
(sys) =3 L2 1
BAS184) =5 2 4 T 5
( ) 1><1 1
S985) =— = -
H(S285 5 5

We then have the following:

« M, puEPp, = 2, because of pu([p,,]) = p({[s1]}) = 3. This means that the

probability of the event that you draw a red ball at the first time is %.
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Definition 14 (Deductive system PLpp,).

° M,M':PO])R = %:

because of u([Op,]) = wu({siss,s2s5}) = 2. This

means that the probability of the event that you draw a red ball at the second

time is %.

« M, E P(p,;p,) = i, because of u([py;p,]) = w({s1s4}) = . This

means that the probability of the successive events that you firstly draw a red

ball and secondly draw a black ball is é

sented in Table 2.

The deductive system PLpy, is pre-

The deductive system DMIL is similar to the deductive system proposed in [4]

except for the rule Dst. The premise of the rule Dst in this paper is a formula provable

in the system DMIL.
Table 2: The system PLpy,
Axioms
Taut All instances of propositional tautologies
Linlne All instances of linear inequality axioms
NonNeg Py >0
Cert PT =1

Add P(¢1 Ap2) +P(Y1 A —9p2) = P(¥1)

Rules
MP From ¢ and ¢ — 1, infer 1.
Dst From Fpp, 11 <> 19, infer P(1)1) = P(1)2).

Proposition 8. If ¢1 € Lpmr and ¢p2 € Lpmr, are DMIL-inconsistent, we then have
that FP]LD)M]L P((Z)l) + P((bz) = P((Z)l V ¢2)

Proof. 1. FpmL @1 A g2 — L
2. Fpmr L — @1 A2
3. FomL @1 A g2 <> L
4, l_[P]LJD)MIL P(gf)l VAN ¢2) = P(J_)
5. Fprpy P(TAL)+P(TA-L)=P(T)
6. Fpyvp TAL <« L
7. btpvL TA-L << T
8 FpmL P(TAL)+P(TA-L)=P(L)+P(T)
9. Fpry, P(T) = 1
10, FpLpy, P(Ll) =
1. Fpry,, Plo1 A (;52) =0
12, FpLyy P(@1) = P(é1 A ¢2) +P(d1 A —¢2)

(inconsistent)
(Axiom Taut)
(1.2.Axiom Taut)
(3.Rule Dst)

(Axiom Add)
(Axiom Taut)
(Axiom Taut)
(6.7.Axiom LinIne)
(Axiom Cert)
(5.8.9.Axiom Linlne)
(4.10.Axiom Linlne)
(Axiom Add)
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13.
14.
15.
16.
17.
18.
19.
20.

FeLoys, P(61) = P(¢1 A =2) (11.12.Axiom Linlne)
FpLpye, P01V ¢2) = P((d1V ¢2) A ¢2) + P(d1 V ¢2) A —¢2) (Axiom Add)
FpmL (61 V $2) A g2 < ¢2 (Axiom Taut)
FomL (91 V $2) A =g <3 ¢1 A 2 (Axiom Taut)
FpLpe P((61V ¢2) A d2) = P(¢2) (15.Rule Dst)
FPLpwa P((¢1V ¢2) A —=2) = P(¢1 A =¢h2) (16.Rule Dst)
FeLoy, P(¢1V ¢2) = P(¢2) + P(¢1 A —ha) (14.17.18.Axiom Linlne)
Loy P(61 V ¢2) = P(d1) + P(¢2) (13.19.Axiom Linlne)

[l

Theorem 9 (Soundness). The system Plpyy, is sound.

Proof. The key is to show that each axiom is valid and that each rule preserves
validity.

Firstly, we will show that each axiom is valid. We will only focus on the axioms

of probabilities.

The axiom NonNeg is valid, i.e. F Py > 0.

Let M = (S,Q,V) be an arbitrary model and p be an arbitrary probability
distribution over . Since [1/]M is a subset of €, it follows by Definition 11
that u([)]™) > 0. Thus, we have that M, p = Py > 0.

The axiom Cert is valid, i.e. F PT = 1.

Due to [T]M = Q, it follows by Definition 11 that ([ T]*) = 1. Thus, we
have that M, F PT = 1.

The axiom Add is valid, i.e. E P(¢1 A ¥2) + P(101 A —ha) = Pi)y.

Please note that [¢1 A ¢2]* = [¢1]*' N [¢2], and [¢1 A —~do] M = [ ]M N
[~02] = [oud™ N (@ [62]™) = [@]™ \ ([ea]™ N [$2] ). This
follows that [¢1 A ¢2] and [¢1 A —¢2] are disjoint. By Definition 11, we have
that p([o1 A 2] M U [1 A =] M) = p([61 A d2] M) + u([dr A =] ™).
What is more, due to [¢; A ¢o]™ U o1 A =)™ = [¢1]™M, it follows that
p([o]M) = pln A @2]™) + u([61 A —¢2]™). Thus, we have that M, p =
P(¢1 A ¢2) + P(d1 A —d2) = P(¢1).

Next, we need to show each rule preserves validity. We will only focus on the

rule Dst.

Suppose that Fpyp, ¥1 <> 12, by Theorem 7, it follows that the formula ¢ <>

¢2 € LpLy,, is valid. We then have that [v1]M = [12]M for each DML-model M.
Thus, we have that 1([¢1]") = u([¢2]™M). It follows that M, i &= P(¢1) = P(¢2).

O
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5 Completeness of PLpyy,

Given a formula set I", we use Sub(T") to denote the minimal extension of I" such
that Sub(T") is subformula closed, and use Sub™(¢) to denote the minimal extension
of Sub(¢) such that if ) € Sub(¢) and v is not a negation formula then —1) €
Sub™ (o).

If T is finite, both Sub(T") and Sub™ (T) are finite.

Definition 15 (DML/PLpyy.-Atom). Let I' be a set of Lpmr,-formulas (Lpr,p,,, -
formulas). A subset s of Sub™ (T) is called a DMIL-atom (PLpyy.-atom) of Sub™ (T")
ifand only if s is a maximal DMIL-consistent (PLpyp -consistent) subset of Sub™ (T').

We use Atpyr(T') to denote the set of all DML-atoms of Sub™*(T"), and we
use Atpr,,, (I') to denote the set of all PLpy-atoms. We use ¢g to denote the
conjunction of all formulas in © if © is finite.

Next, we will show that each PLpy -atom is satisfiable. Before that, we need
the following two auxiliary propositions. Due to space limitations, the proofs are
omitted.

Proposition 10. Let ' be a finite set of Loy -formulas. We have that the disjunction
of all atoms is provable in DML, namely Fpyr, \ gc Aty (T) Yo.

Proposition 11. Let T be a finite set of Lpy-formulas and 1) be a formula in Sub™ (T").
We have that Fpyr, ¢ < \/@eAtDML(F),weG) oo.

Lemma 2. Given a finite PLpyy -atom ©, there is a PLpyig,-model (M, 1) such that
M, E Y for each i € O.

Proof. Let I' be the set of Lpy,-formulas that occurs in ©. It is obvious that I'
is finite. So, Sub™(T") is finite as well. Therefore, there are finite many DML-
atoms of Sub™ (T"). Let the set of all the DML-atoms of Sub™ (T") be Atpy(T') =
(A1, A}

For each 1 < i < n, since A; is DML-consistent, it follows by Theorem 7 that
A, is satisfiable. Let (M, p) be a pointed model such that M;, p E A;. To indicate
this fact, we will write the sequence p as p A

Firstly, we generate the submodel (M;)|,, of M; foreach 1 < i < n. By
Proposition 2, it follows that (M), , pa, F A; foreach 1 < i < n.

Secondly, we do the disjoint union of {(/\/11)|,oAl s (Ma)lp, b We use
M = (5,0, V) to denote the disjoint union model. By the definition of disjoint
union, it follows that 2 = {p Ay Pan }. By Proposition 3, it follows that M, p A, F
A,; for each 1 < 7 < n. Moreover, since each A; is a maximal DML-consistent sub-
set of Sub™(T), it follows that any two atoms A; and A; where 1 < 7,5 < n are
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DML-inconsistent. Therefore, any two atoms are not satisfiable. Thus, each A; is
only satisfied by M, p, . So, we have that [A;]M = {p, }.

Next, we need to show that there is a probability distribution w over €2 such that
M, uE 6.

By a similar process presented in [4], it can be proved that there indeed is a
probability distribution u over €2 such that

o If(a1PY1 +--- +a;jPy; > a) € O, then M, uF a1Py1 + - - + a;PyY; > a.
o If (aiPyY1 + -+ a;PY; > a) € ©, then M, p i a1PYy + - - - + a;PY; > a.

Due to space limitations, the proof details of this result are omitted. With this result,
it can be shown by induction on ¢ that for each 1) € Sub™(0),

M, E 1 ifand only if ) € ©.
It follows that M, i1 F 1 for all ¢ € ©. O

Theorem 12 (Weak completeness). The system PlLpny, is weak complete, that is, if
a formula ¢ € Lpi,,,,, is PLpw.-consistent then it is satisfiable.

Proof. Since ¢ is PLpyy-consistent, it follows by Lindenbaum’s lemma that there
is a PLpp-atom © of Sub™(¢) such that ¢ € ©. By Lemma 2, we then have that
there is a PLpyr,-model M, p such that M,y E 4 for all ¢p € ©. Thus, ¢ is satisfied
by M, pu, then it is satisfiable. O

6 Conclusion

In this paper, we propose semantics for a modal language to capture the reasoning
about successive events in probability theory. We prove that this logic (called DML)
is equivalent to the normal modal logic on deterministic Kripke models. We then
construct a probability logic on DML and show the completeness of its deductive
system PLpp.

There is no nesting of probabilistic operators and modal operators in the proba-
bility logic PLpwyr,. Hence, one of the natural future directions is to extend PLpr,
to allow nesting probabilistic operators and modal operators. This will allow us to
express formulas like ”¢; (PY) = a)”, which could help us to reconsider the no-
tion of independence in probability theory. Traditionally, the independence of two
events A and B is defined as pu(AB) = p(A) x p(B). This definition is chal-
lenged in various aspects (see [2]). We suggest that independence might be defined as
¢; P = a <> P((¢pV—1); 1) = a, which means that the occurrence of ¢ has no effect
on the probability of ¢ (see [2]). We will investigate this definition of independence
in future work.
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