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Comparing Fixed-Point and Revision Theories of
Truth from the Perspective of Paradoxicality*

Qiqing Lin

Abstract. For the aim “to get a sense of the lay of the land amid a variety of options”, Kremer
(2009) defined three relations to compare ten fixed-point theories suggested by Kripke (1975)
and three revision theories considered by Gupta and Belnap (1993). This paper extends Kre-
mer’s comparative work by comparing these theories from another important perspective, the
perspective of paradoxicality. The notion of paradoxicality is very important for theories of
truth, which has influenced philosophers’ choice of specific theory of truth. We define a new
relation in terms of this perspective, and establish the relationship among the thirteen theories
of truth according to this relation.

1 Introduction

In 1975, Kripke put forward the fixed-point theory of truth in [7]. Martin and
Woodruff independently proposed this theory at almost the same time in [9]. With
the publication of Kripke ([7]) and Martin and Woodruff ([9]), “not only was it es-
tablished once and for all that three-valued languages could contain T-predicates for
themselves, but tools became available that could be used to construct systematic
theories of truth.” ([3], p. 58)

The basic idea of the fixed-point theory of truth is that paradoxical sentences
such as the Liar sentence are neither true nor false. Interpreting the truth predicate as
a fixed point can guarantee that the truth value of any sentence A is the same as the
one of the sentence that “A” is true. In [7], Kripke provided an inductive construction
according to which we can construct fixed points of the jump operators derived from
certain kind of three-valued valuation schemes, and he pointed out that those jump
operators not only have a least fixed point, but also have a greatest intrinsic fixed point.
The inductive construction for constructing fixed points applies to the strong Kleene
scheme κ, the weak Kleene scheme µ, the van Fraassen’s supervaluation scheme, σ,
and some variants of σ (including σ1 and σ2).

Kripke ([7]) did notmake any particular recommendation among the three-valued
valuation schemes to which the inductive construction applies. Neither did he make
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any firm recommendation among the fixed points of a given valuation scheme. Kripke
did think the least fixed point as “the most natural” interpretation for the intuitive
concept of truth, and the greatest intrinsic fixed point as “the unique ‘largest’ inter-
pretation” consistent with our intuitive idea of truth.

In the fixed-point theory of truth, a sentence is defined to be paradoxical if it has
no truth value in any fixed point.

The revision theory of truth is a competitive theory of the fixed-point theory of
truth. In 1982, Herzberger suggested this theory in [4], and Gupta independently put
forward this theory in [2]. They came up with the theory for different reasons. Since
the inductive construction for constructing fixed points provided by Kripke does not
apply to the classical valuation scheme, τ , and “it is reasoning in accordance with
classical logic which in the first instance gives rise to the semantic paradoxes” ([4],
p. 61), Herzberger adapted Kripke’s inductive construction for admitting the classical
valuation scheme. The revision theory of truth was thus suggested by Herzberger.
Gupta proposed this theory to solve the descriptive problem about the truth concept1,
basing on the following idea: “When we learn the meaning of ‘true’ what we learn
is a rule that enables us to improve on a proposed candidate for the extension of
truth.” ([2], p. 37) This rule is called “the revision rule for truth” in [2].

In the revision theory of truth, sentences are classified according to their behavior
in revision sequences, which are ordinal-length sequences based on the revision rule.
A limit rule is needed to determine the objects of a revision sequence at limit stages.
Hence, different limit rule policies adopted lead to different resultant revision theories.
The limit rule policy adopted by Herzberger ([4]) is different from the one adopted by
Gupta ([2]). Belnap criticized Gupta’s limit rule policy, and suggested another limit
rule policy (and hence another resultant revision theory) in [1].

InGupta andBelnap’smonograph ([3]), they provided a clear philosophical basis
for the following idea: “the signification of truth is a rule of revision.” ([3], p. 139)2

They viewed Tarski biconditionals as Tarski suggested, i.e., as partial definitions of
the truth concept. Hence, they reckoned the truth concept is a circular concept and
its signification is a revision rule determined by its definition, i.e., the totality of all

1Gupta has distinguished two different problems that the Liar paradox raises about the concept of
truth in his paper [2], the descriptive one and the normative one. The descriptive problem is described as
follows: “The first is the descriptive problem of explaining our use of the word ‘true’, and, in particular,
of giving the meaning of sentences containing ‘true’.” ([2], p. 1) The normative one is described as
follows: “The second problem that the liar paradox raises about the concept of truth is the normative
one of discovering the changes (if any) that the paradox dictates in our conception and use of ‘true’.” ([2],
p. 1–2)

2Gupta and Belnap defined the notion of signification as follows: “Let the (extensional) signification
of an expression (or a concept) in a word w be an abstract something that carries all the information
about the expression’s extensional relations in w.” ([3], p. 30) They concluded that “Signification is a
generalization of the notion of extension.” ([3], p. 30)
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Tarski biconditionals. Three revision theories have been presented in detail by Gupta
and Belnap ([3]), denoted by T∗, T# and TC respectively. T∗ is actually the theory
proposed by Belnap in [1].

In the revision theory of truth, a sentence is defined to be paradoxical if, it is
unstable or not nearly stable in all or certain kind of revision sequences.

Kremer introduced three binary relations,≤1,≤2 and≤3, to compare fixed-point
and revision theories of truth, for the point “to get a sense of the lay of the land amid
a variety of options”. ([5], p. 363) According to the three relations, he established the
relationships among ten fixed-point theories suggested by Kripke in [7], and three
revision theories considered by Gupta and Belnap in [3]. The ten fixed-point theories
are respectively based on the least fixed point or the greatest intrinsic fixed point of
one of the five three-valued valuation schemes, κ, µ, σ, σ1 and σ2. The three revision
theories compared by Kremer ([5]) are T∗, T# and TC .

≤1,≤2 and≤3 represent three different perspectives to compare theories of truth.
For example, ≤1 is defined according to the perspective of validity.3

In [6], Kremer used the comparative results in [5] to critique on a claim of Gupta
and Belnap in [3]: “An important feature of the revision theory, and one that prompted
our interest in it, is its consequence that truth behaves like an ordinary classical con-
cept under certain conditions—conditions that can roughly be characterized as those
in which there is non-vicious reference in the language.” ([3], p. 201) After consid-
ering notions of “truth behaving like an ordinary classical concept” and notions of
“non-vicious reference” generated both by revision theories and by fixed-point theo-
ries, Kremer showed that some fixed-point theories have an advantage analogous to
what Gupta and Belnap claimed for their approach, and T# does not have the advan-
tage.

Kremer’s comparative work is very meaningful, which helps us to know more
about the thirteen theories of truth and the relationships among them. His work is
also very useful: for example, it helps us to get a better understanding of Gupta and
Belnap’s claim introduced above.

In addition to the three natural perspectives in Kremer’s comparative work, it is
also meaningful to compare theories of truth from the perspective of paradoxicality.
The notion of paradoxical is an important notion for theories of truth. On the one hand,
it is often the case that in formal theories of truth, the definition of paradoxicality is
provided as soon as the signification of the truth concept is presented. On the other
hand, this notion influences philosophers’ choice of concrete theories of truth. When
Gupta proposed the revision theory of truth in [2], one of the two reasons for which
Gupta adopted a limit rule policy different from the one adopted by Herzberger ([4]),
is that he reckoned the revision theory resulting from the limit rule policy adopted by
Herzberger misclassifies certain sentences, which should be paradoxical according

3Readers can consult [5, p. 372–377] for detailed motivations of ≤1, ≤2, and ≤3.
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to Gupta’s intuition ([2], p. 53). In [10], Yaqūb provided four kinds of artifacts to
criticize T∗, T# and TC (and raised his own revision theory), two of which are related
to the assertion of paradoxical sentences.

In a word, it is significant to compare theories of truth from the perspective of
paradoxicality. This paper define a new relation according to the perspective of para-
doxicality, denoted by≤4, among the thirteen theories of truth considered in Kremer’s
comparative work ([5]), and establish the relationship among the theories according
to this relation.

The rest of this paper is structured as follows. The next section introduces the
ten fixed-point theories of truth. The third section introduces T∗, T# and TC . In the
fourth section, the thirteen theories of truth are compared according to the relation
≤4. This paper is concluded in Section 5.

2 Fixed-point Theories of Truth

Denote the set of all sentences of a first-order language L by Sent(L). If L and
L+ are two first-order languages such that L+ includes only all the symbols of L and
an additional 1-place predicate symbol T , and ⌜A⌝ is a constant symbol of L for any
A ∈ Sent(L+), then say that L+ is a truth language, and L is the ground language
of L+. ⌜A⌝ is called a quote name in L+. If M = ⟨D, I⟩ is a classical model for L
satisfying the condition that Sent(L+) ⊆ D and I(⌜A⌝) = A for eachA ∈ Sent(L+),
then say thatM is a ground model of L+.

Given a ground model M = ⟨D, I⟩ of a truth language L+, if h is a function
fromD to the truth value set {t, f,n}, then h is called a hypothesis (relative toM). If
the domain of h is a subset of {t, f}, then h is called a classical hypothesis. Denote
the expanded model ofM for L+ in which T is interpreted by h byM+ h.

Given a first-order language L, call M = ⟨D, I⟩ a three-valued model for L if
it satisfies the following conditions: (1) D is a nonempty set; and (2) I is a function
the domain of which is the set of the nonlogical symbols of L such that it maps every
constant symbol to an element ofD, every n-place function symbol to a function from
Dn toD, and every n-place predicate symbol to a function fromDn to the truth value
set {t, f,n}. Given a modelM and a valuation scheme ρ that applies toM, the truth
value of sentence A inM according to ρ is denoted by ValρM(A).

In κ and µ, negation is treated in the same way: ¬t = f, ¬f = t, and ¬n = n.
In κ, conjunction is treated as follows: ∧(x, y) = t iff x = y = t, and ∧(x, y) = f iff
x = f or y = f. And κ treats universal quantifier analogously to conjunction. In µ,
conjunction is treated as follows: ∧(x, y) = t iff x = y = t, and ∧(x, y) = n iff x = n
or y = n. And universal quantifier is treated analogously to conjunction in µ too.

Order the truth values as follows: n ≤ n ≤ t ≤ t, and n ≤ f ≤ f. Given two
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three-valued models for L,M = ⟨D, I⟩ andM′ = ⟨D, I ′⟩, and an n-place predicate
symbol R, if for any d1, d2, . . . , dn ∈ D, I(R)(d1, d2, . . . , dn) ≤ I ′(R)(d1, d2, . . . ,

dn), then I(R) ≤ I ′(R). M ≤ M′ if I and I ′ agree on all constant symbols and
function symbols, and I(R) ≤ I ′(R) for each predicate symbol R. Given a three-
valued modelM and a sentence A, ValσM(A) is defined as follows:

ValσM(A) =


t if for any classical modelM′ ≥ M, ValτM′(A) = t,
f if for any classical modelM′ ≥ M, ValτM′(A) = f,
n otherwise.

Given a ground model M = ⟨D, I⟩ of a truth language L+, and given that
ρ = κ, µ or σ, the jump operator (derived from ρ) ρM is a function from hypotheses
to hypotheses such that, for any hypothesis h and any d ∈ D,

ρM(h)(d) =

{
ValρM+h(d) if d ∈ Sent(L+),
f otherwise.

Given a ground model M = ⟨D, I⟩ of a truth language L+, and given a jump
operator ρM, if h is a hypothesis such that ρM(h) = h, then call h a fixed point of ρM.
If h is a fixed point of ρM, then for any sentence A ∈ Sent(L+), ValρM+h(T ⌜A⌝) =
ValρM+h(A), since Val

ρ
M+h(T ⌜A⌝) = h(A) = ρM(h)(A) = ValρM+h(A).

Given any truth language L+ and any ground modelM = ⟨D, I⟩ of L+, Kripke
([7]) provided an inductive construction to construct fixed points of jump operators
derived from certain kind of three-valued valuation schemes, in which the monotonic-
ity of a jump operator plays a crucial role.

A jump operator ρM is monotone if, for all hypotheses h and h′ in the domain
of ρM such that h ≤ h′, ρM(h) ≤ ρM(h′). Taking κ as an example, Kripke ([7])
constructed a fixed point according to the inductive construction.

Suppose thatM = ⟨D, I⟩ is a ground model of a truth language L+, and that h
is the empty hypothesis (relative toM), i.e., h(d) = n for each d ∈ D. Suppose that
α is a limit ordinal, and that ⟨hβ | β < α⟩ is a sequence of hypotheses whose length
is α. Let the union of ⟨hβ | β < α⟩ be as follows (denoted by

∪
β<α hβ): for every

d ∈ D,

∪
β<α hβ(d) =


t if there is an ordinal β < α such that hβ(d) = t,
f if there is an ordinal β < α such that hβ(d) = f,
n otherwise.

When applied to κM and beginning with the empty hypothesis, Kripke’s inductive
construction can be represented as follows: for every ordinal α,

if α = 0, then let hα = h;
if α = β + 1, then let hα = κM(hβ); and
if α is a limit ordinal, then let hα =

∪
β<α hβ .

Since κM is a total function on the set of all hypotheses and is monotone, it can be
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proved that a unique ordinal-length sequence of hypotheses is obtained in this way
(denoted by ⟨hα | α ∈ On⟩, where On denotes the class of all ordinals), and that
for all ordinals α ≤ α′, hα ≤ hα′ . Since the cardinality of the set of all hypotheses
is bounded, there must be ordinals α < α′ such that hα = hα′ . So hα = hα+1 =

κM(hα), i.e., hα is a fixed point of κM.
Kripke pointed out that the fixed point obtained above is the least fixed point of

κM and that the same way can be used to construct the least fixed point of µM and
that of σM.

Given a ground modelM = ⟨D, I⟩ of a truth language L+, a valuation scheme
ρ that applies toM+ h, and a hypothesis h, if h ≤ ρM(h), then say that h is sound
(relative to ρM). Given that ρ = κ, µ, or σ, by [3, Thm. 5C.16], it can be seen
that starting with any sound hypothesis (relative to ρM) h, a fixed point of ρM can
be constructed according to Kripke’s inductive construction, which is the least fixed
point larger than or equal to h.

Suppose that M = ⟨D, I⟩ is a ground model of a truth language L+, and that
ρM is a jump operator. Given two hypotheses h and h′ (relative toM), if there exists
a hypothesis h′′ (relative toM) such that h ≤ h′′ and h′ ≤ h′′, then say that h and h′

are compatible. Given a hypothesis h, if h is compatible with all fixed points of ρM,
then say that h is intrinsic (relative to ρM).

Let ρ = κ, µ, σ. Kripke ([7]) showed that for any truth language L+ and any
ground modelM = ⟨D, I⟩ of L+, ρM has a greatest intrinsic fixed point. Following
[5], the least fixed point of ρM is denoted by lfp(ρM), and the greatest intrinsic fixed
point of ρM is denoted by gifp(ρM).

For any truth language L+ and any ground model M of L+, Kripke’s induc-
tive construction for constructing fixed points applies to two variants of σM that
are denoted by σ1M and σ2M respectively in [5]. Given that Γ is a set of sen-
tences, if there is no sentence A such that both A and ¬A are classical first-order
consequences of Γ, then say that Γ is consistent. Given a hypothesis h, if the set
{A ∈ Sent(L+) | h(A) = t} is consistent, then say that h is weakly consistent; and
if the set {A ∈ Sent(L+) | h(A) = t} ∪ {¬A | A ∈ Sent(L+), h(A) = f} is consis-
tent, then say that h is strongly consistent. σ1M is a function from weakly consistent
hypotheses to weakly consistent hypotheses such that for every weakly consistent
hypothesis h, every d ∈ D,

σ1M(h)(d) =


t if d is a sentence, and ValτM+h′(d) = t

for every weakly consistent classical hypothesis h′ ≥ h,
f if d is a nonsentence, or d is a sentence and ValτM+h′(d) = f

for every weakly consistent classical hypothesis h′ ≥ h,
n otherwise.

σ2M is a function from strongly consistent hypotheses to strongly consistent hypothe-
ses such that for every strongly consistent hypothesis h, every d ∈ D,
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σ2M(h)(d) =


t if d is a sentence, and ValτM+h′(d) = t

for every strongly consistent classical hypothesis h′ ≥ h,
f if d is a nonsentence, or d is a sentence and ValτM+h′(d) = f

for every strongly consistent classical hypothesis h′ ≥ h,
n otherwise.

Both σ1M and σ2M are monotone, and have both a least least fixed point and a great-
est intrinsic fixed point. Following [5], σ1 and σ2 are treated as two three-valued
valuation schemes.

Let L+ be a truth language, andM be a ground model of L+. Kremer ([5]) has
considered ten fixed-point theories, Tlfp,ρ and Tgifp,ρ for each ρ ∈ {κ, µ, σ, σ1, σ2}.
The fixed-point theory Tlfp,ρ dictates that the interpretation of T in the ground model
M is the least fixed point of ρM. The fixed-point theory Tgifp,ρ dictates that the
interpretation of T in the ground modelM is greatest intrinsic fixed point of ρM.

For any hypothesis (relative to M = ⟨D, I⟩) h and any d ∈ D, if h(d) = t
(h(d) = f, h(d) = n), then say that h declares d true (false, neither true nor false).

Definition 1. Let L+ be a truth language, M be a ground model of L+, ρ = κ, µ,
σ, σ1 or σ2, and A ∈ Sent(L+). Say that A is paradoxical in the ground model M
according to the theory T lfp,ρ (or the theory Tgifp,ρ) if all fixed points of ρM declare
A neither true nor false.

3 Revision Theories of Truth

Given a truth language L+ and a ground model M = ⟨D, I⟩ of L+, a revision
rule for truth, τM, is a function from classical hypotheses to classical hypotheses such
that for every classical hypothesis h, every d ∈ D,

τM(h)(d) =

{
ValτM+h(d) if d ∈ Sent(L+),
f otherwise.

For any truth language L+ and any ground model M of L+, the following
propositons hold: (1) µM(h) ≤ κM(h) ≤ σM(h) for every hypothesis h; (2)
σM(h) ≤ σ1M(h) for every weakly consistent hypothesis h; (3) σ1M(h) ≤ σ2M(h)

for every strongly consistent hypothesis h; (4) τM(h) = µM(h) = κM(h) = σM(h)

for every classical hypothesis h; (5) τM(h) = σ1M(h) for every weakly consistent
classical hypothesis h; and (6) τM(h) = σ2M(h) for every strongly consistent clas-
sical hypothesis h.

For any sequence S , lh(S ) is used to denote the length of S , and for any β <
lh(S ),Sβ is used to denote the βth object ofS . Given a ground modelM = ⟨D, I⟩
of a truth language L+, and a sequence of classical hypotheses S whose length is
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some limit ordinal or On. Suppose that α is a limit ordinal such that α ≤ lh(S ).
If there is an ordinal β such that β < α, and for every β ≤ δ < α, Sδ(d) = t
(Sδ(d) = f), then say that d is stably true (stably false) up to α in S . If d is either
stably true or stably false up to α, then say that d is stable up to α in S ; otherwise, d
is unstable up to α in S .

Given a ground model M = ⟨D, I⟩ of a truth language L+, if S is a sequence
of classical hypotheses of length On such that for every ordinal α, (1) if α = β + 1,
then Sα = τM(Sβ), and (2) if α is a limit ordinal, then for every d ∈ D, every
x ∈ {t, f}, if d is stably x up to α in S then Sα(d) = x, then say that S is a revision
sequence. According to this notion of revision sequence, any element stably true up
to a limit ordinal α is declared true at stage α, and any element stably false up to α is
declared false at stage α, and any element unstable up to α can be arbitrarily declared
either true or false at stage α. This notion of revision sequence adopts Belnap’s limit
rule policy proposed in [1].

Given a revision sequence S and any element d in the domain, if there is an
ordinal α such that for every α ≤ β, Sβ(d) = t (Sβ(d) = f), then say that d is
stably true (false) in S . If d is stably true or stably false in S , then say that d is
stable in S ; otherwise, d is unstable in S .

Given a revision sequence S and any element d in the domain, if there is an
ordinal α such that for every α ≤ β, there is a natural number n such that for every
m ≥ n, Sβ+m(d) = t (Sβ+m(d) = f), then say that d is nearly stably true (nearly
stably false) in S . If d is either nearly stably true or nearly stably false in S , then
say that d is nearly stable in S ; otherwise, d is not nearly stable in S .

Given a ground modelM of a truth language L+ and a hypothesis h (relative to
M), if the set {A ∈ Sent(L+) | h(A) = t} is maximally consistent, then say that h
is maximally consistent. Given any classical hypothesis h, h is strongly consistent iff
h is maximally consistent. Given a revision sequence S , if for every ordinal α, Sα

is maximally consistent, then say that S is a C-sequence.4

T∗ is the revision theory that classifies sentences according to their stability in
all revision sequences. T# is the revision theory that classifies sentences according to
their near stability in all revision sequences. TC is the revision theory that classifies
sentences according to their stability in all C-sequences.

Definition 2. Let L+ be a truth language, M be a ground model of L+, and A ∈
Sent(L+). Say that A is paradoxical in the ground modelM according to the theory
T∗ if A is unstable in any revision sequence. Say that A is paradoxical in the ground
modelM according to the theory T# ifA is not nearly stable in any revision sequence.
Say that A is paradoxical in the ground modelM according to the theory TC if A is
unstable in any C-sequence.

4Note that for any revision sequence S , every ordinal α, Sα+1 is maximally consistent.
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4 Relationship among the Theories of Truth

In this section, the thirteen theories of truth are compared from the perspective
of paradoxicality: Tlfp,µ, Tlfp,κ, Tlfp,σ, Tlfp,σ1 , Tlfp,σ2 , Tgifp,µ, Tgifp,κ, Tgifp,σ, Tgifp,σ1 ,
Tgifp,σ2 , T∗, T# and TC .

Definition 3. Given any two theories T and T′ among the thirteen theories, say that
T ≤4 T′ iff for every truth language L+, every ground model M of L+, and every
sentenceA ∈ Sent(L+), ifA is paradoxical inM according toT thenA is paradoxical
in M according to T′. Say that T ≡4 T′ iff T ≤4 T′ and T′ ≤4 T. Note that ≤4 is
reflexive and transitive.

Theorem 4. Figure 1 uses an arrow to represent that the relation ≤4 holds between
the theory at the start of the arrow and the one at the end of the arrow. When restricted
to the ten fixed-point theories, the relation≤4 is the reflexive transitive closure of the
relation shown in Figure 1.

Tlfp,σ2 Tlfp,σ1 Tlfp,σ Tlfp,κ Tlfp,µ

Tgifp,σ2 Tgifp,σ1 Tgifp,σ Tgifp,κ Tgifp,µ

Figure 1

Proof Since≤4 is reflexive and transitive, it is enough to prove the following claims:
(1) Tlfp,µ ≡4 Tgifp,µ, Tlfp,κ ≡4 Tgifp,κ, Tlfp,σ ≡4 Tgifp,σ, Tlfp,σ1 ≡4 Tgifp,σ1 , and
Tlfp,σ2 ≡4 Tgifp,σ2 ; (2) Tlfp,σ2 ≤4 Tlfp,σ1 , Tlfp,σ1 ≤4 Tlfp,σ, Tlfp,σ ≤4 Tlfp,κ, and
Tlfp,κ ≤4 Tlfp,µ; and (3) Tlfp,σ1 ̸≤4 Tlfp,σ2 , Tlfp,σ ̸≤4 Tlfp,σ1 , Tlfp,κ ̸≤4 Tlfp,σ, and
Tlfp,µ ̸≤4 Tlfp,κ.

(1) holds by Definition 1.
The proof of (2) is as follows. Choose ρ and ρ′ from the list µ, κ, σ, σ1, σ2

such that ρ is to the left of ρ′. Next, we prove that Tlfp,ρ′ ≤4 Tlfp,ρ. Given any
truth language L+ and any ground model M of L+, and any fixed point h of ρM,
note that h is strongly consistent, and h is sound relative to ρ′M since h = ρM(h) ≤
ρ′M(h). Hence a fixed point of ρ′M can be constructed according to Kripke’s inductive
construction, which is the least fixed point larger than or equal to h. In other words,
for any fixed point h of ρM, there is a fixed point of ρ′M larger than or equal to h.
Given anyA ∈ Sent(L+), suppose thatA is paradoxical inM according to the theory
Tlfp,ρ′ , i.e., all fixed points of ρ′M declare A neither true nor false. Hence all fixed
points of ρM must declare A neither true nor false. A is paradoxical inM according
to the theory Tlfp,ρ. So Tlfp,ρ′ ≤4 Tlfp,ρ.



34 Studies in Logic, Vol. 13, No. 6 (2020)

The proof of (3) is as follows. Consider a truth languageL+ without any nonlog-
ical symbols except for T , quote names, and a nonquote names a. LetM = ⟨D, I⟩ be
the ground model ofL+ where I(a) = ¬T a. Note that for each ρ ∈ {µ, κ, σ, σ1, σ2},
and any fixed point h of ρM, h(¬T a) = n, and h(T a) = n.5

(3.1) Consider the sentence T ⌜¬T a⌝∨ T ⌜T a⌝. Let S be the unique ordinal-length
sequence of hypotheses obtained in the construction of the least fixed point of σ2M
according to Kripke’s inductive construction, whereS0 is the empty hypothesis. Note
that S is an increasing sequence of hypotheses. For every strongly consistent clas-
sical hypothesis h ≥ S0, h must declare only one of ¬T a and T a true. Hence,
σ2M(S0) must declare T ⌜¬T a⌝ ∨ T ⌜T a⌝ true. So lfp(σ2M) declares T ⌜¬T a⌝ ∨
T ⌜T a⌝ true. Therefore T ⌜¬T a⌝ ∨ T ⌜T a⌝ is not paradoxical in M according to
the theory Tlfp,σ2 . For any fixed point h of σ1M, it is not the case that h declares
T ⌜¬T a⌝ ∨ T ⌜T a⌝ false, since there is a fixed point of σ2M larger than or equal
to h. And since h is strongly consistent, there is a weakly consistent classical h′

such that h ≤ h′ and h′(¬T a) = f, and h′(T a) = f. Hence, τM(h′) declares
T ⌜¬T a⌝∨T ⌜T a⌝ false. So hmust declare T ⌜¬T a⌝∨T ⌜T a⌝ neither true nor false.
Because of the arbitrariness of h, all fixed points of σ1M declare T ⌜¬T a⌝∨T ⌜T a⌝
neither true nor false. Hence, T ⌜¬T a⌝ ∨ T ⌜T a⌝ is paradoxical in M according to
the theory Tlfp,σ1 . So Tlfp,σ1 ̸≤4 Tlfp,σ2 .
(3.2) Consider the sentence ¬T ⌜¬T a⌝ ∨ ¬T ⌜T a⌝. Similar to (3.1), it can be prove
that lfp(σ1M) declares ¬T ⌜¬T a⌝ ∨ ¬T ⌜T a⌝ true, and that ¬T ⌜¬T a⌝ ∨ ¬T ⌜T a⌝
is paradoxical inM according to the theory Tlfp,σ. So Tlfp,σ ̸≤4 Tlfp,σ1 .
(3.3) Consider the sentence¬T a∨T a. Since for any fixed point h of κM, h(¬T a) =
n, and h(T a) = n, κM(h)(¬T a ∨ T a) = n. Hence ¬T a ∨ T a is paradoxical in
M according to the theory Tlfp,κ. Let S be the unique ordinal-length sequence of
hypotheses obtained in the construction of the least fixed point of σM according to
Kripke’s inductive construction, where S0 is the empty hypothesis. S is an increas-
ing sequence of hypotheses. For every classical hypothesis h ≥ S0, τM(h) must
declare ¬T a ∨ T a true. So lfp(σM) declares ¬T a ∨ T a true. Therefore ¬T a ∨ T a
is not paradoxical inM according to the theory Tlfp,σ. So Tlfp,κ ̸≤4 Tlfp,σ.
(3.4) Consider the sentence ¬T a ∧ ¬∃x(x = x). Since for any fixed point h of
µM, h(¬T a) = n, and h(¬∃x(x = x)) = f, µM(h)(¬T a ∧ ¬∃x(x = x)) = n.
h(¬T a ∧ ¬∃x(x = x)) = µM(h)(¬T a ∧ ¬∃x(x = x)) = n. Because of the
arbitrariness of h, all fixed points of µM declare ¬T a ∧ ¬∃x(x = x) neither true
nor false. Hence ¬T a ∧ ¬∃x(x = x) is paradoxical in M according to the theory
Tlfp,µ. Since for any fixed point h′ of κM, h′(¬T a) = n, and h′(¬∃x(x = x)) = f,
κM(h′)(¬T a ∧ ¬∃x(x = x)) = f. Hence h′(¬T a ∧ ¬∃x(x = x)) = f. Hence
¬T a ∧ ¬∃x(x = x) is not paradoxical in M according to the theory Tlfp,κ. So
Tlfp,µ ̸≤4 Tlfp,κ. □

5¬T a can be regarded as a formalization of the Liar sentence.



Qiqing Lin / Comparing Fixed-Point and Revision Theories of Truth 35

Lemma 1. TC ̸≤4 T∗.

Proof Consider a truth language L+ without any nonlogical symbols except for T ,
quote names, a nonquote names a, and and a 1-place predicate symbol G. Let A be
the sentence ¬T ⌜¬T a⌝ ∨ ¬T ⌜T a⌝. Define sentences T n(A)(n ≥ 0) as follows:
T 0(A) = A, and T n+1(A) = T ⌜T n(A)⌝.

Let M = ⟨D, I⟩ be the ground model of L+ where I(a) = ¬T a and I(G) =
{A,T 1(A),T 2(A),T 3(A), . . .}.

Consider the sentence ∀x(Gx → Tx) ∧ A. Let S be a revision sequence such
that, S0 declares ¬T a, T a and all elements in I(G) true, and declares ∀x(Gx →
Tx) ∧ A false, and for any limit ordinal α, Sα declares both ¬T a and T a true.6

The behavior of sentences in the set I(G) ∪ {¬T a,T a,∀x(Gx → Tx) ∧ A} in
S is shown in Table 1. Clearly, ∀x(Gx → Tx) ∧ A is stably false in S . Hence
∀x(Gx → Tx) ∧ A ∧ ¬T a is stably false in S . So ∀x(Gx → Tx) ∧ A ∧ ¬T a is
not paradoxical inM according to the theory T∗.

S0 S1 S2 S3 S4 S5 . . . Sω Sω+1 Sω+2 Sω+3 Sω+4 . . . Sω2 . . .

T a t t f t f t . . . t t f t f . . . t . . .

¬T a t f t f t f . . . t f t f t . . . t . . .

A t f t t t t . . . t f t t t . . . t . . .

T 1(A) t t f t t t . . . t t f t t . . . t . . .

T 2(A) t t t f t t . . . t t t f t . . . t . . .

T 3(A) t t t t f t . . . t t t t f . . . t . . .
...

...
...

...
...

...
... . . .

...
...

...
...

... . . .
... . . .

∀x(Gx → Tx) ∧A f f f f f f . . . f f f f f . . . f . . .

Table 1

Next, we prove that ∀x(Gx→ Tx) ∧A ∧ ¬T a is paradoxical inM according
to the theory TC . For any C-sequence S ′, any ordinal α, since Sα is maximally
consistent, Sα+1 declares A true. By the definition of revision sequence, A is stably
true in S ′. Clearly, for every natural number n, T n(A) is stably true in S ′. Hence
∀x(Gx→ Tx) ∧A is stably true in S ′, and ∀x(Gx→ Tx) ∧A ∧ ¬T a is unstable
in S ′. Because of the arbitrariness of S ′, ∀x(Gx→ Tx) ∧A ∧ ¬T a is unstable in
all C-sequences. So ∀x(Gx → Tx) ∧ A ∧ ¬T a is paradoxical in M according to
the theory TC . Therefore, TC ̸≤4 T∗. □

Lemma 2. T lfp,σ2 ̸≤4 TC .

Proof Let a truth language L+ have no nonlogical symbols except for T , quote
names, countably many nonquote names an(n ∈ N), and a 1-place predicate symbol
G. Define sentences ϕ, ψn(n ∈ N), An(n ∈ N) and B as follows:

6Note that both ¬T a and T a are unstable up to α.
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Let ϕ = ∀x∀y(Gx ∧ Gy → (Tx ↔ T y)). For any n ∈ N, Let ψn =∧
j,k≤n(T aj ↔ T ak). For anyn ∈ N, ifn is even, thenAn = ϕ∨(¬ϕ∧ψn∧¬T an)∨

(¬ϕ∧¬ψn∧T an); and if n is odd, thenAn = (¬ϕ∧ψn∧¬T an)∨(¬ϕ∧¬ψn∧T an).
Let B = ∀x(Gx→ Tx).

LetM = ⟨D, I⟩ be the ground model of L+ where I(an) = An for any n ∈ N,
and I(G) = {An | n ∈ N}.

By compactness of classical first-order logic, the set {¬An | n ∈ N} ∪ {¬B}
is consistent. Hence there is a maximally consistent classical hypothesis h such that
h declares all elements in I(G) and B false. Let S be a C-sequence where S0 = h

and for any limit ordinal α, Sα declares all elements in I(G) false.7 The behavior of
sentences in the set I(G) ∪ {B} in S is shown in Table 2. Clearly, B is stably false
in S . So B is not paradoxical inM according to the theory TC .

S0 S1 S2 S3 S4 S5 . . . Sω Sω+1 Sω+2 . . . Sω2 Sω2+1 Sω2+2 . . .

A0 f t f t f t . . . f t f . . . f t f . . .

A1 f f f t f t . . . f f f . . . f f f . . .

A2 f t t t f t . . . f t t . . . f t t . . .

A3 f f f f f t . . . f f f . . . f f f . . .

A4 f t t t t t . . . f t t . . . f t t . . .

A5 f f f f f f . . . f f f . . . f f f . . .
...

...
...

...
...

...
... . . .

...
...

... . . .
...

...
... . . .

B f f f f f f . . . f f f . . . f f f . . .

Table 2

Next, we prove thatB is paradoxical inM according to the theoryTlfp,σ2 . Given
any C-sequence S ′, by the definiton of An(n ∈ N), it is not the case that, for any
n ∈ N, An is stably true in S ′. For similar reason, it is not the case that, for any
n ∈ N, An is stably false in S ′. In fact, for any n ∈ N, An is unstable up to any limit
ordinal inS ′. Next, we prove that for any fixed point h of σ2M, h delcaresB neither
true nor false. Note that for any revision sequence S , and any limit ordinal α, B is
stably false up to α in S . Let h be a fixed point h of σ2M. h is strongly consistent.
Let h′ be a maximally consistent classical hypothesis such that h ≤ h′ and let S ′ be
a C-sequence with S ′

0 = h′. It is easy to prove by transfinite induction that for every
α, h ≤ S ′

α, since σ2M is monotone and agrees with τM on classical hypotheses. Let
S1 be the set {A | A ∈ Sent(L+) and A is stably true up to ω in S ′} ∪ {¬A | A ∈
Sent(L+) and A is stably false up to ω in S ′} ∪ {¬An | n ∈ N}. Let S2 be the set
{A | A ∈ Sent(L+) and A is stably true up to ω in S ′} ∪ {¬A | A ∈ Sent(L+) and
A is stably false up to ω in S ′} ∪ {An | n ∈ N}. By compactness of classical first-

7Note that all elements in I(G) are unstable up to α and the set {A | A ∈ Sent(L+) and A is stably
true up to α in S } ∪ {¬A | A ∈ Sent(L+) and A is stably false up to α in S } ∪ {¬An | n ∈ N} is
consistent by compactness of classical first-order logic. Hence such a C-sequence exists.
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order logic, both S1 and S2 are consistent. There is a maximally consistent classical
hypothesis h1 such that h1 declares all elements in S1 true. And there is a maximally
consistent classical hypothesis h2 such that h2 declares all elements in S2 true. It is
clear that h ≤ h1 and h ≤ h2. However, τM(h1)(B) = f, and τM(h2)(B) = t.
Hence σ2M(h)(B) = n. Then h(B) = n. So B is paradoxical in M according to
the theory Tlfp,σ2 .

Therefore, Tlfp,σ2 ̸≤4 TC . □

Theorem 5. Figure 2 uses an arrow to represent that the relation ≤4 holds between
the theory at the start of the arrow and the one at the end of the arrow. When restricted
to the three revision theories, the relation ≤4 is the reflexive transitive closure of the
relation shown in Figure 2.

T# T∗ TC

Figure 2

Proof Since≤4 is reflexive and transitive, it is enough to prove the following claims:
(1) T# ≤4 T∗, T∗ ≤4 TC ; and (2) T∗ ̸≤4 T#, TC ̸≤4 T∗.

(1) holds by Definition 2.
For (2), consider Example 5.7 in [5, p. 387] . From [5], we know that the sen-

tences in Y are all nearly stably true in every revision sequence, but no sentence in
Y is stably true in any revision sequence. Hence all sentences in Y are paradoxical
in M according to the theory T∗, and all sentences in Y are not paradoxical in M
according to the theory T#. Therefore, T∗ ̸≤4 T#. TC ̸≤4 T∗ is Lemma 1. □

Theorem 6. Figure 3 uses an arrow to represent that the relation ≤4 holds between
the theory at the start of the arrow and the one at the end of the arrow. The relation
≤4 is the reflexive transitive closure of the relation shown in Figure 3.

Proof Given that ≤4 is reflexive and transitive, Theorem 4 and Theorem 5, it is
enough to prove the following claims: (1) TC ≤4 Tlfp,σ2 ; and (2) Tlfp,σ2 ̸≤4 TC .

The proof of (1) is as follows. Suppose TC ̸≤4 Tlfp,σ2 , then there is a truth
language L+ and a ground model M of L+ and a sentence A ∈ Sent(L+) such
that A is paradoxical in M according to the theory TC , and A is not paradoxical
in M according to the theory Tlfp,σ2 . Then there is a fixed point h of σ2M such that
h(A) = t or f. Let h′ be a maximally consistent classical hypothesis such that h ≤ h′.
Let S ′ be a C-sequence with S ′

0 = h′. It can be proved by transfinite induction that
for every α, h ≤ S ′

α, given that σ2M is monotone and agrees with τM on classical
hypotheses. Hence, A is stably true or stably false in S ′. Contradiction. Therefore,
TC ≤4 Tlfp,σ2 .
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(2) is Lemma 2. □

Tlfp,σ2 Tlfp,σ1 Tlfp,σ Tlfp,κ Tlfp,µ

Tgifp,σ2 Tgifp,σ1 Tgifp,σ Tgifp,κ Tgifp,µ

T# T∗

TC

Figure 3

5 Conclusion

In this paper, we present a complete picture of comparing the thirteen theories
of truth considered in Kremer’s comparative work ([5]), according to the relation≤4.
In our comparison, we show that among the thirteen theories, the fixed-point theories
Tlfp,µ andTgifp,µ are the largest ones, and revision theoryT# is the least one, according
to ≤4.

This paper extends Kremer’s comparative work by comparing these theories the
perspective of paradoxicality. In the future, we will add more theories of truth to
this comparative work, for example, five other revision theories considered in [8],
including Gupta’s one in [2], Herzberger’s one in [4] and Yaqūb’s one in [10].
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从悖论性的角度比较关于真的不动点理论和修正理论

林其清

摘 要

出于“在各种各样的选择中了解情况”的目的，克莱默（2009）定义了三
个不同的关系来比较文献中的十个不动点理论和三个修正理论。本文通过从另一

个重要的的角度对这些理论进行比较——悖论性的角度，来延续克莱默的比较工

作。悖论性这个观念对真理论很重要，它甚至影响了哲学家对具体真理论的选择。

本文根据这个比较的角度定义了一个二元关系，并依据这个新关系建立了克莱默

（2009）所考虑的十三个真理论之间的关系。
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