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Privacy in Arrow Update Logic*

Yanjun Li

Abstract. Arrow Update Logic is a theory of epistemic access elimination that can be used
to reason about multi-agent belief change. In Arrow Update Logic, it is common knowledge
among agents how each will process incoming information. This paper develops the basic
theory of Arrow Update Logic to deal with private announcements. In this framework, the
information is private for an agent group. Moreover, this paper proposes a labelled tableau
calculus for this logic and also shows that this logic is decidable.

1 Introduction

Information plays an important role in several fields of scientific research, such
as philosophy, game theory, and artificial intelligence. In this paper, the notion of
information is confined to the kind of information in one’s mind, which can also be
called belief or knowledge. In real-life contexts, information is often communicated.
This leads to a change of agents’ information without any change in the bare facts of
the world. One kind of these communicative events is announcements. This paper
will focus on reasoning about information change due to announcements.

In a multi-agent system, there are at least three types of announcements: public,
private and semi-private (cf. [3]). Imagine a scenario where two agents a1 and a2
are in a room, and in front of them, there is a coin in a closed box. Neither of them
knows whether the coin is lying heads up or tails up. A public announcement occurs
when the box is opened for both to see. This changes not only the agent’s information
about the bare facts (basic information) but also agents’ information about each other
(higher-order information). When a1 secretly opens the box and a2 does not suspect
that anything happened, the effect is the same as the effect that the truth is privately
announced to a1. This changes only a1’s basic and higher-order information. A semi-
private announcement occurs when a1 opens the box and a2 observes a1’s action but
a2 does not see the coin. This changes a1’s basic information and the higher-order
information of both. Please note that a public announcement can be seen as a special
private announcement, i.e., an announcement which is privately announced to the
whole group.
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Plaza ([17]) develops a logic that is concerned with information change by pub-
lic announcements, in which a public announcement of a statement eliminates all epi-
stemic possibilities in which the statement does not hold. Gerbrandy and Groeneveld
([12]) propose a more general dynamic epistemic logic for information update, where
a private announcement for an agent group G is an update that is conscious only
for G. The dynamic epistemic logic with action models (DEL, [3, 4]) can formalize
a wide range of information change. An action model is a Kripke model-like ob-
ject that describes agents’ beliefs about incoming information. The logic LCC ([5])
can model information communication that is partial observation, and a private an-
nouncement for G is a piece of information whispered to G ([7]). Logics introduced
in [8, 6] can model information change based on attentions, and an announcement is
private for agents who are paying attention when the announcement is made. Private
announcements can also be modeled in [11]. The precise method by which private
announcements are dealt with in these logics are different due to their different mo-
tivations, but they share the same feature that the basic model will be expanded when
a private announcement happens.

Kooi and Renne’s ArrowUpdate Logic (AUL, [13]) can also formalize reasoning
about information change produced by public and semi-private announcements. Dif-
ferent from other logical frameworks, AUL models information change by updating
the epistemic access relation, without changing the domain of the model. However,
in AUL, it is common knowledge among agents how each will process incoming in-
formation. This assumption of common update policy is dropped in its extension,
Generalized Arrow Update Logic (GAUL, [14]), which can capture the same inform-
ation change that can be modeled in DEL.

Although DEL and GAUL are much more expressive than AUL, the great ex-
pressive power does not come for free. Their update operators are much more com-
plex than the update operator of AUL. This paper presents a variation of AUL, Private
Arrow Update Logic (PAUL), which also drops the common update-policy assump-
tion of AUL (so that private announcements can be expressed) and keeps the update
operator as simple and intuitive as in AUL. In our framework, each information up-
date is visible only for a group of agents, so private announcements can be dealt with.
This logic framework is also inspired by the context-indexed semantics developed
in [18] and [20]. As we will see, PAUL can formalize reasoning about information
change due to public, private and semi-private announcements. Our logic is more
general than AUL in the sense that each information update in AUL can be seen as
update that is visible for all agents in our framework. Our logic can also be seen
as a fragment of DEL, and there are information change, such as lying, cannot be
expressed in our framework.

The rest of this paper is organized as follows: Section 2 proposes the language
and semantics of PAUL, and works out some examples; Section 3 presents the tableau
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calculus for PAUL and show soundness and completeness; Section 4 shows PAUL is
decidable; Section 5 concludes with some directions for further research.

2 The Logic PAUL

2.1 Syntax and semantics

In this section, we introduce the language and semantics of this logic.

Definition 1 (PAUL Language). Let Agt be a nonempty finite set of agents, and let
P be a countable set of atomic propositions. The PAUL language is generated by the
following BNF:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | [U,G]ϕ | 2aϕ
U ::= (ϕ, a, ϕ) | (ϕ, a, ϕ), U

where p ∈ P, a ∈ Agt and G ⊆ Agt is a superset of the set of agents occurring in U .

We will often omit parentheses around expressions when doing so ought not
cause confusion. The expression ϕ is called a PAUL-formula (or just formula). The
expression [U,G] occurring in a formula is called a PAUL-update (or just update),
which consists of an update core U and an agent group G to which the update is
visible. We let LPAUL denote the set of formulas. Given formulas ϕ and ψ and an
agent a ∈ Agt, the syntactic object (ϕ, a, ψ) ∈ U is called an a-arrow specification.
As usual, we use the following abbreviations: ⊥ := ¬>, ϕ∨ψ := ¬(¬ϕ∧¬ψ), ϕ→
ψ := ¬ϕ∨ ψ, 3aϕ := ¬2a¬ϕ. Moreover, if there is only one arrow specification in
U , we write [{(ϕ, a, ψ)}, G] as [(ϕ, a, ψ), G]. Similarly, we write [U, {a}] as [U, a].

Intuitively, the formula 2aϕ expresses that agent a believes ϕ. The formula
[U,G]ϕ expresses that ϕ holds after the arrow update [U,G]. The update [U,G]means
that the update is visible only to agents in G. Please note that the update in AUL has
only one part, that is [U ], which is visible for all agents. Therefore, the update [U ] in
AUL is the same as the update [U,Agt] here.

Definition 2 (Kripke Model). A Kripke modelM is a tuple 〈WM, RM, VM〉, con-
sisting of a nonempty set WM of worlds, a function RM assigning each agent a ∈
Agt a binary relation RM

a ⊆ WM ×WM, and a function VM : P → P(WM). A
pointed Kripke model is a pair (M, s) consisting of a Kripke model M and a world
s ∈WM; the world s is called the point of (M, s).

Given a Kripke model M, we call WM the domain of the model. For each
agent a ∈ Agt, we callRM

a a’s possibility relation since it defines what worlds agent
a considers possible in any given world. Please note that updates considered in this
paper do not change any bare facts but only the agent’s beliefs. Therefore, when an
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update happens, we do not have to change the domain of the model but only change
the possibility relations (or ‘arrows’).

Definition 3. Let ρ = [U1, G1] · · · [Un, Gn] be an update sequence (or just sequence),
and ρ = ϵ if n = 0. The update sequence ρ|a is defined by the following induction
on n.

ϵ|a = ϵ

(ρ[U,G])|a =

{
ρ|a a 6∈ G

ρ|a[U,G] a ∈ G

In the following text, we will always use symbols ρ, ρ′, ρ[U,G], ρ′[U,G] to de-
note sequences of updates. The sequence ρ|a means that the updates are visible to the
agent a.

Definition 4 (PAUL Semantics). Given a pointed Kripke model (M, s), an update
sequence ρ and a formula ϕ, we writeM, s ⊨ρ ϕ to mean that ϕ is true atM, s after
updates ρ, and we write M, s ⊭ρ ϕ for the negation of M, s ⊨ρ ϕ. The relation
(notation: ⊨ρ) is defined by the following induction on formula construction.

M, s ⊨ρ >
M, s ⊨ρ p iff s ∈ V (p)

M, s ⊨ρ ¬ϕ iff M, s ⊭ρ ϕ
M, s ⊨ρ (ϕ ∧ ψ) iff M, s ⊨ρ ϕ andM, s ⊨ρ ψ
M, s ⊨ρ [U,G]ϕ iff M, s ⊨ρ[U,G] ϕ

M, s ⊨ρ 2aϕ iff ∀t ∈WM : (s, t) ∈ RM
a ∗ (ρ|a) impliesM, t ⊨ρ|a ϕ

RM
a ∗ ϵ def

= RM
a

RM
a ∗ (ρ′[U,G]) def

= {(s, t) ∈ RM
a ∗ ρ′ | there exists (ϕ, a, ψ) ∈ U :

M, s ⊨ρ′ ϕ andM, t ⊨ρ′ ψ}

We also writeM, s ⊨ϵ ϕ asM, s ⊨ ϕ. To say that a formula ϕ is valid, written as ⊨ ϕ,
means that M, s ⊨ ϕ for each pointed Kripke model (M, s). The negation of ⊨ ϕ

is written as ⊭ ϕ. To say that a formula ϕ is satisfiable means there exists a pointed
model (M, s) such thatM, s ⊨ ϕ.

The binary relation RM
a ∗ ρ|a is a’s possibility relation after the announcement

sequence ρ. Compared to product semantics, such as in DEL and GAUL, the context-
indexed semantics here has the following characteristics. Firstly, we know that up-
dates change only agents’ beliefs but not bare facts. This feature is more clear in this
semantics because only the possibility relation is updated when 2-formulas are eval-
uated. Moreover, product semantics always update the domain of the model when
an update happens, which means that the size of the model may grow rapidly along
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with the length of update sequence ρ, but this is not the case here. This is because
when2a-formulas are evaluated, we do not change the domain of the model but only
update a’s possibility relation with respect to the update sequence visible to a, namely
ρ|a.

Kooi and Renne ([13]) present an axiomatic theory for AUL, in which the most
important axiom states that an agent’s belief after an update can be reduced to his (her)
belief before the update. The following proposition shows that the PAUL version of
this reduction axiom also holds.

Proposition 5. ⊨ [U,G]2aϕ↔
∧

(ψ,a,χ)∈U (ψ → 2a(χ→ [U,G]ϕ)) if a ∈ G.

Proof Let (M, s) be a pointed Kripke model. Firstly, we show that if M, s ⊨
[U,G]2aϕ then M, s ⊨

∧
(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ)). Assume that M, s ⊨

[U,G]2aϕ and (ψ, a, χ) ∈ U , we will show that M, s ⊨ ψ → 2a(χ → [U,G]ϕ).
Let M, s ⊨ ψ and t be a state such that (s, t) ∈ RM

a . We only need to show that if
M, t ⊨ χ thenM, t ⊨ [U,G]ϕ. IfM, t ⊨ χ , sinceM, s ⊨ ψ and (ψ, a, χ) ∈ U , this
follows that (s, t) ∈ (RM

a ∗ [U,G]). Since a ∈ G, we have that [U,G]|a = [U,G].
Thus, we have (s, t) ∈ (RM

a ∗ [U,G]|a). Moreover, since M, s ⊨ [U,G]2aϕ, this
follows thatM, t ⊨[U,G] ϕ. Therefore, we have thatM, t ⊨ [U,G]ϕ.

Secondly, we show that if M, s ⊨
∧

(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ)) then
M, s ⊨ [U,G]2aϕ. Assume that M, s ⊭ [U,G]2aϕ. It follows that there exists t ∈
WM such that (s, t) ∈ RM

a ∗ [U,G] andM, t ⊭[U,G] ϕ. Since (s, t) ∈ RM
a ∗ [U,G],

it follows that (s, t) ∈ RM
a and there exists (ψ, a, χ) ∈ U such that M, s ⊨ ψ

and M, t ⊨ χ. Moreover, since M, s ⊨
∧

(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ)), we
then have M, t ⊨ [U,G]ϕ, namely M, t ⊨[U,G] ϕ. This is in contradiction with
M, t ⊭[U,G] ϕ. Therefore, we have if M, s ⊨

∧
(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ))

thenM, s ⊨ [U,G]2aϕ. □

The following proposition shows that if an update is not visible for an agent, then
her belief after the update is the same as her belief before the update.

Proposition 6. ⊨ [U,G]2aϕ↔ 2aϕ if a 6∈ G.

Proof We have the following:

M, s ⊨ [U,G]2aϕ

⇔M, s ⊨[U,G] 2aϕ

⇔ for all (s, t) ∈ Ra ∗ ([U,G]|a) : M, t ⊨[U,G]|a ϕ

⇔ for all (s, t) ∈ Ra : M, t ⊨ ϕ due to [U,G]|a = ϵ

⇔M, s ⊨ 2aϕ □
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We know that the replacement of equivalents plays an important role in equival-
ently reducing an AUL formula to a formula with out updates. Next, we will show
that the replacement of equivalents also holds in PAUL. Before that, we first show
the the following proposition.

Proposition 7. Let ρ be a sequence of updates and (M, s) be a pointed model.
We then have that M, s ⊨ρ ϕ iff M′, s ⊨ ϕ for each ϕ ∈ LPAUL, where M′ =

〈WM, R′, VM〉 and R′ = {RM
a ∗ ρ | a ∈ Agt}.

Proof We prove it by induction on ϕ. We only focus on the case of [U,G]ϕ; the
other cases are straightforward by IH.

We need to show that M, s ⊨ρ [U,G]ϕ iff M′, s ⊨ [U,G]ϕ. Please note that
RM
a ∗ (ρ[U,G]) = (RM

a ∗ ρ) ∗ [U,G]. Let M′′ = 〈WM, R′′, VM〉 where R′′ =

{RM
a ∗ (ρ[U,G]) | a ∈ Agt}. By IH, we have that M, s ⊨ρ[U,G] ϕ iff M′′, s ⊨ ϕ.

What is more, by IH, we also have that M′, s ⊨[U,G] ϕ iff M′′, s ⊨ ϕ. Therefore, we
have the following:

M, s ⊨ρ [U,G]ϕ
⇔M, s ⊨ρ[U,G] ϕ

⇔M′′, s ⊨ ϕ by IH
⇔M′, s ⊨[U,G] ϕ by IH
⇔M′, s ⊨ [U,G]ϕ □

Please note that, by the proposition above, we have that, for any update sequence
ρ, ⊨ρ ϕ if ⊨ ϕ. Therefore, we have the general version of Propositions 5 and 6:

⊨ρ [U,G]2aϕ↔
∧

(ψ,a,χ)∈U

(ψ → 2a(χ→ [U,G]ϕ)) a ∈ G

⊨ρ [U,G]2aϕ↔ 2aϕ a 6∈ G

Now we are ready to prove the replacement of equivalents.

Proposition 8. Let ϕ′ be the result of replacing some occurrences of ψ in ϕ by ψ′1.
We then have that ⊨ ϕ↔ ϕ′ if ⊨ ψ ↔ ψ′.

Proof We prove it by induction on ϕ. We only focus on the case of [U,G]ϕ; the
other cases are straightforward by IH.

We need to show that M, s ⊨ [U,G]ϕ iff M, s ⊨ [U,G]ϕ′. Let the model
M′ be 〈WM, R′, VM〉 and R′ = {RM

a ∗ [U,G] | a ∈ Agt}. We then have that

1Here we confine the occurrence of ψ in ϕ on the occurrence that ψ is not in an update. In the
following, we will see that this confined version of replacement of equivalents is sufficient to show the
reduction theorem.
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M, s ⊨ [U,G]ϕ iff M, s ⊨[U,G] ϕ, and by Proposition 7 we have that M, s ⊨[U,G] ϕ

iff M′, s ⊨ ϕ. By IH, we then have that M′, s ⊨ ϕ iff M′, s ⊨ ϕ′. Then, by
Proposition 7 again, we have thatM′, s ⊨ ϕ′ iff M, s ⊨ [U,G]ϕ′. □

Next, we will show that each formula in PAUL can be equivalently reduced to
be a formula with out updates.

Theorem 9. For each formula ϕ, there is a formula ϕ′ such that ⊨ ϕ↔ ϕ′ and there
are no updates in ϕ′.

Proof We first define the translation function t as follows:

t(p) = p t([U,G]p) = p

t(¬ϕ) = ¬t(ϕ) t([U,G]¬ϕ) = ¬t([U,G]ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ) t([U,G](ϕ ∧ ψ)) = t([U,G]ϕ) ∧ t([U,G]ψ)
t(2aϕ) = 2at(ϕ)

t([U,G]2aϕ) =
∧

(ψ,a,χ)∈U (t(ψ) → 2a(t(χ) → t([U,G]ϕ))) a ∈ G

t([U,G]2aϕ) = 2at(ϕ) a 6∈ G

t([U,G][U ′, G′]ϕ) = t([U,G]t([U ′, G′]ϕ)).

By induction on ϕ, we will show that ⊨ ϕ ↔ t(ϕ) and that there are no updates
occurring in t(ϕ). We then only focus on the case of [U,G]ϕ; the other cases are
straightforward by IH.

To show that ⊨ [U,G]ϕ↔ t([U,G]ϕ) and that there are no updates occurring in
t([U,G]ϕ), we continue to do induction on ϕ.

• [U,G]p. It is obvious.
• [U,G]¬ϕ. By semantics, we have that ⊨ [U,G]¬ϕ ↔ ¬[U,G]ϕ. By IH, we

have that ⊨ [U,G]ϕ ↔ t([U,G]ϕ) and that there are no updates occurring in
t([U,G]ϕ). Thus, we have that ⊨ ¬[U,G]ϕ ↔ ¬t([U,G]ϕ) and that there are
no updates in ¬t([U,G]ϕ).

• [U,G](ϕ∧ψ). Since ⊨ [U,G](ϕ∧ψ) ↔ [U,G]ϕ∧ [U,G]ψ by semantics, it is
straightforward by IH.

• [U,G]2aϕ and a ∈ G. By Proposition 5, we only need to show that, for
each (ψ, a, χ) ∈ U , ⊨ (ψ → 2a(χ → [U,G]ϕ)) ↔ (t(ψ) → 2a(t(χ) →
t([U,G]ϕ))) and there are no updates in t(ψ), t(χ), or t([U,G]ϕ). These are
straightforward by IH.

• [U,G]2aϕ and a 6∈ G. By Proposition 6, we only need to show that 2aϕ can
be equivalently reduced to be a formula with out updates. By IH, we have that
⊨ ϕ ↔ t(ϕ) and there are no updates in t(ϕ). Thus, we have that ⊨ 2aϕ ↔
2at(ϕ) by Proposition 8.

• [U,G][U ′, G′]ϕ.We need to show that⊨ [U,G][U ′, G′]ϕ↔ t([U,G]t([U ′, G′]ϕ))

and that there are no updates in t([U,G]t([U ′, G′]ϕ)). By IH, we have that there
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is some formula ϕ′ = t([U ′, G′]ϕ) such that ⊨ [U ′, G′]ϕ ↔ ϕ′ and that there
are no updates in ϕ′. By IH again, we have that ⊨ [U,G]ϕ′ ↔ t([U,G]ϕ′) and
there are no updates in t([U,G]ϕ′). Since ⊨ [U ′, G′]ϕ ↔ ϕ′, by Proposition 8,
we then have that ⊨ [U,G][U ′, G′]ϕ↔ t([U,G]ϕ′). □

2.2 Announcements in PAUL

In this section, we will show how public, private and semi-private announce-
ments are captured in PAUL. Let us consider the following scenario of a concealed
coin, which is a tweaked version of an example used in [3].

Example 10 (Basic scenario). Two agents a1 and a2 enter a large roomwhich contains
a remote-controlled mechanical coin flipper. One of them presses a button, and the
coin spins through the air and lands in a small box on a table with heads or tails lying
up. The box is closed and they are too far away to see the coin.

H
p

T
¬p

a1, a2
a1, a2 a1, a2

Figure 1: the basic modelM

Just as in [3], this can be modelled by a Kripke model M, which is pictured in
Figure 1. The possible world H ∈ WM represents the possible fact that the coin is
lying heads up, and T ∈ WM represents tails up. The proposition p means that the
coin is lying heads up, so it is only true in H . The possibility relations of a1 and a2
indicate that both of them do not know whether the coin is lying heads or tails up.

Example 11 (Public announcement). After the basic scenario, one of them opens the
box and puts the coin on the table for both to see. The effect of this event on their
beliefs is the same as that of a truthful statement publicly announced to them that the
coin is lying heads or tails up.

H
p

T
¬p

a1, a2 a1, a2

Figure 2: The possibility relations after the update [U1, G1]

After the truthful announcement that the coin is lying heads or tails up, both of
them think there is only one possibility in any given world. Thus only their epistemic
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accesses to any given world should be preserved. This announcement is visible for
both, since it is publicly announced. Therefore, this public announcement can be
captured by [U1, G1] where U1 = {(p, a1, p), (¬p, a1,¬p), (p, a2, p), (¬p, a2,¬p)}
and G1 = {a1, a2}. After the update [U1, G1], the possibility relations of a1 and
a2 turn out to be the same, as shown in Figure 2. Moreover, since the update is
visible to both of them, a1’s possibility relation in a2’s opinion is the same as a1’s
real possibility relation, namely RM

a ∗ ([U1, G1]|a2 |a1) = RM
a1 ∗ ([U1, G1]|a1). If H

is the actual world, after this public and truthful announcement, both of them believe
that the coin is lying heads up and that the other also believes so. We can check the
following formulas.

• M,H ⊨ [U1, G1](2a1p ∧2a2p)

• M,H ⊨ [U1, G1](2a12a2p ∧2a22a1p)

More generally, public announcements of the truth value of ϕ can be expressed in
our framework by the update [U,Agt] where U = {(ϕ, a, ϕ), (¬ϕ, a¬ϕ) | a ∈ Agt}.
Therefore, public announcement logic is a fragment of PAUL.

Example 12 (Private announcement). After the basic scenario of Example 10, agent
a1 secretly opens the box herself. Agent a2 does not observe that a1 opens the box,
and indeed a1 is certain that a2 does not suspect that anything happened. The effect
of this on their beliefs is the same as secretly and privately announcing the truth to
a1.

H Ta1 a1

(a) RM
a1

∗ ([U2, G2]|a1)

H T
a2a2 a2

(b) RM
a2

∗ ([U2, G2]|a2)

H T
a1a1 a1

(c) RM
a1

∗ ([U2, G2]|a2 |a1)

Figure 3: The possibility relations after the update [U2, G2]

After the truth is announced to a1, she thinks that there is only one possibility
from any given world. Thus a1’s epistemic accesses to the world itself should be
preserved after the announcement. Since the announcement is secret and private, it
is visible only to a1. This private and truthful announcement can be captured by the
update [U2, G2] which is defined as U2 = {(p, a1, p), (¬p, a1,¬p)} and G2 = {a1}.

After the update [U2, G2], a1’s possibility relation (Figure 3a) will change, but
a2’s possibility relation (Figure 3b) will remain the same as before. Moreover, since
a2 does not suspect that anything happened, a1’s possibility relation in a2’s opinion
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(Figure 3c) does not change at all after the announcement. After this private and
truthful announcement to a1, only a1 believes the truth while nothing happened to
a2’s beliefs. We can check the following formulas.

• M,H ⊨ [U2, G2](2a1p ∧ ¬2a2p)
• M,H ⊨ [U2, G2]¬2a2(2a1p ∨2a1¬p)

More generally, a private announcement of the truth value of ϕ to a group of
agents G ⊆ Agt can be expressed in our framework by the update [U,G] where
U = {(ϕ, a, ϕ), (¬ϕ, a,¬ϕ) | a ∈ G}. Our logic is a fragment of DEL, since there is
certain information change, such as lying, that can not be expressed in PAUL but can
be modeled in DEL.

H Ta1 a1

(a) RM
a1

∗ ([U3, G3]|a1)

H T
a2a2 a2

(b) RM
a2

∗ ([U3, G3]|a2)

H Ta1 a1

(c) RM
a1

∗ ([U3, G3]|a2 |a1)

Figure 4: The possibility relations after the update [U3, G3]

Example 13 (Semi-private announcement). After the basic scenario of Example 10,
agent a1 opens the box herself. Agent a2 observes that a1 opens the box but does not
see the coin. Agent a1 also does not disclose whether it is heads or tails. The effect of
this on their beliefs is the same as a semi-private announcement to a1, which means
that the truth is announced to a1 only, but a2 notices what happened.

Since the truth is announced to a1, she will know the truth after the announce-
ment. The situation of a2 is a little complex. Firstly, a2’s possibility relation will
remain the same as before since a2 is not announced the truth. Secondly, a1’s possib-
ility relation in a2’s opinion will change since he observed that a1 is announced the
truth. This semi-private announcement can be captured by the update [U3, G3] which
is defined as U3 = {(p, a1, p), (¬p, a1,¬p), (>, a2,>)} and G3 = {a1, a2}.

Agent a1’s possibility relation (Figure 4a) will change to the reflexive relation
after the update. Since the announcement is not disclosed to a2, a2’s possibility re-
lation (Figure 4b) will not change after the update. However, after the update, a1’s
possibility relation in a2’s opinion (Figure 4c) will change because a2 observes the
announcement. After the announcement, a2 believes that a1 believes the truth, but
a2 still could not distinguish between the fact that a1 believes p and the fact that a1
believes ¬p. We can check the following formulas.
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• M,H ⊨ [U3, G3](2a1p ∧ ¬2a2p)
• M,H ⊨ [U3, G3]2a2(2a1p ∨2a1¬p)

More generally, each semi-private announcement of the truth value of ϕ to a
group of agents G ⊆ Agt can be expressed in our framework by the update [U,Agt]
where U = {(ϕ, a, ϕ), (¬ϕ, a,¬ϕ), (>, b,>) | a ∈ G, b ∈ Agt \ G}. Each update
in AUL is a semi-private announcement in nature, since all updates in AUL is visible
to all agents. Therefore, each formula ϕ in AUL can be equivalently transformed to
a formula in PAUL by replacing each update [U ] in ϕ with [U,Agt]. So, AUL is a
fragment of PAUL.

3 Tableau Method

This section will present a proof method for PAUL that uses analytic tableaux.
As a typical tableau method, given a formula ϕ, it systematically tries to construct a
model for it. When it fails, ϕ is inconsistent and thus its negation is valid.

The tableau method in this paper will manipulate tableau terms, which consist of
two parts: the first part is an update sequence; the second part is a formula, or a check
mark, or a cross mark. In addition, each term is prefixed by a label which stands for
a possible world in the model under construction. A similar method is used in [1, 2,
10, 16].

Definition 14 (Term). A term (or tableau term) is a pair (ρ, x) where ρ is a finite
update sequence [U1, G1] · · · [Un, Gn] (ρ = ϵ if n = 0) and x is a check mark 3, a
cross mark 7 or a formula ϕ ∈ LPAUL.

Definition 15 (Labelled term). A label is an alternating sequence of integers and
agents, namely σ ::= n | σan where n ∈ N and a ∈ Agt. A labelled term is a pair
consisting of a label and a term, and we also write it as a triple 〈σ, ρ, x〉.

In the following text, we will always use symbols σ, σ′, σan to denote labels.
Each label represents a possible world in a Kripke model. Moreover, a label σan
occurring on a branch of a tableau also indicates that there is an a-arrow from the
possible world σ to the possible world σan. A labelled term 〈σ, ρ, ϕ〉 means ϕ is
true at the possible world σ after the announcement sequence ρ. A labelled term
〈σan, ρ,3〉 means the a-arrow from σ to σan is preserved after the update sequence
ρ. Conversely, a labelled term 〈σan, ρ,7〉 means the a-arrow is not preserved.

Definition 16 (Branch). A branch is a set of labelled terms. A label σ is new in a
branch b if there is no term in b that is labelled with σ.

In the following text, we will always use b, b′, b1, · · · to denote branches and B
to denote a set of branches.
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Definition 17 (Tableau). A tableau T for ϕ0 ∈ LPAUL is a set of branches inductively
defined as follows.

• The set {{〈0, ϵ, ϕ0〉}} is a tableau for ϕ0, which is called the initial tableau for
ϕ0.

• Let T ′ be a tableau for ϕ0 and b be a branch in T ′. IfB is a finite set of branches
generated by applying one of the tableau rules in Table 1 on b (for instance, let
b = {〈σ, ρ,¬(ϕ ∧ ψ)〉} then B = {b ∪ {〈σ, ρ,¬ϕ〉}, b ∪ {〈σ, ρ,¬ψ〉}}), then
the set (T ′ \ {b}) ∪B is a tableau for ϕ0.

Rules (¬¬), (¬∧) and (∧) are exactly as for propositional logic. Rules (¬2a)
and 2a are different from their counterparts commonly used in tableau calculi for
normal modal logic. The intuition behind Rule (¬2a) is that if the possible world
that σ stands for satisfied ¬2aϕ after the update sequence ρ then it needs to satisfy
the following conditions: there exists a possible world that is represented by σan
(the form of σan indicates that there is an a-arrow from σ to σan); 〈σan, ρ|a,3〉
means the a-arrow from σ to σan will be preserved after the update sequence ρ|a;
〈σan, ρ|a,¬ϕ〉 means ¬ϕ is true in σan after the update sequence ρ|a. Similarly,
Rule (2a) means that 2aϕ is true in σ after ρ if and only if for each possible world
that is accessible by a-arrow from σ: either the a-arrow is removed after ρ|a, or ϕ is
true in it after ρ|a.

Rule (¬[U,G]) and Rule ([U,G]) reflect the feature of the semantics that the
updates are just remembered and they are used to update the possibility relation only
when2a formulas are evaluated. Rule (31)means that the a-arrow is preserved after
ρ[U,G] if and only if it is firstly preserved after ρ and then preserved by some a-arrow
specification in U . Rule (32) says it is not possible that the a-arrow from σ to σan is
preserved after ρ[U,G] if there are no a-arrow specifications inU . Rule (71) and Rule
(72) specify the conditions under which the a-arrow from σ to σan will be removed.
It is removed after ρ[(ψ, a, χ), G] if either it is already removed after ρ, or it cannot
be preserved by the specification (ψ, a, χ). Rule (72) corresponds to the semantics
that Ra ∗ (ρ[U,G]) =

⋃
(ψ,a,χ)∈U Ra ∗ (ρ[(ψ, a, χ), G]). Please note that it is always

true that any a-arrow will be remove after ρ[(ψ, b, χ), G] if b 6= a. Therefore, we do
not need a rule for 〈σan, ρ[(ψ, b, χ), G],7〉 if b 6= a.

The following proposition is obvious according to the tableau rules.

Proposition 18. Given a tableau T and a branch b ∈ T , if 〈σ, ρ, x〉 ∈ b and x = 3/7

then σ = σ′an for some label σ′, a ∈ A and n ∈ N.

Definition 19 (Closed tableau). A branch b is closed if and only if we have either
{〈σ, ρ, p〉, 〈σ, ρ′,¬p〉} ⊆ b for some σ, ρ, ρ′ and p, or {〈σan, ϵ,3〉, 〈σan, ϵ,7〉} ⊆ b

for some σan, otherwise it is open. A tableau is closed if and only if all its branches
are closed, otherwise it is open.
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σ, ρ,¬¬ϕ
(¬¬)

σ, ρ, ϕ

σ, ρ,¬(ϕ ∧ ψ)
(¬∧)

σ, ρ,¬ϕ | σ, ρ,¬ψ
σ, ρ, ϕ ∧ ψ

(∧)
σ, ρ, ϕ
σ, ρ, ψ

σ, ρ,¬2aϕ(¬2a) n is new
σan, ρ|a,3
σan, ρ|a,¬ϕ

σ, ρ,2aϕ(2a) n is used
σan, ρ|a, ϕ | σan, ρ|a,7

σ, ρ,¬[U,G]ϕ
(¬[U,G])

σ, ρ[U,G],¬ϕ
σ, ρ, [U,G]ϕ

([U,G])
σ, ρ[U,G], ϕ

σan, ρ[U,G],3
(31)

let the set of all a-arrow specifications
in U be {(ψ1, a, χ1), · · · , (ψk, a, χk)}σan, ρ,3

σ, ρ, ψ1

σan, ρ, χ1

∣∣∣∣∣∣. . .
∣∣∣∣∣∣
σan, ρ,3
σ, ρ, ψk
σan, ρ, χk

σan, ρ[U,G],3
(32) there are no a-arrow speicifications in U

σan, ϵ,3
σan, ϵ,7

σan, ρ[(ψ, a, χ), G],7
(71)

σan, ρ,7 | σ, ρ,¬ψ | σan, ρ,¬χ

σan, ρ[U,G],7
(72)

U = {(ψ1, a1, χ1), · · · , (ψk, ak, χk)}
and k ≥ 2σan, ρ[(ψ1, a1, χ1), G],7

...
σan, ρ[(ψk, ak, χk), G],7

Table 1: Tableau rules
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1. 〈0, ϵ, [(q, a′, q), a′]2ap ∧ ¬2ap〉
2. 〈0, ϵ, [(q, a′q), a′]2ap〉 (Rule (∧): 1)
3. 〈0, ϵ,¬2ap〉 (Rule (∧): 1)
4. 〈0, [(q, a′, q), a′],2ap〉 (Rule ([U,G]): 2)
5. 〈0a1, ϵ,3〉 (Rule (¬2a): 3)
6. 〈0a1, ϵ,¬p〉 (Rule (¬2a): 3)

7. 〈0a1, ϵ, p〉 (Rule (2a): 4) 8. 〈0a1, ϵ,7〉 (Rule (2a): 4)
closed (6, 7) closed (5, 8)

Figure 5: Closed tableau for the formula [(q, a′, q), a′]2ap ∧ ¬2ap

Example 20. In Figure 5, the tableau method is used to show the validity of one
instance of the formula of Proposition 6. The rightmost column shows which tableau
rule is applied in each line.

Next, we will show the soundness, but first we need another definition.

Definition 21 (Interpretation). Given a Kripke model M and a branch b, let f be a
function from the labels used in b toWM. We say that f is an interpretation of b in
M if the following hold.

• M, f(σ) ⊨ρ ϕ for each 〈σ, ρ, ϕ〉 ∈ b;
• (f(σ), f(σan)) ∈ RM

a ∗ ρ for each 〈σan, ρ,3〉 ∈ b;
• (f(σ), f(σan)) 6∈ RM

a ∗ ρ for each 〈σan, ρ,7〉 ∈ b.

Proposition 22. Let f be an interpretation of b in M. If b contains the premise of a
rule in Table 1, then f can be extended to be an interpretation of b′ for some b′ ∈ B

where B is the set of branches generated by applying the rule on b.

Proof If the rule is (¬¬), (¬∧) or (∧), it is straightforward. We restrict our attention
to the other rules.

1. Rule (¬2a): The premise of the rule (¬2a) is 〈σ, ρ,¬2aϕ〉. Since f in an
interpretation of b in M and 〈σ, ρ,¬2aϕ〉 ∈ b, we have that M, f(σ) ⊨ρ
¬2aϕ. Let b′ = b ∪ {〈σan, ρ|a,3〉, 〈σan, ρ|a,¬ϕ〉} where n is new in b, then
we know that B = {b′}. Since M, f(σ) ⊨ρ ¬2aϕ, it follows that there exists
t ∈ WM such that (f(σ), t) ∈ RM

a ∗ ρ|a and M, t ⊨ρ|a ¬ϕ. Now let the
function f ′ be f ∪ {σan 7→ t}. We then have (f ′(σ), f ′(σan)) ∈ RM

a ∗ ρ|a
andM, f ′(σan) ⊨ρ|a ¬ϕ. Therefore, f ′ is an interpretation of b′ inM.

2. Rule (2a): Please note thatB = {b∪{〈σan, ρ|a, ϕ〉}, b∪{〈σan, ρ|a,7〉}}. For
each label σan which is used in b, we have either (f(σ), f(σan)) ∈ RM

a ∗ ρ|a
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or (f(σ), f(σan)) 6∈ RM
a ∗ρ|a. It follows by 〈σ, ρ,2aϕ〉 ∈ b thatM, f(σ) ⊨ρ

2aϕ. If (f(σ), f(σan)) ∈ RM
a ∗ ρ|a then we have M, f(σan) ⊨ρ|a ϕ. Thus,

f is an interpretation of the branch b ∪ {〈σan, ρ|a, ϕ〉}. If (f(σ), f(σan)) 6∈
RM
a ∗ ρ|a, f is an interpretation of the branch b ∪ {〈σan, ρ|a,7〉}.

3. Rule (¬[U,G]): We have that B = {b ∪ {〈σ, ρ, [U,G]¬ϕ〉}}. Since f is an in-
terpretation and 〈σ, ρ,¬[U,G]ϕ〉 ∈ b, these follow thatM, f(σ) ⊨ρ ¬[U,G]ϕ.
By semantics, we have that M, f(σ) ⊨ρ[U,G] ¬ϕ. Therefore, f is an interpret-
ation of b ∪ {〈σ, ρ[U,G],¬ϕ〉}.

4. Rule ([U,G]): We have thatB = {b ∪ {〈σ, ρ[U,G], ϕ〉}}.Since 〈σ, ρ, [U,G]ϕ〉
∈ b, this follows that M, f(σ) ⊨ρ [U,G]ϕ. By semantics, we have M, f(σ)

⊨ρ[U,G] ϕ. Therefore, f is an interpretation of b ∪ {〈σ, ρ[U,G], ϕ〉}.
5. Rule (31): Since the premise of this rule 〈σan, ρ[U,G],3〉 is in b, this fol-

lows that (f(σ), f(σan)) ∈ RM
a ∗ ρ[U,G]. By the semantics, we have that

(f(σ), f(σan)) ∈ RM
a ∗ ρ and that there exists (ψ, a, χ) ∈ U such that

M, f(σ) ⊨ρ ψ and M, f(σan) ⊨ρ χ. Therefore, f is an interpretation of
b ∪ {〈σan, ρ,3〉, 〈σ, ρ, ψ〉, 〈σan, ρ, χ〉}, and it is in B.

6. Rule (32): Since f is an interpretation of b, the rule whose premise is in b
cannot be (32). If so, we should have (f(σ), f(σan)) ∈ RM

a ∗ (ρ[U,G]).
However, since there are no a-arrow specifications inU , by semantics, we have
that (f(σ), f(σan)) 6∈ RM

a ∗ (ρ[U,G]).
7. Rule (71): Since 〈σan, ρ[(ψ, a, χ), G],7〉 ∈ b, this follows that (f(σ), f(σan))

6∈ RM
a ∗ ρ[(ψ, a, χ), G]. By semantics, we have either (f(σ), f(σan)) 6∈

RM
a ∗ ρ or M, f(σ) ⊭ρ ψ or M, f(σan) ⊭ρ χ. Therefore, f is an interpret-

ation of at least one branch in B = {b ∪ {〈σan, ρ,7〉}, b ∪ {〈σ, ρ,¬ψ〉}, b ∪
{〈σan, ρ,¬χ〉}}.

8. Rule (72): Since 〈σan, ρ[U,G],7〉 ∈ b, this follows that (f(σ), f(σan)) 6∈
RM
a ∗ρ[U,G]. By semantics, we know thatRM

a ∗ρ[U,G] =
⋃

(ψ,a,χ)∈U R
M
a ∗

ρ[(ψ, a, χ), G]. Therefore, we have (f(σ), f(σan)) 6∈ RM
a ∗ ρ[(ψ, a, χ), G]

for each (ψ, a, χ) ∈ U . For the specification (ψ, a′, χ) ∈ U and a′ 6= a, it
follows by semantics that RM

a ∗ (ρ[(ψ, a′, χ), G]) = ∅. Therefore, we have
(f(σ), f(σan)) 6∈ RM

a ∗ ρ[(ψ, a′, χ), G] for each (ψ, a′, χ) ∈ U . Thus f is an
interpretation of b ∪ {〈σan, ρ[(ψ, a′, χ), G],7〉 | (ψ, a′, χ) ∈ U}. □

Theorem 23 (Soundness). If there is a closed tableau for ¬ϕ0, then ϕ0 is valid.

Proof Let T be the closed tableau for ¬ϕ0. Assuming that ϕ0 is not valid, this
follows that ¬ϕ0 is satisfiable. Let M, s ⊨ ¬ϕ0. Please note that the branch in the
initial tableau for ¬ϕ0 is the branch b = {〈0, ϵ,¬ϕ0〉}. Define the function f as
f(0) = s. This follows thatM, f(0) ⊨ ¬ϕ0. Therefore, f is an interpretation of b in
M. Please note that each branch in T is generated by extended b by applying rules in
Table 1. By Proposition 22, this follows that there is some branch b′ ∈ T such that f
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can be extended to be an interpretation of b′. This is contradictory with the fact that
b′ is closed. Therefore, ϕ0 is valid. □

In the rest of the section, we prove completeness. First, we need another auxiliary
definition.

Definition 24 (Saturated tableau). A branch b is saturated iff it is saturated under all
tableau rules, as defined below:

1. b is saturated under Rule (¬¬) iff 〈σ, ρ,¬¬ϕ〉 ∈ b implies 〈σ, ρ, ϕ〉 ∈ b;
2. b is saturated under Rule (¬∧) iff 〈σ, ρ,¬(ϕ ∧ ψ)〉 ∈ b implies 〈σ, ρ,¬ϕ〉 ∈ b

or 〈σ, ρ,¬ψ〉 ∈ b;
3. b is saturated under Rule (∧) iff 〈σ, ρ, (ϕ ∧ ψ)〉 ∈ b implies 〈σ, ρ, ϕ〉 ∈ b and

〈σ, ρ, ψ〉 ∈ b;
4. b is saturated under Rule (¬2a) iff 〈σ, ρ,¬2aϕ〉 ∈ b implies that {〈σan, ρ|a,3〉,

〈σan, ρ|a,¬ϕ〉} ⊆ b for some n ∈ N;
5. b is saturated under Rule (2a) iff 〈σ, ρ,2aϕ〉 ∈ b implies that for each σan

occurring in b we have 〈σan, ρ|a,7〉 ∈ b or 〈σan, ρ|a, ϕ〉 ∈ b;
6. b is saturated under Rule (¬[U,G]) iff 〈σ, ρ,¬[U,G]ϕ〉 ∈ b implies 〈σ, ρ[U,G],

¬ϕ〉 ∈ b;
7. b is saturated under Rule ([U,G]) iff 〈σ, ρ, [U,G]ϕ〉 ∈ b implies 〈σ, ρ[U,G], ϕ〉

∈ b;
8. b is saturated under Rule (31) iff 〈σan, ρ[U,G],3〉 ∈ b implies {〈σan, ρ,3〉,

〈σ, ρ, ψ〉, 〈σan, ρ, χ〉} ⊆ b for some (ψ, a, χ) ∈ U ;
9. b is saturated under Rule (32) iff 〈σan, ρ[U,G],3〉 ∈ b implies {〈σan, ϵ,3〉,

〈σ, ϵ,7〉, } ⊆ b;
10. b is saturated under Rule (71) iff 〈σan, ρ[(ψ, a, χ), G],7〉 ∈ b implies 〈σan, ρ,7〉

∈ b or 〈σ, ρ,¬ψ〉 ∈ b or 〈σan, ρ,¬χ〉 ∈ b.
11. b is saturated under Rule (72) iff 〈σan, ρ[U,G],7〉 ∈ b implies that {〈σan, ρ[(ψ,

a′, χ), G],7〉 | (ψ, a′, χ) ∈ U} ⊆ b, where there are at least two specifications
in U .

We say a tableau is saturated iff all its branches are saturated.

The following two propositions are obvious by the tableau rules.

Proposition 25. Given a saturated tableau T and a branch b ∈ T , if 〈σan, ρ,3〉 ∈ b

then 〈σan, ϵ,3〉 ∈ b.

Proposition 26. Given a saturated tableau T and a branch b ∈ T , if a label σan
occurs in b then 〈σan, ϵ,3〉 ∈ b.

Definition 27 (Length of term). The length of a formula is defined as follows:
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l(p) = 1

l(¬ϕ) = l(ϕ) + 1

l(ϕ ∧ ψ) = l(ϕ) + l(ψ) + 1

l(2aϕ) = l(ϕ) + 1

l([U,G]ϕ) = l(U) + |G|+ l(ϕ) + 1

l(U) =
∑

(ψ,a,χ)∈U
(l(ψ) + l(χ))

The length of an update sequence is defined as follows:

l(ϵ) = 0; l(ρ[U,G]) = l(ρ) + l(U) + |G|.

The length of a term is defined as follows:

l(ρ,7) = l(ρ,3) = l(ρ); l(ρ, ϕ) = l(ρ) + l(ϕ).

Please note that the length of the term (ϵ, ϕ) is the same as the length of ϕ.
Now, we are ready to prove the completeness.

Theorem 28 (completeness). If ϕ0 is valid, there is a closed tableau for ¬ϕ0.

Proof We only need to show that if all tableaux for ϕ0 are open then ϕ0 is satisfiable.
Since each tableau for ϕ0 can be extended to be saturated and there is at least one
tableau for ϕ0, i.e., the initial tableau, there exists an open and saturated tableau for
ϕ0 if all its tableaux are open.

Let T be an open and saturated tableau for ϕ0 and b be an open and saturated
branch of T . In order to show ϕ0 is satisfiable, we only need to show that there is an
interpretation of b (recall Definition 21). Next we will construct a modelMc and we
will show that there is an interpretation of b in Mc. The model Mc = 〈W,R, V 〉 is
defined as follows.

W = {σ | σ is a label that is used in b}
Ra = {(σ, σan) | (σan, ϵ,3) ∈ b} for each a ∈ Agt

V (p) = {σ | (σ, ρ, p) ∈ b for some ρ}

Please note that if σan is used in b then so is σ.
Let I be the function I(σ) = σ. By induction on the length of terms, we will

show that I is an interpretation of b in Mc. For abbreviation, we will write I(σ) as
σ. For the case of l(ρ, x) = 0, the term (ρ, x) can only be of the form (ϵ,7) or (ϵ,3).
Furthermore, it cannot be of the form (ϵ,7). Assuming (σan, ϵ,7) ∈ b for some label
σan, it follows by Proposition 26 that (σan, ϵ,3) ∈ b, this is in contradiction with
that b is open. Therefore, in this case, we only need to show that (σ, σan) ∈ Ra for
each σan with (σan, ϵ,3) ∈ b, which is obvious by the definition of the modelMc.
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With the inductive hypothesis that each labelled term (σ, ρ, x) ∈ bwith l(ρ, x) <
n satisfies the conditions declared in Definition 21, we will show that each labelled
term (σ, ρ, x) ∈ b with l(ρ, x) = n also satisfies the conditions, where n ≥ 1.

If x is a formula, there are different cases according to the form of the formula,
as below:

1. (σ, ρ, p) ∈ b: It is obvious thatMc, σ ⊨ρ p.
2. (σ, ρ,¬p) ∈ b: Assuming σ ∈ V (p), it follows that (σ, ρ′, p) ∈ b for some ρ′.

This is in contradiction with the assumption that b is open. Therefore, we have
σ 6∈ V (p), namelyMc, σ ⊨ρ ¬p.

3. (σ, ρ,¬¬ϕ) ∈ b: Since b is saturated, it follows that (σ, ρ, ϕ) ∈ b. Since
l(ρ, ϕ) < l(ρ,¬¬ϕ), it follows by IH that Mc, σ ⊨ρ ϕ. Therefore, we have
Mc, σ ⊨ρ ¬¬ϕ.

4. (σ, ρ, ϕ ∧ ψ) ∈ b: Since b is saturated, it follows that (σ, ρ, ϕ) ∈ b and
(σ, ρ, ψ) ∈ b. Since l(ρ, ϕ), l(ρ, ψ) < l(ρ, ϕ ∧ ψ), it follows by IH that
Mc, σ ⊨ρ ϕ andMc, σ ⊨ρ ψ. Therefore, we haveMc, σ ⊨ρ ϕ ∧ ψ.

5. (σ, ρ,¬(ϕ ∧ ψ)) ∈ b: Since b is saturated, it follows that (σ, ρ,¬ϕ) ∈ b or
(σ, ρ,¬ψ) ∈ b. Since l(ρ,¬ϕ), l(ρ,¬ψ) < l(ρ,¬(ϕ ∧ ψ)), it follows by IH
thatMc, σ ⊨ρ ¬ϕ orMc, σ ⊨ρ ¬ψ. Therefore, we haveMc, σ ⊨ρ ¬(ϕ ∧ ψ).

6. (σ, ρ,¬2aϕ) ∈ b: Since b is saturated, it follows that (σan, ρ|a,¬ϕ) ∈ b and
(σan, ρ|a,3) ∈ b for some n ∈ N. Since l(ρ|a,¬ϕ), l(ρ|a,3) < l(ρ,¬2aϕ),
it follows by IH that (σ, σan) ∈ Ra ∗ (ρ|a) andMc, σ ⊨ρ|a ¬ϕ. Therefore, we
haveMc, σ ⊨ρ ¬2aϕ.

7. (σ, ρ,2aϕ) ∈ b: Let σ′ ∈ W be a state with (σ, σ′) ∈ Ra ∗ (ρ|a). In order to
showMc, σ ⊨ρ 2aϕ, we need to show thatMc, σ′ ⊨ρ|a ϕ. SinceRa ∗ (ρ|a) ⊆
Ra, it follows that σ′ = σan for some n ∈ N. Assuming (σan, ρ|a,7) ∈ b,
it follows by IH that (σ, σan) 6∈ Ra ∗ (ρ|a). This is in contradiction with the
assumption that (σ, σ′) ∈ Ra ∗ (ρ|a). Therefore, we have (σan, ρ|a,7) 6∈ b.
Since b is saturated, it follows that (σan, ρ|a, ϕ) ∈ b. It follows by IH that
Mc, σan ⊨ρ|a ϕ.

8. (σ, ρ,¬[U,G]ϕ) ∈ b: Since b is saturated, it follows that (σ, ρ[U,G],¬ϕ) ∈ b.
Since l(ρ[U,G],¬ϕ) < l(ρ,¬[U,G]ϕ), it follows by IH thatMc, σ ⊨ρ[U,G] ¬ϕ.
Therefore, we haveMc, σ ⊨ρ ¬[U,G]ϕ.

9. (σ, ρ, [U,G]ϕ) ∈ b: Since b is saturated, it follows that (σ, ρ[U,G], ϕ) ∈ b.
Since l(ρ[U,G], ϕ) < l(ρ, [U,G]ϕ), it follows by IH that Mc, σ ⊨ρ[U,G] ϕ.
Therefore, we haveMc, σ ⊨ρ [U,G]ϕ.
If x in the term (ρ, x) is of the form3 or 7, we have ρ is not ϵ because l(ρ, x) ≥ 1.

There are different cases, as below:

1. (σan, ρ[U,G],3) ∈ b and there exists an a-arrow specification in U : Since b
is saturated, it follows that {〈σan, ρ,3〉, 〈σ, ρ, ψ〉, 〈σan, ρ, χ〉} ⊂ b for some
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(ψ, a, χ) ∈ U . Since l(ρ,3), l(ρ, ψ), l(ρ, χ) < l(ρ[U,G],3), it follows by
IH that (σ, σan) ∈ Ra ∗ ρ, Mc, σ ⊨ρ ψ and Mc, σan ⊨ρ χ. It follows that
(σ, σan) ∈ Ra ∗ (ρ[U,G]).

2. (σan, ρ[U,G],3) ∈ b and there are no a-arrow specifications in U : Due to
Rule (32) and the fact that b is open and saturated, this case is impossible.

3. (σan, ρ[(ψ, a′, χ), G],7) ∈ b: If a′ 6= a, it follows thatRa∗(ρ[(ψ, a′, χ), G]) =
∅. It is obvious (σ, σan) 6∈ Ra ∗ (ρ[(ψ, a′, χ), G]). If a′ = a, it follows
by Rule (71) that 〈σan, ρ,7〉 ∈ b, or 〈σ, ρ,¬ψ〉 ∈ b, or 〈σan, ρ,¬χ〉 ∈ b.
Since l(ρ,7), l(ρ,¬ψ), l(ρ,¬χ) < l(ρ[(ψ, a, χ), G],7), it follows by IH that
(σ, σan) 6∈ Ra ∗ ρ, or Mc, σ ⊨ρ ¬ψ, or Mc, σan ⊨ρ ¬χ. Each of them can
derive that (σ, σan) 6∈ Ra ∗ (ρ[(ψ, a, χ), G]).

4. (σan, ρ[U,G],7) ∈ b and |U | ≥ 2: If there are no a-arrow specifications in
U , it is obvious that (σ, σan) 6∈ Ra ∗ (ρ[U,G]) since Ra ∗ (ρ[U,G]) = ∅.
Otherwise, let (ψ1, a, χ1), · · · , (ψk, a, χk) be all the a-arrow specifications in
U . Since b is saturated, it follows byRule (72) that 〈σan, ρ[(ψi, a, χi), G],7〉 ∈
b for all 1 ≤ i ≤ k. Since l(ρ[(ψi, a, χi), G],7) < l([U,G],7) for all 1 ≤ i ≤ k

due to |U | ≥ 2, it follows by IH that (σ, σan) 6∈ Ra ∗ (ρ[(ψi, a, χi), G]) for all
1 ≤ i ≤ k. Since Ra ∗ (ρ[U,G]) =

⋃
1≤i≤k Ra ∗ (ρ[(ψi, a, χi), G]), we have

(σ, σan) 6∈ Ra ∗ (ρ[U,G]).

We have shown that all labelled terms in b satisfy the conditions declared in
Definition 21. Since 〈0, ϵ, ϕ0〉 ∈ b, thus we haveMc, 0 ⊨ ϕ0. □

4 Decidability

In this section, we will show that PAUL is decidable, that is, the problemwhether
an PAUL formula ϕ is satisfiable can be answered in a finite number of steps. Please
note that Theorem 9 already tells us that each formula ϕ in PAUL can be equivalently
reduced to be a formula with out updates, i.e., a formula in normal modal logic K. We
can see that PAUL is the same with K if it is confined on formulas with out updates.
Since K is decidable, this follows that PAUL is decidable. However, as it is shown
in [15], the equivalent translation from PAL to K might be exponential. Since PAL
can be polynomially translated into PAUL by replacing the PAL operator [ϕ] with
[U,Agt] where U = {(ϕ, a, ϕ) | a ∈ Agt occurs in ϕ}, the equivalent translation
from PAUL to K might be exponential too. In this section, we will directly prove the
decidability of PAUL, based on the tableau system presented in the previous section.

Our method is to show that PAUL has small model property. We will show that
each satisfiable PAUL formula ϕ has a bounded small model in which ϕ is true. From
the proof of Theorem 28, we have seen that we can construct a model for ϕ based
on a saturated open branch if ϕ is satisfiable, and each state in the model is exactly
a label used in the branch. Therefore, the key is to show that there are only finitely
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many labels used in the tableau branch.
For the commonly used tableau calculus for normal modal logic, each formula

occurring in the tableau is a subformula of the destination formula, and this feature
plays an important role to show the decidability of normalmodal logic through tableau
method. Similarly, we will define the notation of subterm here, and we will show that
all terms occurring in the tableau are subterms.

Definition 29 (Subterm). Given a term (ρ, x), the set of subterm of (ρ, x), denoted
as sub(ρ, x), is defined as below.

sub(ϵ,7/3) = {(ϵ,7/3)}
sub(ρ[(ψ, a, χ), G],7/3) = {(ρ[(ψ, a, χ), G],7/3)} ∪ sub(ρ, ψ) ∪ sub(ρ, χ)

sub(ρ[U,G],7/3) = {(ρ[U,G],7/3)}

∪
⋃

(ψ,a,χ)∈U

sub(ρ[(ψ, a, χ), G],7/3),where |U | ≥ 2

sub(ρ, p) = {(ρ, p)} ∪ sub(ρ,7) ∪ sub(ρ,3)

sub(ρ,¬ϕ) = {(ρ,¬ϕ)} ∪ sub(ρ, ϕ)
sub(ρ, ϕ ∧ ψ) = {(ρ, ϕ ∧ ψ)} ∪ sub(ρ, ϕ) ∪ sub(ρ, ψ)
sub(ρ,2aϕ) = {(ρ,2aϕ)} ∪ sub(ρ|a, ϕ)

sub(ρ, [U,G]ϕ) = {(ρ, [U,G]ϕ)} ∪ sub(ρ[U,G], ϕ)

Let sub+(ρ, x) be the set {(ρ,¬ϕ) | (ρ, ϕ) ∈ sub(ρ, x)} ∪ sub(ρ, x).

The following proposition states some properties of the subterm set.

Proposition 30. We have the following results.

• sub(ρ, x) is finite;
• (ρ,7/3) ∈ sub(ρ, ϕ);
• (ρ, x) ∈ sub(ρ′, x′) implies sub(ρ, x) ⊆ sub(ρ′, x′).

Proposition 31. Let T be a tableau for ϕ0 and b be a branch of T . If (σ, ρ, x) ∈ b

then (ρ, x) ∈ sub+(ϵ, ϕ0).

Proof According to Definition 17, we prove this by induction on the process of
construction of T . For the initial tableau {{(0, ϵ, ϕ0)}}, it is obvious. Next, we only
need to show that all the tableau rules in Table 1 preserve the subterm property. The
cases of the rules (¬¬), (¬∧), (∧), ([U,G]) and (72) are obvious; we will restrict our
attention to the other rules.

1. Rule (¬2a): If (ρ,¬2aϕ) ∈ sub+(ϵ, ϕ0), then we have (ρ,2aϕ) ∈ sub(ϵ, ϕ0).
Because (ρ|a, ϕ) ∈ sub(ρ,2aϕ), it follows by Proposition 30 that (ρ|a,3),
(ρ|a, ϕ) ∈ sub+(ϵ, ϕ0).
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2. Rule (2a): If (ρ,2aϕ) ∈ sub+(ϵ, ϕ0), then we have (ρ,2aϕ) ∈ sub(ϵ, ϕ0).
Because (ρ|a, ϕ) ∈ sub(ρ,2aϕ), it follows by Proposition 30 that (ρ|a,7),
(ρ|a, ϕ) ∈ sub+(ϵ, ϕ0).

3. Rule (¬[U,G]): If (ρ,¬[U,G]ϕ) ∈ sub+(ϵ, ϕ0), then we have (ρ, [U,G]ϕ) ∈
sub(ϵ, ϕ0). Since (ρ[U,G], ϕ) ∈ sub(ρ, [U,G]ϕ), it follows by Proposition 30
that (ρ[U,G], ϕ) ∈ sub(ρ, ϕ0). Therefore, we have (ρ[U,G],¬ϕ) ∈ sub+(ρ, ϕ0).

4. Rule (31): If (ρ[U,G],3) ∈ sub+(ϵ, ϕ0) then (ρ[U,G],3) ∈ sub(ϵ, ϕ0).
Let (ψ, a, χ) ∈ U . We have (ρ[(ψ, a, χ), G],3) ∈ sub(ϵ, ϕ0). Since (ρ, ψ),
(ρ, χ) ∈ sub(ρ[(ψ, a, χ), G],3), we have (ρ, ψ), (ρ, χ) ∈ sub(ϵ, ϕ0). It fol-
lows by Proposition 30 that (ρ,3) ∈ sub(ρ, ψ), thus we also have (ρ,3) ∈
sub(ρ, ϕ0).

5. Rule (32): It follows by Proposition 30 that (ϵ,3), (ϵ,7) ∈ sub(ϵ, ϕ0).
6. Rule (71): If (ρ[(ψ, a, χ), G],7) ∈ sub+(ϵ, ϕ0), then (ρ[(ψ, a, χ), G],7) ∈

sub(ϵ, ϕ0). Since (ρ, ψ), (ρ, χ) ∈ sub(ρ[(ψ, a, χ), G],7), we have (ρ, ψ),
(ρ, χ) ∈ sub(ϵ, ϕ0). Therefore, we have (ρ,¬ψ), (ρ,¬χ) ∈ sub+(ϵ, ϕ0). It
follows by Proposition 30 that (ρ,7) ∈ sub(ρ, ψ), thus we also have (ρ,7) ∈
sub(ρ, ϕ0). □

Proposition 32. Let T be a tableau for ϕ0, and let b be a branch of T . If σ is a label
present in b, then there are at most k labels present in b with the form of σan for some
n ∈ N, where k = |sub+(ϵ, ϕ0)|.

Proof It follows by Definition 17 that each label σan present in b is generated by
applying the rule (¬2a) to a labelled term (σ, ρ,¬2aϕ) ∈ b. According to Proposi-
tion 31, there are at most k terms labelled with σ in b. Therefore, there are at most k
labels present in b with the form of σan for some n ∈ N. □

Definition 33 (Length of label). The length of a label σ, denoted by |σ|, is defined
by induction on σ: |n| = 0; |σan| = |σ|+ 1.

Proposition 34. Let T be a tableau for ϕ0 and b be a branch of T . If (σ, ρ, x) ∈ b

then |σ| ≤ l(ϕ0)− l(ρ, x).

Proof Following Definition 17, the proof is by induction on the process of construc-
tion of T . For the initial tableau {{(0, ϵ, ϕ0)}}, it is obvious. Next we will show that
this property is preserved by all the tableau rules. The cases of the rules (¬¬), (¬∧),
(∧) and (32) are obvious; we will restrict our attention to the other rules.

1. Rule (¬2a): If |σ| ≤ l(ϕ0) − l(ρ,¬2aϕ), we have l(ϕ0) − l(ρ,¬2aϕ) ≤
l(ϕ0) − l(ρ|a,¬ϕ) − 1 because l(ρ,¬2aϕ) ≥ l(ρ|a,¬ϕ) + 1. Thus we have
|σ| ≤ l(ϕ0)− l(ρ|a,¬ϕ)−1. It follows that |σan| ≤ l(ϕ0)− l(ρ|a,¬ϕ). What
is more, since l(ρ,¬2aϕ) ≥ l(ρ|a,3) + 1, we have l(ϕ0) − l(ρ,¬2aϕ) ≤
l(ϕ0) − l(ρ|a,3) − 1. It follows |σ| ≤ l(ϕ0) − l(ρ|a,3) − 1. Thus we have
|σan| ≤ l(ϕ0)− l(ρ|a,3).
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2. Rule (2a): Suppose |σ| ≤ l(ϕ0) − l(ρ,2aϕ), we have l(ϕ0) − l(ρ,2aϕ) ≤
l(ϕ0) − l(ρ|a, ϕ) − 1 because l(ρ,2aϕ) ≥ l(ρ|a, ϕ) + 1. Therefore, we have
|σan| ≤ l(ϕ0)− l(ρ|a, ϕ). What is more, since l(ρ|a, ϕ) ≥ l(ρ|a,7), we have
|σan| ≤ l(ϕ0)− l(ρ|a,7).

3. Rule (¬[U,G]): If |σ| ≤ l(ϕ0)−l(ρ,¬[U,G]ϕ), we have l(ϕ0)−l(ρ,¬[U,G]ϕ)
≤ l(ϕ0)− l(ρ[U,G],¬ϕ) because l(ρ,¬[U,G]ϕ) = l(ρ[U,G],¬ϕ)+1. There-
fore, we have |σ| ≤ l(ϕ0)− l(ρ[U,G],¬ϕ).

4. Rule ([U,G]): Since l(ρ, [U,G]ϕ) = l(ρ[U,G], ϕ) + 1, if |σ| ≤ l(ϕ0) −
l(ρ, [U,G]ϕ), we have |σ| ≤ l(ϕ0)− l(ρ[U,G], ϕ).

5. Rule (31): Assume |σan| ≤ l(ϕ0) − l(ρ[U,G],3). Since l(ρ[U,G],3) ≥
l(ρ,3), it follows that |σan| ≤ l(ϕ0) − l(ρ,3). Let (ψ, a, χ) ∈ U . We have
l(ρ[U,G],3) ≥ l(ρ, ψ) − 1 because l(ρ[U,G],3) ≥ l(ρ, ψ). It follows that
l(ϕ0) − l(ρ[U,G],3) ≤ l(ϕ0) − l(ρ, ψ) + 1. Thus we have |σan| ≤ l(ϕ0) −
l(ρ, ψ) + 1. It follows that |σ| ≤ l(ϕ0)− l(ρ, ψ).
What ismore, since l(ρ[U,G],3) ≥ l(ρ, χ), it follows that l(ϕ0)−l(ρ[U,G],3)

≤ l(ϕ0)− l(ρ, χ). Thus we have |σan| ≤ l(ϕ0)− l(ρ, χ).
6. Rule (71): Assume that |σan| ≤ l(ϕ0) − l(ρ[(ψ, a, χ), G],7). Since we have

l(ρ[(ψ, a, χ), G],7) ≥ l(ρ,7), it follows that |σan| ≤ l(ϕ0)− l(ρ,7).
What ismore, since l(ρ[(ψ, a, χ), G],7) ≥ l(ρ,¬ψ) and l(ρ[(ψ, a, χ), G],7) ≥
l(ρ,¬χ), it follows that l(ϕ0) − l(ρ[(ψ, a, χ), G],7) ≤ l(ϕ0) − l(ρ,¬ψ) and
l(ϕ0)− l(ρ[(ψ, a, χ), G],7) ≤ l(ϕ0)− l(ρ,¬χ). Therefore, we have |σan| ≤
l(ϕ0)−l(ρ,¬ψ) and |σan| ≤ l(ϕ0)−l(ρ,¬ψ). Since |σ| ≤ |σan|, it is obvious
|σ| ≤ l(ϕ0)− l(ρ,¬ψ).

7. Rule (72): Assume |σan| ≤ l(ϕ0) − l(ρ[U,G],7) and |U | ≥ 2. Suppose that
(ψ, a′, χ) ∈ U , we have l(ρ[U,G],7) ≥ l(ρ[(ψ, a′, χ), G],7). It follows that
l(ϕ0) − l(ρ[U,G],7) ≤ l(ϕ0) − l(ρ[(ψ, a′, χ), G],7). Thus we have |σan| ≤
l(ϕ0)− l(ρ[(ψ, a′, χ), G],7). □

Lemma 1 (Small model property). If ϕ0 is satisfiable then ϕ0 is satisfiable in a model
which is bounded by kO(m), where k = |sub+(ϵ, ϕ0)| andm = l(ϕ0).

Proof It follows by Theorem 23 that all tableaux for ϕ0 are open. According to
the proof of Theorem 28, we can construct a model Mc from a saturated branch b
such that ϕ0 is satisfied in Mc. By the definition of Mc, we know that each state
in Mc is a label present in b. Please note that all labels present in b form a tree. It
follows by Proposition 32 that each label in the tree has at most k children. It follows
by Proposition 34 that the depth of the tree is bounded bym. Therefore, there are at
most kO(m) labels used in b. □

Theorem 35 (Decidability). The problem whether ϕ0 is satisfiable is decidable.



Yanjun Li / Privacy in Arrow Update Logic 85

Proof It follows by Lemma 1 that we only need to check all the models no bigger
than kO(m) where k = |sub+(ϵ, ϕ0)| andm = l(ϕ0), and this procedure can terminate
in finitely many steps. □

5 Conclusion

This paper presented the framework of Private Arrow Update Logic (PAUL),
which extends the arrow update of AULwith a relativized subgroup of agents. Public,
private and semi-private announcements can be modeled in this framework. PAUL
still is a particular case of GAUL, since some information change, like cheating, can-
not be modeled in PAUL. This paper also provided a sound and complete tableau
method of PAUL and showed that PAUL is decidable.

For future research, we can try to give an optimal algorithm for the satisfiability
problem of PAUL by taking a depth-first search strategy on the tableau method. Since
the normalmodal logicK is a fragment of PAUL andK is PSPACE-complete, PAUL is
at least PSPACE-hard. With an optimal search algorithm on the tableau, we conjecture
that there might be a PSPACE upper bound for PAUL. What is more, since each
AUL formula can be equivalently translated into a PAUL formula by replacing the
update [U ] by [U,Agt], the tableau method presented in this paper can apply to AUL.
Therefore, the optimal algorithm for PAUL (if there is one) will also be an algorithm
for AUL and might also be optimal.

One direction for future study is to see how frame conditions are handled in arrow
update logic. For example, if the original model is based on a symmetric frame, we
might ask the symmetry is preserved after update. This could be done by asking
the update U to satisfy some conditions. If the update U satisfies that (ϕ, a, ψ) ∈ U

implies (ψ, a, ϕ) ∈ U , then symmetry would be preserved. If (ϕ, a, ψ), (ψ, a, χ) ∈ U

implies (ϕ, a, χ) ∈ U , then transitivity would be preserved. The difficulty lies in how
to preserve reflexivity. We doubt it might not be solved if we only confine the form
of the update U .

Another direction for future research is to use PAUL to model the information
change in logics of knowing how (cf.[19, 9]). The main feature of Arrow Update
Logic is that it updates information but does not eliminate states. This makes it more
suitable for modeling information update in knowing how. For example, a doctor
may not know how to treat a patient since the only two available medicines a1 and a2
may cause some very bad side-effect. That is, there is an a1-arrow and an a2-arrow
from the current state to the bad side-effect state. If the information is updated, for
example, a new scientific discovery shows that a1 will not cause the bad effect, then
the doctor should know how to treat the patient. This kind of information update will
eliminate arrows but not states.
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动态逻辑 AUL中的秘密宣告

李延军

摘 要

AUL (Arrow Update Logic)是一个刻画多主体的信念变化的动态逻辑。AUL
通过更新模型中的可及关系来刻画行为对主体信念造成的影响。但是，在 AUL中
信息对所有主体都是公开的，因此AUL无法刻画在秘密宣告的情况下主体信念状
态的变化。本论文在 AUL的基础上进行扩充，得到一个新的动态逻辑系统 PAUL
(Private ArrowUpdate Logic)。所有基于事实的宣告都可以被 PAUL刻画，无论该宣
告是公开的还是秘密的。同时，本论文还给出了 PAUL的语义图，并证明了 PAUL
是可判定的。
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