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On Dimensions, Standard Part Maps,
and p-Adically Closed Fields*

Ningyuan Yao

Abstract. The aim of this paper is to study the dimensions and standard part maps between
the field of p-adic numbersQp and its elementary extensionK in the language of rings Lr . We
show that for any K-definable set X ⊆ Km, dimK(X) ≥ dimQp(X ∩ Qm

p ). Let V ⊆ K
be convex hull of K over Qp, and st : V → Qp be the standard part map. We show that
for any K-definable function f : Km → K, there is definable subset D ⊆ Qm

p such that
Qm

p \D has no interior, and for all x ∈ D, either f(x) ∈ V and st(f(st−1(x))) is constant, or
f(st−1(x))∩V = ∅. We also prove that dimK(X) ≥ dimQp(st(X∩V m)) for every definable
X ⊆ Km.

1 Introduction

In [5], L. van den Dries consider a pair (R, V ), where R is an o-minimal exten-
sion of a real closed field, and V is a convex hull of an elementary submodelM of
R. Let µ ⊆ R be the set infinitesimals overM and V̂ = V /µ be the reside field with
residue class map x 7→ x̂. If M is Dedekind complete in R, then V̂ = M and the
residue class map coincide the standard part map st : R −→ M . In this context, van
den Dries showed the follows:

Theorem 1 ([5]). Let S ⊆ Rn be R-definable and Ŝ = {x̂| x ∈ S ∩ V n}. Then

(i) S ∩Mn is definable inM and dimM (S ∩Mn) ≤ dimR(S);
(ii) st(S) is definable inM and dimM (st(S)) ≤ dimR(S).

Theorem 2 ([5]). Let f : Rm → R be an R-definable function. Then here is a finite
partition P ofMm into definable sets, where each set in the partition is either open
inMm or lacks of interior. On each open set C ∈ P we have:

(i) either f(x) /∈ V for all x ∈ Ch;
(ii) or there is a continuous function g : C −→ M , definable in M , such that

f(x) ∈ V and st(f(x)) = g(st(x)), for all x ∈ Ch,
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where Ch is the hull of C defined by

Ch = {x̄ ∈ Rm|∃ȳ ∈ C
( m∧
i=1

(xi − yi ∈ µ)
)
}.

Remark 1.1. For any topological space Y , and X ⊆ Y , by Int(X) we mean the set
of interiors inX . Namely, x ∈ Int(X) iff there is an open neighborhood B ⊆ Y of x
contained in X .

There are fairly good analogies between the field of reals R and the field of
p-adic numbers Qp, in both model-theoretic and field-theoretic view. For example,
both of them are complete and locally compact topological fields, are distal and dp-
minimal structures, have quantifier eliminations with adding the new predicates for
n-th power, and have cell decompositions.

In this paper, we treat the p-adic analogue of above two Theorems, whereM is
replaced by Qp, and R is replaced by an arbitrary elementary extensionK of Qp. In
our case, the convex hull V is the set{

x ∈ K | x = 0 ∨ ∃n ∈ Z
(
v(x) > n

)}
and µ, the infinitesimals ofK over Qp, is the set{

x ∈ K | x = 0 ∨ ∀n ∈ Z
(
v(x) > n

)}
.

By [12, Lemma 2.1], for every x ∈ V , there is a unique element st(x) in Qp such
that a − st(a) ∈ µ, we call it the standard part of a and st : a 7→ st(a) the standard
part map. It is easy to see that st : V −→ Qp is a surjective ring homomorphism and
st−1(0) = µ. So V̂ = V /µ is isomorphic to Qp in our context. With the notations as
above, we now highlight our main results.

Theorem 1.2. Let S ⊆ Kn beK-definable. Then

(i) S ∩Qn
p is definable in Qp and dimQp(S ∩Qn

p ) ≤ dimK(S);
(ii) st(S ∩ V n) is definable in Qp and dimQp(st(S ∩ V n)) ≤ dimK(S).

Theorem 1.3. Let f : Km → K be a K-definable function. Then here is a finite
partition P of Qp into definable sets, where each set in the partition is either open in
Qm

p or lacks of interior. On each open set C ∈ P we have:

(i) either f(x) /∈ V for all x ∈ Ch;
(ii) or there is a continuous function g : C −→ Qp, definable in Qp, such that

f(x) ∈ V and st(f(x)) = g(st(x)), for all x ∈ Ch.

In the rest of this introduction we give more notations and model-theoretic ap-
proach.
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1.1 Notations

Let p be a fixed prime number,Qp the field the p-adic field, and v : Qp\{0} → Z
the valuation map. Let K be a fixed elementary extension of Qp. Then valuation
v extends to a valuation map from K\{0} to ΓK , we also denote it by v, where
(ΓK ,+, <, 0) is the corresponding elementary extension of (Z,+, <, 0).

Fact 1.4. Let v : K\{0} −→ ΓK be as above. Then we have

• v(xy) = v(x) + v(y) for all x, y ∈ K;
• v(x + y) ≥ min{v(x), v(y)}, and v(x + y) = min{v(x), v(y)} if v(x) 6=
v(y);

• For x ∈ Qp, |x| = p−v(x) if x 6= 0 and |x| = 0 if x = 0 defines a non-
archimedean metric on Qp.

• K is a non–archimedean topological field.

Wewill assume a basic knowledge ofmodel theory. Good references are [13] and
[10]. We will be referring a lot to the comprehensive survey [1] for the basic model
theory of the p-adics. A key point is Macintyre’s theorem [9] that Th(Qp,+,×, 0, 1)
has quantifier elimination in the language L = Lr ∪ {Pn | n ∈ N+}, where Lr is the
language of rings, and the predicate Pn is interpreted as the n-th powers

{y ∈ Qp | y 6= 0 ∧ ∃x(y = xn)}

for eachn ∈ N+. Note thatPn is definable inLr. Moreover, the valuation is definable
in Lr as follows.

Fact 1.5 ([3]). Let f, g ∈ K[x1, . . . , xm]. Then {ā ∈ Km | v(f(ā)) ≤ v(g(ā))} is
definable.

Remark 1.6. It is easy to see from Fact 1.5 that {a ∈ K|v(a) = γ} and {a ∈
K|v(a) < γ} are definable for any fixed γ ∈ ΓK .

ForA a subset ofK, by anLA-formula wemean a formula with parameters from
A. By x̄, ȳ, z̄ we mean arbitrary n-variables and ā, b̄, c̄ ∈ Kn denote n-tuples in Kn

with n ∈ N+. By |x̄|, we mean the length of the tuple x̄. We say that X ⊆ Km is
A-definable if there is a LA-formula ϕ(x1, . . . , xm) such that

X = {(a1, . . . , am) ∈ Km | K |= ϕ(a1, . . . , am)}.

We also denote X by ϕ(Km) and say that X is defined by ϕ(x̄). We say that X is
definable in K if X ⊆ Km is K-definable. If X ∈ Qm

p is defined by some LQp-
formula ψ(x̄). Then byX(K) we mean ψ(Km), namely, the realizations of ψ inK,
which is a definable subset ofKm.

For any subset A ofK, by acl(A) we mean the algebraic closure of A. Namely,
b ∈ acl(A) if and only if there is a formula ϕ(x) with parameters from A such that
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b ∈ ϕ(K) and ϕ(K) is finite. Let α = (α1, . . . , αn) ∈ Km, we denote acl(A ∪
{α1, . . . , αn}) by acl(A,α).

By a saturated extension K ofK, we mean that |K| is a sufficiently large cardi-
nality, and every type over A ⊆ K is realized in K whenever |A| < |K|.

1.2 Preliminaries

The p-adic field Qp is a complete, locally compact topological field, with basis
given by the sets

B(a,n) = {x ∈ Qp | x = a ∧ v(x− a) ≥ n}

for a ∈ Qp and n ∈ Z. The elementary extensionK � Qp is also a topological field
but not need to be complete or locally compact. Let X ⊆ Km, we say that ā ∈ X is
an interior if there is γ ∈ Γk such that

B(b̄,γ) = {(b1, . . . , bm) ∈ K |
n∧

i=1

v(ai − bi) > γ} ⊆ X.

Let V = {x ∈ K | x = 0 ∨ ∃n ∈ Z(v(x) > n)}. We call V the convex hull of
Qp. It is easy to see that for any a, b ∈ K, if b ∈ V and v(a) > v(b), then a ∈ V . As
we said before, for every a ∈ V , there is a unique a0 ∈ Qp such that v(a− a0) > n

for all n ∈ Z. This gives a map a 7→ a0 from V onto Qp. We call this map the
standard part map, denoted by st : V −→ Qp. For any ā = (a1, . . . , am) ∈ V m,
by st(ā) we mean (st(a1), . . . , st(am)). Let f(x̄) ∈ K[x̄] be a polynomial with every
coefficient contained in V . Then by st(f), we mean the polynomial overQp obtained
by replace each coefficient of f by its standard part. Let

µ = {a ∈ K | st(a) = 0},

which is the collection of all infinitesimals ofK overQp. It is easy to see that for any
a ∈ K\{0}, a /∈ V iff a−1 ∈ µ.

Any definable subset X ⊆ Kn has a topological dimension which is defined as
follows:

Definition 1.7. Let X ⊆ Kn. By dimK(X), we mean the maximal k ≤ n such that
the image of the projection

π : X −→ Kk; (x1, . . . , xn) 7→ (xr1 , . . . , xrk)

has interiors, for suitable 1 ≤ r1 < . . . < rk ≤ n. We call dimK(X) the topological
dimension of X .
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Recall thatQp is a geometry structure (see [8, Def. 2.1, Prop. 2.11] ), so anyK |=
Th(Qp) is a geometry structure. The fields has geometric structure are certain fields
in which model-theoretic algebraic closure equals field-theoretic algebraic closure.

Every geometry structure is a pregeometry structure, which means that for any
ā = (a1, . . . , an) ∈ Kn and A ⊆ K, dim(ā/A) makes sense, which by definition
is the maximal k such that ar1 /∈ acl(A) and ari+1 /∈ acl(A, ar1 , . . . , ari) for some
subtuple (ar1 , . . . , ark) of ā. We call dim(ā/A) the algebraic dimension of ā over A.

Fact 1.8 ([8]). Let A be a subset ofK and X an A-definable subset ofKm.

(i) If ā ∈ Km and b̄ ∈ Kn. Then we have

dim(ā, b̄/A) = dim(ā/A, b̄) + dim(b̄/A) = dim(b̄, ā/A).

(ii) Let K � K be a saturated model. Then dimK(X) = max{dim(ā/A) | ā ∈
X(K)}.

(iii) Let ϕ(x1, . . . , xm, y1, . . . , yn) be any LA-formula and r ∈ N. Then the set

{b̄ ∈ Kn | dimK(ϕ(Km, b̄)) ≤ r}

is A-definable.
(iv) If X ⊆ K isK-definable. Then X is infinite iff dimK(X) ≥ 1.
(v) LetA0 be a countable subset ofQp, and let Y be anA0-definable subset ofQn

p .
Then there is ā0 ∈ Y such that dim(ā0/A0) = dimQp(Y ).

It is easy to see from Fact 1.8 that for any LK-formula ϕ(x1, . . . , xn) andK ′ �
K, we have

dimK(ϕ(Kn)) = dimK′(ϕ(K ′n)).

Wewill write dimK(X) by dim(X) if there is no ambiguity. If the function f : X −→
K is definable in K, and Y ⊆ X ×K is the graph of f . Then we conclude directly
that dim(X) = dim(Y ) by Fact 1.8 (ii).

For later use, we recall some well-known facts and terminology.

Hensel’s Lemma. Let Zp = {x ∈ Qp|x = 0 ∨ v(x) ≥ 0} be the valuation ring of
Qp. Let f(x) be a polynomial over Zp in one variable x, and let a ∈ Zp such that
v(f(a)) > 2n + 1 and v(f ′(a)) ≤ n, where f ′ denotes the derivative of f . Then
there exists a unique â ∈ Zp such that

f(â) = 0 and v(â− a) ≥ n+ 1.

We say a fieldE is a Henselian field if Hensel’s Lemma holds inE. Note that to
be a henselian field is a first-order property of a field in the language of rings. Namely,
there is a Lr-sentence σ such that E |= σ iff E is a henselian field. So any K � Qp

is henselian.
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2 Main Results

2.1 Some properties of Henselian fields

Since Qp is complete and local compact, it is easy to see that:

Fact 2.1. Suppose thatE is a finite (or algebraic) field extension ofQp. Then for any
α ∈ E\Qp, there is n ∈ Z such that v(α − a) < n (|α − a| > p−n) for all a ∈ Qp.
Namely, Qp is closed in E.

We now show that Fact 2.1 holds for anyK |= Th(Qp).

Lemma 2.2. Let K be a henselian field, R = {x ∈ K | x = 0 ∨ v(x) ≥ 0} be the
valuation ring of K, and f(x) ∈ R[x] a polynomial, D ⊆ ΓK a cofinal subset, and
X = {xd | d ∈ D} ⊆ R. If

lim
d∈D,d→+∞

f(xd) = 0,

Then there exist a cofinal subset I ⊆ D and a ∈ K such that

lim
i∈I,i→+∞

xi = a and f(a) = 0.

Proof Induction on deg(f). Suppose that f has degree 1, say, f(x) = αx+β. Then
for any γ ∈ ΓK , there is d0 ∈ D such that v(f(xd)) > γ for all d0 < d ∈ D. Now
v(αxd + β) > γ implies that v(xd − (−β

α)) > γ − v(α). So

lim
d∈D,d→+∞

|xd − (−β
α
)| = 0

and hence
lim

d∈D,d→+∞
xd = −β

α
and f(−β

α
) = 0

as required.
Now suppose that deg(f) = n+1 > 1. We see that the derivative f ′ has degree n.
If there are γ0 ∈ ΓK and ε0 ∈ D such that v(f ′(xε)) ≤ γ0 for all ε0 < ε ∈ D.

Take ε0 sufficiently large such that

v(f(xε)) > 4γ0 + 1

for all ε0 < ε ∈ D. Then, by Hensel’s Lemma, we see that for all ε > ε0, there is x̂ε
such that

v(x̂ε − xε) ≥
v(f(xε))− 1

2
and f(x̂ε) = 0

As f has at most finitely many roots, there is a cofinal subset I ⊆ D and some x̂ε ∈ K

such that
v(x̂ε − xi) >

v(f(xi))− 1

2
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for all i ∈ I . Since v(f(xi)) → +∞, we see that v(x̂ε − xi) → +∞. Thus we have

lim
i∈I,i→+∞

xi = x̂ε and f(x̂ε) = 0,

as required.
Otherwise, if for every γ ∈ ΓK , there is γ < dγ ∈ D such that v(f ′(xdγ )) > γ.

Then there is a cofinal subset I = {dγ | γ ∈ ΓK} ⊆ D such that

lim
i∈I,i→+∞

f ′(xi) = 0,

Then, by induction hypothesis, there exist a cofinal subset J ⊆ I and b ∈ K such
that

lim
j∈J,j→+∞

xj = b and f ′(b) = 0.

Since f is continuous, limj∈J,j→+∞f(xj) = f(b). Now J is cofinal in I , and I is
cofinal in D, we conclude that J is cofinal in D. This complete the proof. □

Proposition 2.3. IfK is a henselian field, and E is a finite extension ofK. Then for
any α ∈ E\K, there is γ0 ∈ ΓK such that v(α− a) < γ0 for all a ∈ K. Namely,K
is closed in E.

Proof By [6, Lem. 4.1.1], the valuation of K extends uniquely to E. For each β ∈
E, Let g(x) = xn + an−1x

n−1 + . . . + a1x + a0 be the minimal polynomial of β
overK, then the valuation of β is exactly v(a0)

n (See [7, Prop. 5.3.4]).
Let α ∈ E\K, and d(x) be the minimal polynomial of α overK with degree k.

Then d(x + a) is the minimal polynomial of (α − a) over K for any a ∈ K. Since
d(x+a) = xf(x)+d(a) for some f(x) ∈ K[x], we see that v(α−a) = v(d(a))

k . We
claim that there is γ0 ∈ ΓK such that v(d(a)) < γ0 for all a ∈ K. Otherwise, we will
find a sequence {aγ | γ ∈ ΓK} such that v(d(aγ)) > γ. Replace d(x) by ϵd(x) with
some ϵ sufficiently close to 0, we may assume that d ∈ R[x]. Moreover, fix γ0 ∈ Γ,
if v(α− a) > γ0, and v(α− b) > 2γ0, then v(a− b) ≥ γ0. So

{b ∈ K | v(α− b) > γ0} ⊆ δ0R

for some δ0 ∈ K, and hence

{b ∈ K | v(d(b)) > γ0} = {b ∈ K | kv(α− b) > γ0} ⊆ kδ0R.

Let δ = kδ0. If δ ∈ R, then, by Lemma 2.2, there is b ∈ K such that d(b) = 0. How-
ever d is minimal polynomial of degree > 1, so has no roots inK. A contradiction.

If δ /∈ R, then δ−1 ∈ R. Suppose that

d(x) = dkx
k + . . .+ d1x+ d0.
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Let
h(x) = dkx

k + . . .+ d1δ
−k+1x+ d0δ

−k.

We see that h(x) ∈ R[x] and

h(δ−1x) = dk(δ
−1x)k + . . .+ d1δ

−k+1(δ−1x) + d0δ
−k = δ−kd(x).

Now we have
v(h(δ−1aγ)) = v(δ−kd(aγ)) > γ − kv(δ).

For γ > γ0, we have aγ ∈ δR. Therefore δ−1aγ ∈ R for all γ > γ0. Applying
Lemma 2.2 to h(x), we can find c ∈ K such that

h(c) = h(δ−1δc) = 0 = δ−kd(δc).

So d(δc) = 0. A contradiction. □

Nowwe assume thatK is an elementary extension ofQp in the language of rings
Lr. This follow result was proven by [14] in the case ofK = Qp.

Lemma 2.4. Let x̄ = (x1, . . . , xm) and f(x̄, y) =
∑n

i=0 pi(x̄)y
i ∈ K[x̄, y]. Then

there is a partition of

R = {x̄ ∈ Km |
n∨

i=0

pi(x̄) 6= 0 ∧ ∃y(f(x̄, y) = 0) }

into finitely many definable subsets S, over each of which f has some fixed number
k ≥ 1 of distinct roots inK with fixed multiplicitiesm1, . . . ,mk. For any fixed x̄0 ∈
S, let the roots of f(x̄0, y) be r1, . . . , rk, and e = max{v(ri − rj) | 1 ≤ i < j ≤ k}.
Then x̄0 has a neighborhoodN ⊆ Km, γ ∈ ΓK , and continuous, definable functions
F1, . . . , Fk : S ∩ N −→ K such that for each x̄ ∈ S ∩ N , F1(x̄), . . . , Fk(x̄) are
roots of f(x̄, y) of multiplicitiesm1, . . . ,mk and v(Fi(x̄)− ri) > 2e.

Proof The proof of [14, Lem1.1] applies almost word for word to the present con-
text. The only problem is that the authors used Fact 2.1 in their proof. But the Propo-
sition 2.3 saying that we could replaceQp by arbitraryK |= Th(Qp) in our argument.
□

Remark 2.5. Lemma 1.1 of [14] saying that definable functions F1, . . . , Fk are not
only continuous but analytic. However we can’t prove it in arbitrary K |= Th(Qp)

asK might not be complete as a topological field.

Similarly, Lem. 1.3 in [14] could be generalized to arbitrary K |= Th(Qp) as
follows:

Lemma 2.6. If A ⊆ Km and f : A −→ K is definable. Then there is a definable set
B ⊆ A, open inKm such that A\B has no interior and f is continuous on B.

Proof The proof of Lem. 1.3 in [14] applies almost word for word to the present
context. □
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2.2 Dimensions

We now assume thatK is an elementary extension of Qp.

Lemma 2.7. Suppose that A ⊆ K, X,Y are A-definable in K, f : X −→ Y is an
A-definable function. If f is a finite-to-one map, dim(X) = dim(f(X)).

Proof Let K be a saturated elementary extension of K. By Fact 1.8 (iii), there is
r ∈ N such that |f−1(y)| ≤ r for all y ∈ Y (K). For any a ∈ X(K), since

|{b ∈ X | f(b) = f(a)}| ≤ r,

we see that a ∈ acl(A, f(a)). So dim(a/A, f(a)) = 0. By Fact 1.8 (i) we have

dim(a/A) = dim(a, f(a)/A) = dim(a/A, f(a))+dim(f(a)/A) = 0+dim(f(a)/A).

So dim(a/A) = dim(f(a)/A). By Fact1.8 (ii), we conclude that dim(X) = dim(Y ).
□

Lemma 2.8. Suppose that A ⊆ K, f : X −→ Y is an A-definable function in K.
Then

dim(X) ≥ dim(f(X)).

Proof Generally, we have

dim(a/A) = dim(a, f(a)/A) = dim(a/A, f(a)) + dim(f(a)/A) ≥ dim(f(a)/A).

By Fact1.8 (ii), we conclude that dim(X) ≥ dim(Y ). □

Corollary 2.9. Suppose that A ⊆ K, f : X −→ Y is an A-definable bijection
function inK. Then

dim(X) = dim(f(X)).

Proof f−1 is a definable function as f is bijection. So we conclude that

dim(X) ≥ dim(f(X)) = dim(Y ) ≥ dim(f−1(Y )) = dim(X).

□

Lemma 2.10. Suppose that X,Y are A-definable inK. Then

dim(X ∪ Y ) = max{dim(X), dim(Y )}.

Proof By Fact1.8 (ii). □
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Lemma 2.11. Let X ⊆ Kn. Then dim(X) is the minimal k ≤ n such that there is
definable Y ⊆ X with dim(Y ) = dim(X) and projection

π : X −→ Kk; (x1, . . . , xn) 7→ (xr1 , . . . , xrk)

is a finite-to-one map on Y , for suitable 1 ≤ r1 < . . . < rk ≤ n.

Proof Let k be as above and π : X −→ Kk be a projection with π(x1, . . . , xn) =
(xr1 , . . . , xrk). If Y ⊆ X such that the restriction π ↾ Y : Y −→ Kk is a finite-to-
one map. Then by Lemma 2.7 we have dim(Y ) = dim(π(Y )) and hence

dim(X) = dim(Y ) = dim(π(Y )) ≤ k.

Now suppose that dim(X) = l ≤ k. Without loss of generality, we assume
that f : X −→ K l; (x1, . . . , xn) 7→ (x1, . . . , xl) is a projection such that f(X) has
nonempty interior. Then we prove a claim:

Claim. Let Z0 = {b ∈ K l | f−1(b) is finite } and Z1 = K l\Z0. Then dim(Z1) < l.

Clearly,
Z1 = {b ∈ K l | dim(f−1(b)) ≥ 1}

is definable inK. If dim(Z1) = l. Then, there is β ∈ Z1(K) such that dim(β/A) = l,
where is K � K is saturated. Since dim(f−1(β)) ≥ 1, by Fact 1.8 (ii), there is
α ∈ dim(f−1(β)) such that dim(α/A, β) ≥ 1. By Fact 1.8 (i), we conclude that

dim(α/A) = dim(α, f(α)/A) = dim(a/A, f(α)) + dim(f(α)/A) ≥ l + 1.

But dim(α/A) ≤ dim(X) = l. A contradiction.

Since dim(Z1) < l, by Lemma 2.10, dim(Z0) = l. The restriction of f on
f−1(Z0) is a finite-to-one map, we conclude that

dim(f−1(Z0)) = dim(Z0) = l = dim(X)

by Lemma 2.7. Now dim(f−1(Z0)) = dim(X) and the restriction of f on f−1(Z0)

is a finite-to-one map. So k ≤ l as k is minimal. We conclude that k = l = dim(X)

as required. □

Corollary 2.12. Let X ⊆ Kn be definable with dim(X) = k. Then there exists a
partition ofX into finitely manyK-definable subsets S such that whenever dim(S) =

dim(X), there is a projection πS : S −→ Kk on k suitable coordinate axes which is
finite-to-one.
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Proof Let X0 = X and [n]k be the set of all subset of {1, . . . , n} of cardinality k.
By Lemma 2.11, there exist D0 = {r1, . . . , rk} ∈ [n]k, S0 ⊆ X with dim(S0) =

dim(X0), such that the projection

π : (x1, . . . , xn) 7→ (xr1 , . . . , xrk)

is finite-to-one on S0 and infinite-to-one onX0\S0. If dim(X0\S0) < dim(X0), then
the partition {X0\S0, S0} meets our requirements.

Otherwise, letX1 = X0\S0, we could findD1 ∈ [n]k\{D0} and S1 ∈ X1 such
that the projection on coordinate axes fromD1 is finite-to-one over S1. Repeating the
above steps, we obtained sequencesXi and Si such thatXi+1 = Xi\Si. As [n]k is fi-
nite, there is a minimal t ∈ N such that dim(Xt) < dim(X0) and dim(Si) = dim(X0)

for all i < t. It is easy to see that {S0, . . . , St−1, Xt} meets our requirements. □

Recall that by [4], Th(Qp) admits definable Skolem functions. Namely, we have

Fact 2.13 (([4])). Let A ⊆ K and ϕ(x̄, y) be a LA-formula such that

K |= ∀x̄∃yϕ(x̄, y).

Then there A-definable function f : Km → K such thatK |= ∀x̄ϕ(x̄, f(x̄)).

With the above Fact, we could refine Corollary 2.12 as follows:

Corollary 2.14. Let X ⊆ Kn be definable with dim(X) = k. Then there exists a
partition ofX into finitely manyK-definable subsets S such that whenever dim(S) =

dim(X), there is a projection πS : S −→ Kk on k suitable coordinate axes which is
injective.

Proof Let X0 = X . By Corollary 2.12, we may assume that the projection π :

X0 −→ Kk given by (x1, . . . , xn) 7→ (x1, . . . , xk) is finite-to-one. By compactness,
there is r ∈ N such that

|π−1(ȳ) ∩X0| ≤ r

for all ȳ ∈ Kk. Induction on r. If r = 1, then π is injective on X0. Otherwise, by
Fact 2.13, there is a definable function

f : π(X) −→ X

such that π(f(ȳ)) = x for all ȳ ∈ π(X0). It is easy to see that f is injective and
hence, by Corollary 2.7, S0 = f(π(X0)) is a definable subset of X of dimension k.
Moreover π : S0 −→ Kk is exactly the inverse of f , hence injective. If dim(X0\S0)
then the partition {X0\S0, S1} satisfies our require. Otherwise, X1 = X0\S0 has
dimension k and

|π−1(ȳ) ∩X1| ≤ r − 1

By our induction hypothesis, there is a partition of X1 into finitely may definable
subsets meets our requirements. This completes the proof. □
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Theorem 2.15. LetB ⊆ Km be definable inK. Then dimK(B) ≥ dimQp(B∩Qm
p ).

Proof Suppose that dimK(B) = k. By Lemma 2.10 and Corollary 2.14, we may
assume that π : B −→ Kk is injective. The restriction of π to B ∩Qm

p is a injective
projection from B ∩Qm

p to Qk
p . By Lemma 2.11, dimQp(B ∩Qm

p ) ≤ k. □

Note that Pn(K) = {a ∈ K | a 6= 0 ∧ ∃b ∈ K(a = bn)} is an open sub-
set of K whenever K is a hensilian field. For any polynomial f(x1, . . . , xm) ∈
K[x1, . . . , xm],

Pn(f(K
m)) = {a ∈ Km | f(a) 6= 0 ∧ ∃b ∈ K(f(a) = bn)}

is an open subset ofKm since f is continuous.

2.3 Standard part map and definable functions

The following Facts will be used later.

Fact 2.16 (([2])). Every complete n-type over Qp is definable. Equivalently, for any
K � Qp, any Lr-formula ϕ(x1, . . . , xn, y1, . . . , ym), and any b̄ ∈ Km, the set

{ā ∈ Qn
p | K |= ϕ(ā, b̄)}

is definable in Qp.

Fact 2.17 (([11])). Let X ⊆ Km be a Qp-definable open set, let Y ⊆ X be a K-
definable subset of X . Then either Y or X\Y contains a Qp-definable open set.

Fact 2.18 (([11])). LetX ⊆ Km be aK-definable set. Then st(X)∩ st(Km\X) has
no interior.

Recall that µ is the collection of all infinitesimals ofK over Qp, which induces
a equivalence relation ∽µ onK, which is defined by

a ∽µ b ⇐⇒ a− b ∈ µ.

Definition 2.19. Let f(x̄, y), g(x̄, y) ∈ K[x̄, y] be polynomials. By f ∽µ g wemean
that

(i) if |x̄| = 0, f(y) =
∑n

i=1 aiy
i, and g(y) =

∑n
i=1 biy

i, then f ∽µ g iff ai ∽µ bi
for each i ≤ n.

(ii) if |x̄| > 0, f(x̄, y) =
∑n

i=1 ai(x̄)y
i, and g(y) =

∑n
i=1 bi(x̄)y

i, where a’s and
b’s are polynomials with variables from x̄. Then f ∽µ g iff ai ∽µ bi for each
i ≤ n.
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Lemma 2.20. Let x̄ = (x1, . . . , xn), f(x̄) and g(x̄) be polynomials over K with
f ∽µ g. If ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) are tuples from K with ai ∽µ bi
for each i ≤ n. Then f(ā) ∽µ g(b̄).

Proof We see that α ∈ µ iff v(α) > Z. Since v(α + β) ≥ min{v(α), v(β)} and
v(αβ) = v(α) + v(β), we see that µ is closed under addition and multiplication. As
polynomials are functions obtained by compositions of addition and multiplication,
we conclude that f(ā) ∽µ g(b̄). □

Since V ⊆ K is also closed under addition and multiplication. We conclude
directly that:

Corollary 2.21. Let x̄ = (x1, . . . , xn), and f(x̄) ∈ K[x̄] be a polynomial with every
coefficient contained in V . If a = (a1, . . . , an) ∈ V n, then st(f)(st(a)) = st(f(a)).

Corollary 2.22. Let f(x) = anx
n + . . . + a1x

1 + a0 be a polynomial over K with
every coefficient contained in V and an /∈ µ. If b ∈ K such that f(b) = 0. Then
b ∈ V .

Proof Suppose for a contradiction that b /∈ V . Then st(b−1) = 0. Clearly, we have

b−nf(b) = an + . . .+ a1b
−n+1 + a0b

−n = 0.

Let
g(y) = a0y

n + . . .+ an−1y + an.

Then g(b−1) = 0. By Corollary 2.21, we have st(g)(st(b−1)) = 0. As st(b−1) = 0,
we see that st(an) = 0, which contradicts to an /∈ µ. □

Fact 2.23 ([11]). Let S ⊆ Km be definable in K. Then st(S ∩ V m) ⊆ Qm
p is

definable in Qp.

Lemma 2.24. Let f : Kk −→ K be definable inK. Then

(i) X∞ = {a ∈ Qk
p | f(a) /∈ V } is definable in Qp.

(ii) Let X = Qk
p\X∞. Then g : X −→ Qp given by a 7→ st(f(a)) is definable in

Qp

Proof By Fact 2.16, there is a LQp-formula ϕ(x, y) such that for all a ∈ Qk
p and

b ∈ Qp, we have
Qp |= ϕ(a, b) ⇐⇒ v(f(a)) < v(b).

Hence
a ∈ X∞ ⇐⇒ Qp |= ∀yϕ(a, y),
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which shows that X∞ is definable in Qp. Again by Fact 2.16, there is LQp-formula
ψ(x, y1, y2) such that for all a ∈ Qk

p , b1, b2 ∈ Qp,

M |= ψ(a, b1, b2) ⇐⇒ v(f(a)− b1) > v(b2 − b1).

Therefore

b = st(f(a)) ⇐⇒ Qp |= ∀y1∀y2(v(b− y1) > v(y1 − y2) → ψ(a, y1, y2)).

for all a ∈ Qk
p and b ∈ Qp. We conclude that g : X −→ Qp, a 7→ st(f(a)) is

definable in Qp □

Lemma 2.25. Let X ⊆ Qm
p be a clopen subset of Qm

p . If ā ∈ V m and st(ā) /∈ X ,
then ā /∈ X(K).

Proof As X is clopen and st(ā) /∈ X , there is N ∈ Z such that

B(ā,N) = {b̄ ∈ Qm
p |

m∧
i=1

v(bi − st(ai)) > N} ∩X = ∅.

So B(ā,N)(K) ∩X(K) = ∅. But v(ai − st(ai)) > Z, hence

ā ∈ {b̄ ∈ Km |
m∧
i+1

v(bi − st(ai)) > N} = B(ā,N)(K).

So ā /∈ X(K) as required. □

Lemma 2.26. If X ⊆ Km and f : X −→ K are definable in K, then there is a
polynomial q(x1, . . . , xm, y) such that the graph of f is contained in the variety

{(a1, . . . , am, b) ∈ Km+1 | q(a1, . . . , am, b) = 0}.

Proof Let Y be the graph of f . Since Th(Qp) has quantifier elimination, Y is de-
fined by a disjunction

∨s
i=1 ϕi(x̄), where each ϕi(x̄) is a conjunction

(

li∧
j=1

gij (x̄, y) = 0) ∧
li∧

j=1

Pnij
(hij (x̄, y)),

where g’s and h’s belong toK[x̄, y]. Now eachPnij
(hij (x̄, y)) defines an open subset

ofKm+1. Since dim(Y ) ≤ m, we see that for each i ≤ s, there is f(i) ≤ li such that
gif(i) 6= 0 . Let q(x̄, y) = Πs

i=1gif(i)(x̄, y). Then

Y ⊆ {(a1, . . . , am, b) ∈ Km+1 | q(a1, . . . , am, b) = 0}

as required. □
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Proposition 2.27. If f : Km −→ K is definable in K. Let X = {ā ∈ Qm
p | f(ā) ∈

V }. Then

DX = {ā ∈ X | ∃b̄, c̄ ∈ st−1(ā)

(
f(b̄)− f(c̄) /∈ µ

)
}.

has no interiors.

Proof By Lemma 2.26, there is a polynomial

g(x1, . . . , xm, y) ∈ K[x1, . . . , xm, y]

such that the graph of f is contained in the variety of g. Without loss of generality, we
may assume that each coefficient of g is in V , otherwise, we could replace g by g/c,
where c is a coefficient of g with minimal valuation. Moreover, we could assume that
at least one coefficient of g is not in µ.

Suppose for a contradiction that DX contains a open subset of Qm
p . Shrink DX

if necessary, we may assume that DX ⊆ X is a Qp-definable open set in Qm
p . By

Lemma 2.4, there is a partition P of DX(K) ⊆ Km into finitely many definable
subsets S, over each of which g has some fixed number k ≥ 1 of distinct roots in K
with fixed multiplicitiesm1, . . . ,mk. For any fixed x̄0 ∈ S, let the roots of g(x̄0, y)
be r1, . . . , rk, and e = max{v(ri−rj) | 1 ≤ i < j ≤ k}. Then x̄0 has a neighborhood
N ⊆ Km, γ ∈ ΓK , and continuous, definable functions F1, . . . , Fk : S ∩N −→ K

such that for each x̄ ∈ S ∩N , F1(x̄), . . . , Fk(x̄) are roots of g(x̄, y) of multiplicities
m1, . . . ,mk and v(Fi(x̄)− ri) > 2e.

Since DX(K) is a Qp-definable open subset of X(K). By Fact 2.17, some
S ∈ P contains a Qp-definable open subset ψ(Km) of X(K). Where ψ is an LQp-
formula. Let A0 = ϕ(Qm

p ). Then A0 ⊆ A is an open subset of Qm
p , and over A0(K)

we have

(i) g has some fixed number k ≥ 1 of distinct roots inK with fixed multiplicities
m1, . . . ,mk.

(ii) For any fixed x̄0 ∈ A0(K), let the roots of g(x̄0, y) be r1, . . . , rk, and e =

max{v(ri − rj) | 1 ≤ i < j ≤ k}. Then x̄0 has a neighborhood N ⊆ Km,
γ ∈ ΓK , and continuous, definable functions F1, . . . , Fk : A0(K)∩N −→ K

such that for each x̄ ∈ A0(K) ∩ N , F1(x̄), . . . , Fk(x̄) are roots of g(x̄, y) of
multiplicitiesm1, . . . ,mk and v(Fi(x̄)− ri) > 2e.

(iii) for any ā ∈ A0, there exist b̄, c̄ ∈ st−1(ā) such that st(f(b̄)) 6= st(f(c̄)).

Suppose that

g(x1, . . . , xm, y) =
n∑

i=0

gi(x1, . . . , xm)yi,

where each gi(x̄) ∈ K[x̄]. Since the variety {ā ∈ Qm
p | st(gn)(ā) = 0} has dimen-

sionm− 1, it has no interior. By Fact 2.17,

A0\{ā ∈ Qm
p | st(gn)(ā) = 0}
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contains an open subset of Qm
p . Without loss of generality, we may assume that

{ā ∈ Qm
p | st(gn)(ā) = 0} ∩A0 = ∅.

Since the family of clopen subsets forms a base for topology onQm
p , we may assume

that A0 is clopen. We now claim that

Claim 1. For every ā ∈ A0(K), gn(ā) /∈ µ.

Proof Otherwise, by Corollary 2.21, we have st(gn)(st(ā)) = st(gn(ā)) = 0. So
st(ā) /∈ A0. By Lemma 2.25, we see that ā /∈ A0(K). A contradiction. □

By Claim 1 and Corollary 2.22, we see that for every ā ∈ A0(K) and b ∈ K, if
g(ā, b) = 0, then b ∈ V . By Corollary 2.21, we conclude the following claim

Claim 2. For every ā ∈ A0(K) and b ∈ K, if g(ā, b) = 0, then b ∈ V and

st(g)(st(ā), st(b)) = 0.

Now st(g) is a polynomial overQp. Applying Lemma 2.4 to st(g) and Fact 2.17,
and shrink A0 if necessary, we may assume that

• st(g) has some fixed number d ≥ 1 of distinct roots inK with fixed multiplic-
ities n1, . . . , nd over A0.

• Fix some x̄0 ∈ A0, let the roots of st(g)(x̄0, y) (in Qp) be s1, . . . , sd, and

∆ = max{v(si − sj) | 1 ≤ i < j ≤ d}.

Then there are definable continuous functions H1, . . . , Hd : A0 −→ Qp such
that for each x̄ ∈ A0, H1(x̄), . . . , Hd(x̄) are roots of st(g)(x̄, y) of multiplici-
ties n1, . . . , nd and v(Hi(x̄)− si) > 2∆.

• for any ā ∈ A0, there exist b̄, c̄ ∈ st−1(ā) such that st(f(b̄)) 6= st(f(c̄)).

By Claim 2, we see that for any x̄ ∈ A0(K), and b ∈ K, if g(x̄, b) = 0, then
b ∽µ Hi(st(x̄)) for some i ≤ d. As g(x̄, f(x̄)) = 0 for all x̄ ∈ Km, we see that

Claim 3. For each x̄ ∈ A0(K), f(x̄) ∽µ Hi(st(x̄)) for some i ≤ d.

Let Di = {x̄ ∈ A(K) | v(f(x̄)− si) > 2∆}. We claim that

Claim 4. A0(K) =
∪d

i=1Di andDi∩Dj = ∅ for each i 6= j. Namely, {D1, . . . , Dd}
is a partition of A0(K).

Proof Let x̄ ∈ A0(K). By Claim 3, there is some i ≤ d such that f(x̄) ∽µ

Hi(st(x̄)). It is easy to see that

v(f(x̄)− si) = v(f(x̄)−Hi(st(x̄)) +Hi(st(x̄))− si) = v(Hi(st(x̄))− si) > 2∆.
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So x̄ ∈ Di and this implies that A0(K) =
∪d

i=1Di.
On the other side, if x̄ ∈ Di ∩Dj for some 1 ≤ i < j ≤ d, we have v(f(x̄) −

si) > 2∆ and v(f(x̄)− sj) > 2∆, which implies that

v(si − sj) = v(si − f(x̄) + f(x̄)− sj) ≥ min{v(si − f(x̄)), v(f(x̄)− sj)} ≥ 2∆.

But v(si − sj) ≤ ∆. A contradiction. □

Claim 5. Let i ≤ d. For any ā, b̄ ∈ Di, if ā ∽µ b̄ then st(f(ā)) = st(f(b̄)).

Proof Let x̄ ∈ Di. By Claim 3, there is j ≤ d such that st(f(x̄)) = Hj(st(x̄)). We
see that

v(f(x̄)− sj) = v(f(x̄)−Hj(st(x̄)) +Hj st(x̄))− sj) = v(Hj(st(x̄))− sj) > 2∆.

So x̄ ∈ Dj . By Claim 4, i = j. We conclude that st(f(x̄)) = Hi(st(x̄)) whenever
x̄ ∈ Di. This complete the proof of Claim 5. □

Recall that for any ā ∈ A0, there exist b̄, c̄ ∈ st−1(ā) such that st(f(b̄)) 6=
st(f(c̄)). By Claim 4 and Claim 5, we see that for each ā ∈ A0, there is 1 ≤ i 6= j ≤ d

such that ā ∈ st(Di) ∩ st(Dj). This means that

A0 ⊆
∪

1≤i ̸=j≤d

st(Di) ∩ st(Dj)

By Fact 2.18, each st(Di)∩ st(Dj) has no interior. By Fact 2.17, A0 has no interiors.
A contradiction. □

Corollary 2.28. If f : Km −→ K is definable in K. Let X∞ = {ā ∈ Qm
p | f(ā) /∈

V }. Then

U = {ā ∈ X∞ | ∃b̄, c̄ ∈ st−1(ā)

(
f(b̄) ∈ V ∧ f(c̄) /∈ V

)
}.

has no interior.

Proof Otherwise, suppose that U ⊆ Km is open. Applying Proposition 2.27 to
g(x) = (f(x))−1, we see that g(U) ⊆ V , and for all ā ∈ U there are b̄, c̄ ∈ st−1(a)

such that st(g(b̄)) 6= 0 and st(g(c̄)) = 0. A contradiction. □

Lemma 2.29. Let f : Kk −→ K be definable in K, X = {a ∈ Qk
p | f(a) ∈ V },

and X∞ = {a ∈ Qk
p | f(a) /∈ V }. Then both

DX = {ā ∈ X | ∃b̄, c̄ ∈ st−1(ā)

(
f(b̄)− f(c̄) /∈ µ

)
}.

and
U = {ā ∈ X∞ | ∃b̄, c̄ ∈ st−1(ā)

(
f(b̄) ∈ V ∧ f(c̄) /∈ V

)
}.

are definable sets over Qp
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Proof Let X0 = {ā ∈ X | st(f(ā)) = 0} and X1 = {ā ∈ X | st(f(ā)) 6= 0}. As
we showed in Lemma 2.24, both X0 and X1 are Qp-definable sets. Let

g : Kk\f−1(0) −→ K

be theK-definable function given by x̄ 7→ 1/f(x̄).

S1 = {ā ∈ X | | st(Y )ā| > 1}
S2 = {ā ∈ X0 | | st(Z)ā| ≥ 1}
S3 = {ā ∈ X1 | | st(Z)ā| > 1}

Let Y ⊆ Kk+1 be the graph of f and Z ⊆ Kk+1 be the graph of g. For each ā ∈ Qk
p ,

let

st(Y )ā = {b ∈ Qp | (ā, b) ∈ st(Y )} and st(Z)ā = {b ∈ Qp | (ā, b) ∈ st(Z)}.

We now show that DX = S1 ∪ S2 ∪ S3.
Clearly, S1 and S3 are subsets of DX . If ā ∈ S2, then st(f(ā)) = 0 and there is

b̄ ∈ st−1(ā) such that 1/f(b̄) ∈ V , so f(ā)− f(b̄) /∈ µ, which implies that ā ∈ DX .
Therefore, we conclude that S1 ∪ S2 ∪ S3 ⊆ DX .

Conversely, take any ā ∈ DX and suppose that b̄, c̄ ∈ st−1(ā) such that f(b̄) −
f(c̄) /∈ µ. If both f(b̄) and f(c̄) are in V , then ā ∈ S1; If f(b̄) /∈ V and st(f(ā)) =
0, then b̄ ∈ dom(g). We see that (ā, 0) ∈ st(Z), so ā ∈ S2; If f(b̄) /∈ V and
st(f(ā)) 6= 0, then ā, b̄ ∈ dom(g), st(g(b̄)) = 0 and st(g(ā)) 6= 0, which implies that
| st(Z)ā| > 1, and thus ā ∈ S3. So we conclude thatDX ⊆ S1 ∪S2 ∪S3 as required.

AsS1, S2, andS3 are definable sets overQp,DX is definable overQp. Similarly,
U is definable over Qp. □

Suppose that C ⊆ Qm
p , we define the hull Ch by

Ch = {x̄ ∈ Km | st(x̄) ∈ C}.

Theorem 2.30. Let f : Km → K be an K-definable function. Then here is a finite
partition P of Qp into definable sets, where each set in the partition is either open in
Qm

p or lacks of interior. On each open set C ∈ P we have:

(i) either f(x) /∈ V for all x ∈ Ch;
(ii) or there is a continuous function g : C −→ Qp, definable in Qp, such that

f(x) ∈ V and st(f(x)) = g(st(x)), for all x ∈ Ch.

Proof Let X, X∞ be as in Lemma 2.24, DX as in Proposition 2.27, and U as in
Corollary 2.28, thenDX and U have no interior, and by Lemma 2.29, they are defin-
able. Now {DX , X\DX , U,X∞\U} is a partition of Qm

p . Clearly, {Int(X∞\U),
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(X∞\U) \ Int(X∞\U)} is a partition of X∞\U where Int(X∞\U) is open and
(X∞\U) \ Int(X∞\U) lacks of interior.

Let h : X\DX −→ Qp be a definable function defined by x 7→ st(f(x)). By
Theorem 1.1 of [14], there is a finite partition P∗ of X\DX into definable sets, on
each of which h is analytic. Each set in the partition is either open in Qm

p or lacks of
interior.

Clearly, the partition

P = {DX , U, Int(X∞\U), (X∞\U) \ Int(X∞\U)} ∪ P∗

satisfies our condition. □

We now prove our last result.

Lemma 2.31. Let Z ⊆ Kn be definable inK of dimension k < n, and the projection

π : (x1, . . . xn) 7→ (x1, . . . , xk)

is injective on Z. Then dimQp(st(Z ∩ V n)) ≤ k.

Proof As π is injective on X , there is a definable function

f = (f1, . . . , fn) : K
k −→ Kn

such that

• f(π(x̄)) = (f1(π(x̄)), . . . , fn(π(x̄))) = x̄ for all x̄ ∈ Z;
• f(ȳ) = (0, . . . , 0) for all ȳ ∈ Kk\π(X).

By Lemma 2.26, for each i ≤ n, there is a polynomial Fi(ȳ, u) such that the graph of
fi is contained in the variety

V (Fi) = {(ȳ, u) ∈ Kk+1 | Fi(ȳ, u) = 0}

of Fi. We assume that each coefficient belongs to V . It is easy to see that for each

(a1, . . . , an) ∈ Z ∩ V n,

we have fi(π(a1, . . . , an)) = ai. So Fi(a1, . . . , ak, ai) = 0. By Corollary 2.21,

st(Fi)(st(a1), . . . , st(ak), st(ai))) = 0.

So st(Z ∩ V n) is contained in the variety

V (st(F1), . . . , st(Fn))

=

{
(a1, . . . , an) ∈ Qn

p |
∧n

i=1

(
st(Fi)(st(a1), . . . , st(ak), st(ai))) = 0

)}
.



60 Studies in Logic, Vol. 13, No. 6 (2020)

Let A ⊆ Qp be the collection of all coefficients from st(Fi)’s. Then for each

(a1, . . . , an) ∈ V (st(F1), . . . , st(Fn)),

we see that ai is a root of Fi(a1, . . . , ak, u), and hence ai ∈ acl(A, a1, . . . , ak), where
i ≤ n. This implies that

dim(a1, . . . , an/A) = dim(a1, . . . , ak/A) ≤ k

for all (a1, . . . , an) ∈ V (st(F1), . . . , st(Fn)). By Fact 1.8 (v), we see that

dimQp(V (st(F1), . . . , st(Fn)))

= max
{
dim(a1, . . . , an/A) | (a1, . . . , an) ∈ V (st(F1), . . . , st(Fn))

}
≤ k.

So st(Z ∩ V n) ≤ k as required. □

Theorem 2.32. Let Z ⊆ Kn be definable in K. Then dimQp(st(Z ∩ V n)) ≤
dimK(Z).

Proof Since st(X∪Y ) = st(X)∪st(Y ) and dim(X∪Y ) = max{dim(X), dim(Y )}
hold for all definable X,Y ⊆ Kn. Applying Corollary 2.14, we many assume that
dim(Z) = k and π : (x1, . . . xn) 7→ (x1, . . . , xk) is injective on Z. If k = n, then

dimQp(st(Z ∩ V n)) ≤ n

as st(Z ∩ V n) ⊆ Qn
p . If k < n, then by Lemma 2.31,

dimQp(st(Z ∩ V n)) ≤ k

as required. □
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关于 p-进闭域的非标准模型上的维数和标准映射

姚宁远

摘 要

我们研究了 p-进数域 Qp 的初等扩张 K 上的可定义函数及其相关的维数理

论。证明了Km的可定义子集X 在标准模型Qp中的维数 dimQp
(X ∩Qm

p )不超过

X 在 K 中的维数。我们还证明了：对 K 中的可定义函数 f : Km → K，存在一

个可定义集合 D ⊆ Qm
p 以及 Qp 上的可定义函数 g : D → Qp ∪ {∞}使得 Qm

p \D
无内点，且对每个 x ∈ D有 g(x) = st(f(st−1(x)))。进一步，我们证明了对Km的

可定义子集 X，有 dimQp
(st(X))也不超过 X 在K 中的维数。
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