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On Dimensions, Standard Part Maps,
and p-Adically Closed Fields*

Ningyuan Yao

Abstract. The aim of this paper is to study the dimensions and standard part maps between
the field of p-adic numbers Q,, and its elementary extension K in the language of rings L,.. We
show that for any K -definable set X C K™, dimg (X) > dimg, (X NQy"). Let V C K
be convex hull of K over Q,, and st : V' — @, be the standard part map. We show that
for any K-definable function f : K™ — K, there is definable subset D C Q" such that
Q"\ D has no interior, and for all z € D, either f(z) € V and st(f(st™*(z))) is constant, or
f(st™'(z))NV = 0. We also prove that dim (X) > dimg, (st(X NV™)) for every definable
X CK™

1 Introduction

In [5], L. van den Dries consider a pair (R, V'), where R is an o-minimal exten-
sion of a real closed field, and V' is a convex hull of an elementary submodel M of
R. Let 1 C R be the set infinitesimals over M and V=V /1 be the reside field with
residue class map x +— . If M is Dedekind complete in R, then V = M and the
residue class map coincide the standard part map st : R — M. In this context, van
den Dries showed the follows:

Theorem 1 ([5]). Let S C R™ be R-definable and S = {&|xz € SNV™}. Then

(1) SN M™ is definable in M and dimy; (S N M™) < dimg(S),
(ii) st(.S) is definable in M and dimp;(st(S)) < dimpg(95).

Theorem 2 ([5]). Let f : R™ — R be an R-definable function. Then here is a finite
partition P of M'™ into definable sets, where each set in the partition is either open
in M™ or lacks of interior. On each open set C' € P we have:

() either f(z) & V forall x € C*;
(i) or there is a continuous function g : C — M, definable in M, such that
f(z) € Vand st(f(z)) = g(st(z)), for all x € C",
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where C" is the hull of C defined by

>3

Ch={z e R™3j e C(N\(zi—yien)lk

i=1

Remark 1.1. For any topological space Y, and X C'Y, by Int(X ) we mean the set
of interiors in X. Namely, x € Int(X) iff there is an open neighborhood B C'Y of x
contained in X.

There are fairly good analogies between the field of reals R and the field of
p-adic numbers Q,,, in both model-theoretic and field-theoretic view. For example,
both of them are complete and locally compact topological fields, are distal and dp-
minimal structures, have quantifier eliminations with adding the new predicates for
n-th power, and have cell decompositions.

In this paper, we treat the p-adic analogue of above two Theorems, where M is
replaced by Q,,, and R is replaced by an arbitrary elementary extension K of Q. In
our case, the convex hull V' is the set

{xeK\m:O\/HneZ(v(x)>n>}

and p, the infinitesimals of K over Q,,, is the set

{x€K|x:0\/VnEZ<v(az)>n>}.

By [12, Lemma?2.1], for every x € V, there is a unique element st(x) in Q, such
that a — st(a) € p, we call it the standard part of @ and st : a — st(a) the standard
part map. It is easy to see that st : V' — Q,, is a surjective ring homomorphism and
st1(0) = p. So V = V/pu is isomorphic to @, in our context. With the notations as
above, we now highlight our main results.

Theorem 1.2. Let S C K™ be K-definable. Then

() SN Qy is definable in Q, and dimg, (S N Q}) < dimg (S);

(i) st(S N V™) is definable in Q, and dimg, (st(S NV"™)) < dimg (S).
Theorem 1.3. Let f : K™ — K be a K-definable function. Then here is a finite
partition P of Q,, into definable sets, where each set in the partition is either open in
Qp' or lacks of interior. On each open set C' € P we have:

() either f(x) ¢ V forall x € C*;

(i) or there is a continuous function g : C — Qy, definable in Q,, such that
f(z) € Vand st(f(z)) = g(st(z)), for all z € C".

In the rest of this introduction we give more notations and model-theoretic ap-
proach.
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1.1 Notations

Let p be a fixed prime number, Q,, the field the p-adic field, and v : Q,\{0} — Z
the valuation map. Let K be a fixed elementary extension of Q,. Then valuation
v extends to a valuation map from K\{0} to I'x, we also denote it by v, where
(T'k, +, <,0) is the corresponding elementary extension of (Z, +, <, 0).

Fact 1.4. Letv : K\{0} — D'k be as above. Then we have

e v(zy) =v(x) +o(y) forall x,y € K,

s oz +y) = minfo(@), o)}, and v(w +y) = min{o(z), v(y)} i v(z) £
v(y);

s Forz € Qp || = p7*@ ifx # 0and |z| = 0if x = 0 defines a non-
archimedean metric on Q,,.

» K is a non—archimedean topological field.

We will assume a basic knowledge of model theory. Good references are [13] and
[10]. We will be referring a lot to the comprehensive survey [1] for the basic model
theory of the p-adics. A key point is Macintyre’s theorem [9] that Th(Q,,, +, %, 0,1)
has quantifier elimination in the language L = L, U {P, | n € N}, where L, is the
language of rings, and the predicate P, is interpreted as the n-th powers

{yeQ |y#0A3z(y =2")}

foreachn € NT. Note that P, is definable in L,.. Moreover, the valuation is definable
in L, as follows.

Fact 1.5 ([3]). Let f,g € K[x1,...,2m]. Then {a € K™ | v(f(a)) < v(g(a))} is
definable.

Remark 1.6. It is easy to see from Fact 1.5 that {a € K|v(a) = v} and {a €
K|v(a) <~} are definable for any fixed v € T'k.

For A a subset of K, by an L 4-formula we mean a formula with parameters from
A. By 7,7, Z we mean arbitrary n-variables and @, b, ¢ € K" denote n-tuples in K"
with n € NT. By |Z|, we mean the length of the tuple Z. We say that X C K™ is
A-definable if there is a L 4-formula ¢(z1, ..., 2,,) such that

X ={(a1,...,am) € K™ | K = ¢(a1,...,am)}.

We also denote X by ¢(K"™) and say that X is defined by ¢(z). We say that X is
definable in K if X C K™ is K-definable. If X € Q;" is defined by some L, -
formula ¢ (Z). Then by X (K') we mean ¢ (K"), namely, the realizations of ¢ in K,
which is a definable subset of K™.

For any subset A of K, by acl(A) we mean the algebraic closure of A. Namely,
b € acl(A) if and only if there is a formula ¢(x) with parameters from A such that
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b € ¢(K) and ¢(K) is finite. Let @ = (aq,...,a,) € K™, we denote acl(A U
{a1,...,ap}) by acl(A4, a).

By a saturated extension K of K, we mean that |K| is a sufficiently large cardi-
nality, and every type over A C K is realized in K whenever |A| < |K].

1.2 Preliminaries

The p-adic field Q,, is a complete, locally compact topological field, with basis
given by the sets

B(aﬂ’b):{erp|x:a/\U(l’—a)Zn}

for a € Q, and n € Z. The elementary extension K > Q,, is also a topological field
but not need to be complete or locally compact. Let X C K™, we say that a € X is
an interior if there is v € I'y such that

By ={(b1,- - bm) € K| A\ v(a;i — b)) >~} € X,
=1

LetV ={zx € K|z=0V3necZ(v(zr) >n)}. Wecall VV the convex hull of
Qp. It is easy to see that for any a,b € K, ifb € V and v(a) > v(b), thena € V. As
we said before, for every a € V, there is a unique ag € Q), such that v(a — ag) > n
for all n € Z. This gives a map a — ag from V' onto Q,. We call this map the
standard part map, denoted by st : V. — Q,,. Forany a = (a1,...,an,) € V",
by st(a) we mean (st(ai),...,st(an)). Let f(Z) € K[Z] be a polynomial with every
coefficient contained in V. Then by st( f), we mean the polynomial over Q,, obtained
by replace each coefficient of f by its standard part. Let

p={a € K |st(a) =0},

which is the collection of all infinitesimals of K over QQ,,. It is easy to see that for any
a€ K\{0},a¢ Viffa=l e p.

Any definable subset X C K™ has a topological dimension which is defined as
follows:

Definition 1.7. Let X C K". By dimg (X ), we mean the maximal k£ < n such that
the image of the projection

T X — K% (21, ,00) = (@, 2,

has interiors, for suitable 1 < r1 < ... < rp < n. We call dimg (X) the topological
dimension of X.



Ningyuan Yao / On Dimensions, Standard Part Maps, and p-Adically Closed Fields 45

Recall that Q,, is a geometry structure (see [8, Def. 2.1, Prop. 2.11] ), so any K |=
Th(Q,) is a geometry structure. The fields has geometric structure are certain fields
in which model-theoretic algebraic closure equals field-theoretic algebraic closure.

Every geometry structure is a pregeometry structure, which means that for any
a=(ay,...,an) € K"and A C K, dim(a/A) makes sense, which by definition
is the maximal k such that a,, ¢ acl(A) and a,,,, ¢ acl(4,a,,,...,a,,) for some
subtuple (a,,, ..., ar,) of a. We call dim(a/A) the algebraic dimension of a over A.

Fact 1.8 ([8]). Let A be a subset of K and X an A-definable subset of K™.
() Ifa € K™ and b € K™. Then we have

dim(a,b/A) = dim(a/A,b) + dim(b/A) = dim(b,a/A).

(ii) Let K > K be a saturated model. Then dimg (X) = max{dim(a/A) | a €
X(K)}
(iii) Let ¢(x1,. .., Tm,Y1,---,Yn) be any L g-formula and r € N. Then the set

{be K" | dimg(p(K™, b)) <r}

is A-definable.

(iv) If X C K is K-definable. Then X is infinite iff dimg (X) > 1.

(v) Let Ag be a countable subset of Q), and let Y be an Ag-definable subset of Q).
Then there is g € Y such that dim(ag/Ao) = dimg, (V).

It is easy to see from Fact 1.8 that for any L -formula ¢(z1,...,2,) and K’ >
K, we have

dimg (¢(K™)) = dimg(¢(K™)).

We will write dimg (X)) by dim(X) if there is no ambiguity. If the function f : X —
K is definable in K, and Y C X x K is the graph of f. Then we conclude directly
that dim(X) = dim(Y") by Fact 1.8 (ii).

For later use, we recall some well-known facts and terminology.

Hensel’s Lemma. Let Z, = {z € Q,|x = 0V v(x) > 0} be the valuation ring of
Qp. Let f(z) be a polynomial over Z,, in one variable x, and let a € Z,, such that
v(f(a)) > 2n+ 1 and v(f'(a)) < n, where f" denotes the derivative of f. Then
there exists a unique a € Z,, such that

f(a)=0andv(a—a) >n+1.

We say a field F is a Henselian field if Hensel’s Lemma holds in . Note that to
be a henselian field is a first-order property of a field in the language of rings. Namely,
there is a L,-sentence o such that E |= ¢ iff E is a henselian field. So any K > Q,
is henselian.
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2 Main Results

2.1 Some properties of Henselian fields
Since Q,, is complete and local compact, it is easy to see that:

Fact 2.1. Suppose that E is a finite (or algebraic) field extension of Q. Then for any
a € E\Qy, thereis n € Z such that v(o — a) < n (Ja — a|] > p™") forall a € Q.
Namely, Qy, is closed in E.

We now show that Fact 2.1 holds for any K |= Th(Q,).

Lemma 2.2. Let K be a henselian field, R = {x € K | x = 0V v(z) > 0} be the
valuation ring of K, and f(x) € R|x] a polynomial, D C Tk a cofinal subset, and
X={zq4|de D} R If

i =
deD,tlin—l>+oof(Id) 0,

Then there exist a cofinal subset I C D and a € K such that

li ; = d =0.
iEI,z’lI%nJrooxl aan f((l) 0
Proof Induction ondeg(f). Suppose that f has degree 1, say, f(z) = ax+ . Then
for any v € 'k, there is dy € D such that v(f(xg4)) > 7 forall dy < d € D. Now
v(axg + B) > ~ implies that v(zg — (=2)) > v — v(a). So

«

: s
1 — (==
dep o ¥ T (T =0

and hence

B

xqg=——and f(—
[0

g

(0%

lim )=0
deD,d—+oo
as required.
Now suppose thatdeg(f) = n+1 > 1. We see that the derivative f” has degree n.
If there are g € I'k and g9 € D such that v(f'(z.)) < o foralleg < e € D.
Take ¢ sufficiently large such that

v(f(2e)) >4y +1

for all g < € € D. Then, by Hensel’s Lemma, we see that for all € > ¢, there is z.
such that

-1
o(ee ) > D=L ang ey = o
As f has at most finitely many roots, there is a cofinal subset I C D and some . € K
such that
3 v(f(zi) — 1

v(ZTe —x4) > 5
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foralli € I. Since v(f(x;)) — +o00, we see that v(Z. — x;) — +oo. Thus we have

lim z; =2Z.and f(z.) =0,
i€l i—+o0
as required.
Otherwise, if for every v € I'r, there is 7 < d., € D such that v(f'(xq,)) > .
Then there is a cofinal subset I = {d, | v € 'k} C D such that
li "(z;) =0
iEI,z’ILn—I—oof (xl) ’
Then, by induction hypothesis, there exist a cofinal subset J C I and b € K such
that
li ;=band f'(b) = 0.
jed o] and f(b)
Since f is continuous, limjc ;400 f(2z;) = f(b). Now J is cofinal in I, and I is
cofinal in D, we conclude that J is cofinal in D. This complete the proof. Il

Proposition 2.3. If K is a henselian field, and E is a finite extension of K. Then for
any o € E\K, there is vy € ' such that v(a — a) < 7y for all a € K. Namely, K
is closed in E.

Proof By [6, Lem.4.1.1], the valuation of K extends uniquely to E. For each 5 €
E, Let g(x) = 2™ + ap_12™ ' + ... + a1z + ag be the minimal polynomial of 3
over K, then the valuation of 3 is exactly @ (See [7, Prop. 5.3.4]).

Let o € E\K, and d(z) be the minimal polynomial of o over K with degree k.
Then d(z + a) is the minimal polynomial of (o« — a) over K for any a € K. Since
d(x+a) = zf(x)+d(a) for some f(z) € K[z], we see that v(a—a) = W. We
claim that there is g € ' such that v(d(a)) < 7o forall a € K. Otherwise, we will
find a sequence {a. | v € '} such that v(d(a,)) > . Replace d(x) by ed(x) with
some e sufficiently close to 0, we may assume that d € R[x]. Moreover, fix 7o € T,
ifv(a —a) > v, and v(a — b) > 270, then v(a — b) > 7. So

{be K |v(a—b) >~} CdhR
for some §g € K, and hence
{be K |v(d(d)) >y} ={be K| kv(e—>b) >} C kéR.

Let § = kdp. If & € R, then, by Lemma 2.2, there is b € K such that d(b) = 0. How-
ever d is minimal polynomial of degree > 1, so has no roots in K. A contradiction.
If§ ¢ R, then §~! € R. Suppose that

d(z) = dpz® + ...+ dyz + do.
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Let
h(z) = dpa® + ...+ di6 " e + dos™*.

We see that h(z) € R[x] and
(07 ) = dp(6 ') + ...+ did P e) + dodF = 67 Fd(2).
Now we have
v(h(67 ay)) = v(§ " d(ay)) > 7 = k().

For v > o, we have a, € §R. Therefore §~'a, € R for all v > ~,. Applying
Lemma 2.2 to h(z), we can find ¢ € K such that

h(c) = h(676c) = 0 = 6 *d(dc).
So d(dc) = 0. A contradiction. O

Now we assume that K is an elementary extension of Q,, in the language of rings
L,.. This follow result was proven by [14] in the case of K = Q,,.

Lemma 24. Let T = (x1,...,2m) and f(Z,y) = > » o pi(Z)y’ € K[Z,y|. Then
there is a partition of

n
R={zecK"|\/pi(@) #0A3y(f(z,y) =0)}
i=0
into finitely many definable subsets S, over each of which f has some fixed number
k > 1 of distinct roots in K with fixed multiplicities m1, . .., my. For any fixed Ty €
S, let the roots of f(Zg,y) be 1, ...,y and e = max{v(r; —r;) | 1 <i < j < k}.
Then Tg has a neighborhood N C K™, ~v € I'k, and continuous, definable functions
Fi,...,F;, : SNN — K such that for each z € SN N, Fi(z),...,F(x) are
roots of f(Z,y) of multiplicities m, ..., my and v(F;(Z) — r;) > 2e.
Proof The proof of [14, Lem 1.1] applies almost word for word to the present con-
text. The only problem is that the authors used Fact 2.1 in their proof. But the Propo-

sition 2.3 saying that we could replace Q, by arbitrary K = Th(Q,) in our argument.
O

Remark 2.5. Lemma 1.1 of [14] saying that definable functions F1, ..., F} are not
only continuous but analytic. However we can't prove it in arbitrary K = Th(Q,)
as K might not be complete as a topological field.

Similarly, Lem. 1.3 in [14] could be generalized to arbitrary K |= Th(Q,) as
follows:

Lemma 2.6. [fA C K™ and f : A — K is definable. Then there is a definable set
B C A, open in K™ such that A\ B has no interior and f is continuous on B.

Proof The proof of Lem. 1.3 in [14] applies almost word for word to the present
context. H
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2.2 Dimensions

We now assume that K is an elementary extension of Q.

Lemma 2.7. Suppose that A C K, X,Y are A-definablein K, f : X — Y is an
A-definable function. If f is a finite-to-one map, dim(X) = dim(f(X)).

Proof Let K be a saturated elementary extension of K. By Fact 1.8 (iii), there is
r € Nsuch that | f~1(y)| < r forall y € Y(K). For any a € X (K), since

{oe X [f(b) = fla)}] <,
we see that a € acl(A4, f(a)). Sodim(a/A, f(a)) = 0. By Fact 1.8 (i) we have
dim(a/A) = dim(a, f(a)/A) = dim(a/A, f(a))+dim(f(a)/A) = 0+dim(f(a)/A).

Sodim(a/A) = dim(f(a)/A). By Fact1.8 (ii), we conclude that dim(X) = dim(Y").
U

Lemma 2.8. Suppose that A C K, f : X — Y is an A-definable function in K.
Then

dim(X) > dim(f(X)).
Proof Generally, we have
dim(a/A) = dim(a, f(a)/A) = dim(a/A, (a)) + dim(f(a)/A) > dim(f(a)/A).
By Fact1.8 (ii), we conclude that dim(X) > dim(Y). O

Corollary 2.9. Suppose that A C K, f : X — Y is an A-definable bijection
function in K. Then
dim(X) = dim(f(X)).

Proof f~!is a definable function as f is bijection. So we conclude that

dim(X) > dim(f(X)) = dim(Y) > dim(f~'(Y)) = dim(X).

Lemma 2.10. Suppose that X,Y are A-definable in K. Then
dim(X UY) = max{dim(X),dim(Y)}.

Proof By Factl.8 (ii). |
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Lemma 2.11. Let X C K". Then dim(X) is the minimal k < n such that there is
definable Y C X with dim(Y') = dim(X) and projection

k
7: X — K% (z1,...,20) = (Tpy, .-, Zpy)
is a finite-to-one map on Y, for suitable 1 <r; < ... <r, < n.

Proof Let k be as above and 7 : X — K* be a projection with 7(z1, ..., 2,) =
(Tyy, - 2, ). If Y C X such that the restriction 7 [ Y : Y — K¥ is a finite-to-
one map. Then by Lemma 2.7 we have dim(Y) = dim(7(Y")) and hence

dim(X) = dim(Y) = dim(n(Y)) < k.

Now suppose that dim(X) = [ < k. Without loss of generality, we assume
that f : X — K'; (x1,...,2,) — (x1,...,2;) is a projection such that f(X) has
nonempty interior. Then we prove a claim:

Claim. Let Zp = {b € K'| f~1(b) is finite } and Z; = K'\ Zy. Then dim(Z;) < I.

Clearly,
Zy = {be K'| dim(f~1(b)) > 1}

is definable in K. Ifdim(Z;) = I. Then, thereis 5 € Z;(K) such thatdim(8/A) = I,
where is K = K is saturated. Since dim(f~1(3)) > 1, by Fact 1.8 (ii), there is
a € dim(f~1(83)) such that dim(a/ A4, ) > 1. By Fact 1.8 (i), we conclude that

dim(a/A) = dim(e, f(a)/A) = dim(a/A, f(«)) + dim(f(a)/A) > 1 + 1.
But dim(a/A) < dim(X) = [. A contradiction.

Since dim(Z;) < [, by Lemma 2.10, dim(Zy) = [. The restriction of f on
7Y Zy) is a finite-to-one map, we conclude that

dim(f~(Zp)) = dim(Zp) = | = dim(X)

by Lemma 2.7. Now dim(f~1(Z;)) = dim(X) and the restriction of f on f~1(Zy)
is a finite-to-one map. So k < [ as k is minimal. We conclude that £ = | = dim(X)
as required. O

Corollary 2.12. Let X C K" be definable with dim(X ) = k. Then there exists a
partition of X into finitely many K-definable subsets S such that whenever dim(S) =
dim(X), there is a projection tg : S — K* on k suitable coordinate axes which is
finite-to-one.
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Proof Let Xy = X and [n]* be the set of all subset of {1,...,n} of cardinality .
By Lemma 2.11, there exist Dy = {r1,...,7} € [n]¥, So € X with dim(Sp) =
dim(Xj), such that the projection

Ti(xn, . xn) = (T, ., 20)

is finite-to-one on .Sy and infinite-to-one on X\ Sp. If dim(X,\:Sy) < dim(Xy), then
the partition { X\ So, So} meets our requirements.

Otherwise, let X; = X\ So, we could find D; € [n]*\{Dy} and S; € X; such
that the projection on coordinate axes from D is finite-to-one over .S;. Repeating the
above steps, we obtained sequences X; and S; such that X; 1 = X;\5;. As [n]k is fi-
nite, there is a minimal ¢ € N such that dim(X;) < dim(Xj) and dim(S;) = dim(Xj)
for all ¢ < ¢. It is easy to see that { Sy, ..., S;_1, X;} meets our requirements. O

Recall that by [4], Th(Q),) admits definable Skolem functions. Namely, we have
Fact 2.13 (([4])). Let A C K and ¢(z,y) be a L go-formula such that

K | Vzdye(z, y).
Then there A-definable function f : K™ — K such that K = VZ¢(z, f(Z)).
With the above Fact, we could refine Corollary 2.12 as follows:

Corollary 2.14. Let X C K™ be definable with dim(X) = k. Then there exists a
partition of X into finitely many K-definable subsets S such that whenever dim(S) =
dim(X), there is a projection g : S — K* on k suitable coordinate axes which is
injective.

Proof Let Xo = X. By Corollary 2.12, we may assume that the projection 7 :
Xo — KF givenby (z1,...,2,) = (21,...,x}) is finite-to-one. By compactness,
there is r € N such that

7 (y) N Xo| <7

forally € K k_Induction on r. If r = 1, then 7 is injective on Xg. Otherwise, by
Fact 2.13, there is a definable function

fim(X)— X

such that 7(f(y)) = « forall § € w(Xp). It is easy to see that f is injective and
hence, by Corollary 2.7, Sy = f(7(Xy)) is a definable subset of X of dimension k.
Moreover 7 : Sy — KF is exactly the inverse of f, hence injective. If dim(X\Sp)
then the partition { X\ Sp, S1} satisfies our require. Otherwise, X1 = X\ Sp has
dimension & and

TN Xl <r-1

By our induction hypothesis, there is a partition of X; into finitely may definable
subsets meets our requirements. This completes the proof. O
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Theorem 2.15. Let B C K™ be definable in K. Then dimg (B) > dimg, (BNQy').

Proof Suppose that dimg (B) = k. By Lemma 2.10 and Corollary 2.14, we may
assume that 7 : B — K" is injective. The restriction of 7 to B N Q}' is a injective

projection from B N Q)" to @’;. By Lemma 2.11, dimg, (B N Q}') < k. O

Note that P,,(K) = {a € K | a # 0 A3b € K(a = b™)} is an open sub-
set of K whenever K is a hensilian field. For any polynomial f(xi,...,z,) €
Klxi,..., 2y,

Po(f(K™)) ={a€ K™ | f(a) #0ATbe K(f(a) = b")}

is an open subset of K" since f is continuous.

2.3 Standard part map and definable functions

The following Facts will be used later.

Fact 2.16 (([2])). Every complete n-type over Qy, is definable. Equivalently, for any
K = Qp, any Ly-formula ¢(z1,. .., Tn, Y1, .,Ym), and any b € K™, the set

{acQy| K|=¢@ab)}
is definable in Q.

Fact 2.17 (([11])). Let X C K™ be a Q,-definable open set, let Y C X be a K-
definable subset of X. Then either Y or X\Y contains a Qy-definable open set.

Fact 2.18 (([11])). Let X C K™ be a K -definable set. Then st(X ) Nst(K™\X) has
no interior.

Recall that 4 is the collection of all infinitesimals of K over Q,,, which induces
a equivalence relation «~, on K, which is defined by

a-~ub = a—-bep.

Definition 2.19. Let f(z,y), g(Z,y) € K|[Z,y| be polynomials. By f v, g we mean
that
() if|Z| =0, f(y) = >, aiy’,and g(y) = i, biy’, then f «, g iff a; «~, b;
for each ¢ < n.
(i) if || > 0, f(Z,y) = Yry ai(Z)y’, and g(y) = Y1, bi(Z)y’, where a’s and
b’s are polynomials with variables from z. Then f v, g iff a; «~, b; for each
1 < n.
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Lemma 2.20. Let & = (x1,...,2y), f(Z) and g(T) be polynomials over K with
fowg Ifa=(a,... a,) and b = (b, ..., b,) are tuples from K with a; b

foreachi < n. Then f(a) «, g(b).

Proof We see that o € p iff v(a) > Z. Since v(a + ) > min{v(«),v(5)} and
v(apf) = v(a) + v(B), we see that y is closed under addition and multiplication. As
polynomials are functions obtained by compositions of addition and multiplication,

we conclude that f(a) v, g(b). O

Since V' C K is also closed under addition and multiplication. We conclude
directly that:

Corollary 2.21. Let & = (x1,...,xy), and f(Z) € K[Z| be a polynomial with every
coefficient contained in V. If a = (a1,...,a,) € V", then st(f)(st(a)) = st(f(a)).

Corollary 2.22. Let f(z) = a,a" + ... + ayz' + ag be a polynomial over K with
every coefficient contained in V and a,, ¢ p. If b € K such that f(b) = 0. Then
beV.

Proof Suppose for a contradiction that b ¢ V. Then st(b~!) = 0. Clearly, we have
bF(D) = an + ... +arb " 4 agh™ = 0.
Let
9(y) =aoy" + ...+ an—1y + an.
Then g(b~1) = 0. By Corollary 2.21, we have st(g)(st(b~1)) = 0. Asst(b~!) = 0,

we see that st(a,,) = 0, which contradicts to a,, ¢ p. O

Fact 2.23 ([11]). Let S C K™ be definable in K. Then st(S V™) C Q' is
definable in Q.

Lemma 2.24. Let f : K* — K be definable in K. Then
(i) Xoo ={a € Qk | f(a) ¢ V} is definable in Q.
(ii) Let X = Q’;\Xoo. Then g : X — Q) given by a — st(f(a)) is definable in
Qp

Proof By Fact 2.16, there is a Lg,-formula ¢(z,y) such that for all a € Q'I‘j and
b € Qp, we have

Qp E 9(a,b) <= v(f(a)) <wv(b).
Hence
a€ Xy — Qp ’: qub(a,y),
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which shows that X is definable in Q. Again by Fact 2.16, there is Lg,-formula
¥(x,y1,y2) such that for all a € Ql;, b1,b2 € Qp,

M }: 1/)(@,()1,[)2) < v(f(a) — bl) > ’U(bg — bl)
Therefore
b=st(f(a)) <= Qp EyVy2(v(b—y1) > v(yr — y2) = ¥(a,y1,42))-

forall a € Q’; and b € Q,. We conclude that g : X — Q,, a — st(f(a)) is
definable in Q,, O

Lemma 2.25. Let X C Q) be a clopen subset of Q. Ifa € V'™ and st(a) ¢ X,
thena ¢ X (K).

Proof As X isclopen and st(a) ¢ X, there is N € Z such that

==

Bany ={beQ| A\ v —st(a;)) > Nyn X = 0.

1

So Ba,n)(K) N X(K) = 0. But v(a; — st(a;)) > Z, hence

ac€ {l_) e K™ | /\ v(b; —st(a;)) > N} = B(&,N)(K)'
i+1

Soa ¢ X (K) as required. O

Lemma 2.26. If X C K™ and f : X — K are definable in K, then there is a
polynomial q(x1, ..., Ty, y) such that the graph of f is contained in the variety

{(a1,-..,am,b) € K™ | q(ay,...,am,b) = 0}.
Proof LetY be the graph of f. Since Th(Q)) has quantifier elimination, Y is de-
fined by a disjunction \/;_, ¢;(Z), where each ¢;(Z) is a conjunction
(N 9i;,@9) =0) A N Pu, (hi;(2,9)),
j=1

J
i=1

where g’s and h’s belong to K[z, y]. Now each P, (hi; (7, y)) defines an open subset
of K™*1, Since dim(Y’) < m, we see that for each i < s, there is f(7) < [; such that
i i) #0. Letq(z,y) = 11 9i,; (Z,y). Then

Y C{(a,...,am,b) € K™ | q(ar,...,am,b) =0}

as required. g
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Proposition 2.27. If f : K™ — K is definable in K. Let X = {a € Q}' | f(a) €
V'}. Then

Dy ={aec X |3,cest(a) <f(l§) — f(e) ¢ u>}-
has no interiors.

Proof By Lemma 2.26, there is a polynomial

9(x1, . T, y) € Klx1, ..oy Tm, ]

such that the graph of f is contained in the variety of g. Without loss of generality, we
may assume that each coefficient of g is in V, otherwise, we could replace g by g/c,
where c is a coefficient of g with minimal valuation. Moreover, we could assume that
at least one coefficient of g is not in .

Suppose for a contradiction that Dy contains a open subset of Q). Shrink Dx
if necessary, we may assume that Dx C X is a Qp-definable open set in Q). By
Lemma 2.4, there is a partition P of Dx(K) C K™ into finitely many definable
subsets S, over each of which g has some fixed number k£ > 1 of distinct roots in K
with fixed multiplicities m, ..., mg. For any fixed Zy € S, let the roots of g(Zo, y)
bery,...,ry,ande = max{v(r;—r;) | 1 <14 < j < k}. Then Z( has a neighborhood
N C K™, v € 'k, and continuous, definable functions Fy,..., Fp : SN N — K
such that for eachz € SN N, Fi(Z), ..., F(Z) are roots of g(z, y) of multiplicities
mi,...,mgand v(E;(Z) — 1) > 2e.

Since Dx (K) is a Q,-definable open subset of X (K). By Fact 2.17, some
S € P contains a Q,-definable open subset 1)(K™) of X (K). Where ¢ is an Lg,-
formula. Let Ay = ¢(Q}'). Then Ay C A is an open subset of Q}*, and over Ay(K)
we have

(1) ¢ has some fixed number k& > 1 of distinct roots in K with fixed multiplicities

My, M.

(if) For any fixed 79 € Ap(K), let the roots of g(Zo,y) be r1,...,7%, and e =
max{v(r; — ;) | 1 < i < j < k}. Then Zo has a neighborhood N C K™,
v € I'k, and continuous, definable functions F1, ..., Fj : Ag(K)NN — K
such that for each z € Ag(K) N N, Fi(Z),..., Fr(Z) are roots of g(z,y) of
multiplicities my, . .., my and v(F;(Z) — ;) > 2e.

(iii) forany @ € Ay, there exist b, ¢ € st™1(a) such that st(f(b)) # st(f(c)).

Suppose that
n
g(xla ey Imy y) = Zgi(xla ce. 7mm)yza
=0

where each g;(z) € K[z]. Since the variety {a € Q)" | st(gn)(a) = 0} has dimen-
sion m — 1, it has no interior. By Fact 2.17,

Ao\{a € Q' | st(gn)(a) = 0}
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contains an open subset of Q). Without loss of generality, we may assume that

{a € Qy | st(ga)(@) =0} N Ao = 0.
Since the family of clopen subsets forms a base for topology on Q7*, we may assume
that A is clopen. We now claim that

Claim 1. Foreverya € Ao(K), gn(a) ¢ p.

Proof Otherwise, by Corollary 2.21, we have st(g,)(st(a)) = st(gn(a)) = 0. So
st(a) ¢ Ap. By Lemma 2.25, we see that a ¢ Ay(K). A contradiction. O

By Claim 1 and Corollary 2.22, we see that for every a € Ag(K) and b € K, if
g(a,b) =0, then b € V. By Corollary 2.21, we conclude the following claim

Claim 2. Foreverya € Ao(K) andb € K, ifg(a,b) =0, then b € V and

st(g)(st(a),st(b)) = 0.
Now st(g) is a polynomial over Q,,. Applying Lemma 2.4 to st(g) and Fact 2.17,
and shrink Ay if necessary, we may assume that

* st(g) has some fixed number d > 1 of distinct roots in K with fixed multiplic-
ities nq, ..., ng over Ag.
+ Fix some g € Ay, let the roots of st(g)(Zo,y) (in Qp) be s1, ..., Sq, and

A =max{v(s; —s;) |1 <i<j<d}.

Then there are definable continuous functions Hy, ..., Hg : Ag — Q, such
that for each z € Ay, H1(Z), ..., Hy(Z) are roots of st(g)(z, y) of multiplici-
ties ny,...,ng and v(H;(Z) — s;) > 2A.

+ forany a € Ag, there exist b, ¢ € st™!(a) such that st(f(b)) # st(f(c)).

By Claim 2, we see that for any & € Ag(K), and b € K, if g(z,b) = 0, then
b, Hi(st(z)) for some i < d. As g(Z, f(z)) = 0 forall z € K™, we see that

Claim 3. Foreachz € Ay(K), f(z) «~, Hi(st(x)) for some i < d.
Let D; = {z € A(K) | v(f(Z) — si) > 2A}. We claim that

Claim4. Ay(K) = U;lzl D;and D;ND; = () for eachi # j. Namely, { D1, ..., Dg}
is a partition of Ao (K).

Proof LetZ € Ay(K). By Claim 3, there is some ¢ < d such that f(Z)
H;(st(Z)). It is easy to see that

o(f(Z) = si) = v(f(®) — Hi(st(Z)) + Hi(st(Z)) — s:) = v(Hi(st(T)) — i) > 2A.
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So # € D; and this implies that Ao(K) = U, D;.
On the other side, if € D; N D; for some 1 < i < j < d, we have v(f(Z) —
s;) > 2A and v(f(Z) — s;) > 2A, which implies that

v(s; — s5) = v(si — f(Z) + f(Z) — s;) > min{v(s; — f(Z)),v(f(T) — s5)} > 2A.
But v(s; — s;) < A. A contradiction. O
Claim 5. Leti < d. For any a,b € D, ifa —, b then st(f(a)) = st(f(b)).

Proof LetZ € D;. By Claim 3, there is j < d such that st(f(Z)) = H;(st(Z)). We
see that

v(f(@) = sj) = v(f(Z) = Hj(st(2)) + H; st(Z)) — s55) = v(H;(54(7)) — 57) > 2A.

Soz € Dj. By Claim 4, i = j. We conclude that st(f(z)) = H;(st(Z)) whenever
Z € D;. This complete the proof of Claim 5. O

Recall that for any @ € Ay, there exist b,¢ € st™!(a) such that st(f(b)) #
st(f(¢)). By Claim 4 and Claim 5, we see that for each a € Ay, thereis 1 < i # j < d
such that a € st(D;) N st(D;). This means that

Ac | st(Di)nst(Dy)
1<i#j<d

By Fact 2.18, each st(D;) Nst(D;) has no interior. By Fact 2.17, Ay has no interiors.
A contradiction. U

Corollary 2.28. If f : K™ — K is definable in K. Let Xoo = {a € Q) | f(a) ¢
V'}. Then

U={acXy|3bccst (a) <f(b) cVAf@¢ V)}.
has no interior.

Proof Otherwise, suppose that U C K™ is open. Applying Proposition 2.27 to
g(z) = (f(x))~1, we see that g(U) C V, and for all @ € U there are b,¢ € st™(a)
such that st(g(b)) # 0 and st(g(¢)) = 0. A contradiction. O

Lemma 2.29. Let f : K¥ — K be definable in K, X = {a € @’; | f(a) € V},
and Xoo = {a € QF | f(a) ¢ V'}. Then both

Dy = (e X Fhees @10 - fle) ¢ 1))
and
U={ac Xy |3b,cest(a) <f(b) ceVAfed V)}.

are definable sets over Q,
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Proof Let X ={a € X |st(f(a)) =0}and X; ={a € X |st(f(a)) # 0}. As
we showed in Lemma 2.24, both X and X are (Q,-definable sets. Let

g: KM\f(0) — K
be the K -definable function given by z — 1/f(Z).

Si={ae X ||st(Y)a| > 1}
Sy ={ae Xo||st(Z)a| > 1}
Sz ={ae X ||st(Z)a| > 1}

Let Y C K**! be the graph of f and Z C K*+1 be the graph of ¢g. For each a € QF,
let

st(Y)a = {b€ Q, | (@ b) € st(Y)} and st(Z)s = {b € Q, | (@,b) € st(Z)}.

We now show that Dx = S7 U .Sy U Ss.

Clearly, S; and S3 are subsets of Dx. If @ € S, then st(f(a)) = 0 and there is
b € st™(a) such that 1/f(b) € V, so f(a) — f(b) & u, which implies thata € Dx.
Therefore, we conclude that S; U Sy U S3 C Dx.

Conversely, take any @ € Dy and suppose that b, ¢ € st™!(a) such that f(b) —
f(e) ¢ p. If both f(b) and f(¢) are in V, then a € Sy; If £(b) ¢ V and st(f(a)) =
0, then b € dom(g). We see that (a@,0) € st(Z), soa € So; If f(b) ¢ V and
st(f(a)) # 0, then @, b € dom(g), st(g(b)) = 0 and st(g(a)) # 0, which implies that
|st(Z)a| > 1, and thus a € S3. So we conclude that Dx C S U Sy U Ss as required.

As S1, So, and S3 are definable sets over Q,,, D x is definable over Q,,. Similarly,
U is definable over Q,,. O

Suppose that C' C Qj", we define the hull Ch by
Ch={z e K™ |st(z) € C}.

Theorem 2.30. Let f : K™ — K be an K-definable function. Then here is a finite
partition P of Q, into definable sets, where each set in the partition is either open in
Qy' or lacks of interior. On each open set C € P we have:

() either f(x) & V forall x € C";
(i) or there is a continuous function g : C' — Q,, definable in Qy, such that
f(z) € Vand st(f(z)) = g(st(z)), for all x € C".

Proof Let X, X be as in Lemma 2.24, Dx as in Proposition 2.27, and U as in
Corollary 2.28, then Dx and U have no interior, and by Lemma 2.29, they are defin-
able. Now {Dx, X\Dx, U, Xo\U} is a partition of Q). Clearly, {Int(Xo\U),
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(Xoo\U) \Int(Xoo\U)} is a partition of X\U where Int(X,,\U) is open and
(Xoo\U) \ Int(X o \U) lacks of interior.

Let h : X\Dx — Q) be a definable function defined by z — st(f(x)). By
Theorem 1.1 of [14], there is a finite partition P* of X\ Dy into definable sets, on
each of which £ is analytic. Each set in the partition is either open in Q)" or lacks of
Interior.

Clearly, the partition

P ={Dx,U,Int(Xoo\U), (Xoo\U) \ Int(Xoc\U)} UP*
satisfies our condition. O
We now prove our last result.

Lemma 2.31. Let Z7 C K" be definable in K of dimension k < n, and the projection
7w (21, oxp) — (21, .., Tg)

is injective on Z. Then dimg, (st(Z N'V")) < k.

Proof As 7 is injective on X, there is a definable function
f=f1sfn): KF— K™

such that

o f(m(@) = (filn(Z)),..., fu(r(Z))) =z forallz € Z;
« f(7) =1(0,...,0) forall j € K*\7(X).

By Lemma 2.26, for each i < n, there is a polynomial F;(y, u) such that the graph of
fi is contained in the variety

V(E) ={(F.u) € K" | Fy(g,u) = 0}
of F;. We assume that each coefficient belongs to V. It is easy to see that for each
(a1,...,an) €ZNV",
we have f;(m(a1,...,a,)) = a;. So Fi(ay,...,a,a;) = 0. By Corollary 2.21,
st(F;)(st(ar), .. .,st(ag),st(a;))) = 0.
So st(Z N'V™) is contained in the variety
V(st(F1),...,st(Fp))
= {(al, cosan) €Qy | Ny (st(Fi)(st(al), . st(ag), st(a;))) = O> }
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Let A C Q, be the collection of all coefficients from st(F;)’s. Then for each
(a1,...,an) € V(st(F1),...,st(Fy)),

we see that a; is aroot of Fj(ay,. .., ar,u), and hence a; € acl(A, aq, ..., ax), where
¢ < n. This implies that

dim(ay,...,a,/A) =dim(ay,...,ar/A) <k

forall (a1,...,ay) € V(st(F1),...,st(Fy,)). By Fact 1.8 (v), we see that
dimg, (V (st(F1),...,st(Fn)))
=max { dim(ay,...,an/A) | (a1,...,ay) € V(st(F1),...,st(F,))} < k.

So st(Z NV™) < k as required. O

Theorem 2.32. Let Z C K" be definable in K. Then dimg,(st(Z N V")) <
dimK(Z).

Proof Sincest(XUY) = st(X)Ust(Y) and dim(XUY") = max{dim(X), dim(Y")}
hold for all definable X,Y C K™. Applying Corollary 2.14, we many assume that
dim(Z) =kand 7 : (x1,...2y) — (z1,...,xx) is injective on Z. If k = n, then

dimg, (st(ZNV™)) <n
asst(ZNV") C Q. If k < n, then by Lemma 2.31,
dimg, (st(ZNV™)) <k

as required. ([
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