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Logicality and the Logicism of Frege Arithmetic and
Simple Type Theory *

Weijun Shi

Abstract. The logicism of Frege and Russell consists of two-fold components: the provability
thesis and the definability thesis. It is safe to say that the provability thesis cannot be completely
upheld. However, to justify or dismiss them, in particular, the definability thesis, one needs a
criterion for logicality to determine whether the constants for the concept “the number of” and
the membership relation, among others, are logical. The criteria that I shall adopt are logicality
as isomorphism-invariance on the part of Tarski and Sher and logicality as homomorphism in-
variance on the part of Feferman. Tarski and Sher have pointed out that Russell’s constant for
the membership relation is isomorphism-invariance on different occasions. I shall demonstrate
the following conclusions in the article: First, this constant is also homomorphism invariance;
Second, the constant for the concept “the number of” is neither isomorphism invariance nor
homomorphism-invariance; Third, if logicality is isomorphism invariance or homomorphism
invariance, then the definability thesis of Frege ’s logicism (here Frege arithmetic) does not get
justified; Forth, if logicality is isomorphism invariance, the thesis of Russell’s logicism (here
simple type theory) is fully justified, whereas it is not so provided that logicality is homomor-
phism invariance.

1 Introduction

The logicism of Frege and Russell tries to reduce mathematics, i.e., the funda-
mental axioms and theorems of number theory, to logic. But how should we make
sense of such reduction? According to Carnap, the reduction consists of two theses
([2], p. 41):

∗ The concepts of mathematics can be derived from logical concepts by means of
explicit definitions.

∗ The theorems ofmathematics can be derived from logical truths bymeans of logical
inferences.

Following Boolos, let us call the first the definability thesis and the second the
provability thesis. These two theses are independent: neither one is weaker or stronger
than the other. The reason is that a logical truth can involve extra-logical concepts,

Received 2019-11-12
Weijun Shi Department of Philosophy, Renmin University of China

Department of Philosophy, Humboldt-Universität zu Berlin
2015000867@ruc.edu.cn

*An earlier version of this paper was presented in Professor Michael Beaney’s colloquium, held
at Humboldt-Universität zu Berlin, in winter semester 2019. I would like to thank the audience for
discussion. I am grateful to Michael Beaney for his comments and suggestion.



Weijun Shi / Logicality and the Logicism of Frege Arithmetic and Simple Type Theory 63

while a truth involving only logical concepts may not be a logical truth. The examples
are not far away to find.1 It is not controversial that Frege subscribes to both theses.
Unlike Frege, Russell, however, is committed himself to the definability thesis, but
not to the provability thesis, because, as Boolos points out, he explicitly rejects the ax-
iom of infinity as a logical truth in Principia Mathematica ([4], pp. 270–272). Which
thesis Frege and Russell subscribe to is of historical significance. But it is of greater
significance whether these two theses are on their own justifiable.

What is indispensable to the justification or rejection of the theses is a criterion
for logicality and a notion of logical truth. In Frege’s or Russell’s system, according to
the definability thesis, the definiens, in terms of which the constants of mathematics
are defined, are logical in the sense that it involves only logical vocabulary thereof.
According to the provability thesis, the axioms of these two systems are logical truths.
Thus, logicism will stand and fall with different criteria for logicality and notions of
logical truth. In this paper, we will make use of Tarski’s notion of logical truth, which
is the standard one in logical textbooks.2 It is a precondition for this notion that the
constant of languages is divided into logical and extra-logical ones. In other words,
the criterion for logicality is a precondition for Tarski’s conception of logical truth.
Let us see why it is so.

According to Tarski, any sentence ϕ of a language L is a logical truth if its sen-
tential function ϕ∗ is true in all structures of the sentential function. The notion of
logicality comes in when we transform a sentence into its sentential function. Sup-
pose all constants (except variables) of the language have type symbols in T , which
is defined as follows:

Definition 1

1. e ∈ T ;
2. If τ1, . . . , τn ∈ T , then (τ1, . . . , τn) ∈ T .

Given a domainM of objects of type e, with each type τ ∈ T is associated a set
Mτ which is defined as follows:

Definition 2

1. If τ = e, thenMτ = M ;
2. If τ = (τ1, . . . , τn), thenMτ = P (Mτ1 × . . .×Mτn).

where P is the subset operation in set theory.

LetML be the built-in domain of the languageL. Suppose the extra-logical con-

1‘∃x∃y(x ̸= y)’ does not contain extra-logical constants in the usual sense, but it is not a logical
truth. ‘∀x(x = Russell ∨ ¬(x ̸= Russell)’ is a logical truth, even though it contains the extra-logical
constant ‘Russell’.

2Besides Tarski’s notion of logical truth, there are others, say, Quine’s substitutional conception of
logical truth ([17], ch. 4).
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stants occurring in ϕ are E1,…, En, which are of types τi (1 ⩽ i ⩽ n), respectively.
The sentential function ϕ∗ of ϕ is obtained by substituting a variableXi of type τi for
each occurrence of Ei in ϕ. ϕ is a logical truth if ϕ∗ is true in all structures.3

Tarski’s notion of logical truth is sensitive to the notion of logicality, as Tarski
himself comes to recognize.4 In order to see this sensitivity, let us look at an exam-
ple. Suppose L contains ‘Russell’, ‘philosopher’, ‘∃’ and ‘=’ as its only primitive
constants, and ‘Russell’ and ‘philosopher’ denote Betrand Russell and the property
being a philosopher, respectively. So the built-in domain ML of L contains at least
Russell, and the property is a subset of the domain which contains all philosophers.
Consider the sentences :

(1) Russell is a philosopher.
(2) ∃x(x = x).

They are true in the structure with the domain ML. Usually, ‘Russell’ and
‘philosopher’ are seen as extra-logical, while ‘∃’ and ‘=’ are seen as logical. As
a result, (1) is not seen as a logical truth, while (2) is seen as a logical truth, which
accords with our usual or intuitive conception of logical truth.

(1) and (2) will be logical truths, if all of these primitive constants are logical. In
this case,the sentential functions of (1) and (2) are themselves, because there are no
extra-logical constants occurring in them that are to be substituted for by variables.
Consequently, (1) and (2) are true in all structures with any domain. One might con-
test this by saying that (1) is false in the structure with the domain, say, {1, 2}, in
which ‘Russell’ and ‘philosopher’ are interpreted as 1 and {2}, respectively. This is,

3It is controversial whether Tarski takes all structures to share the same domainML, i.e., the built-in
domain of the language L in [20]. Bays argues that Tarski intends all structures to share the same do-
mainML ([1]), while others like Sher argues for the exactly opposite ([18], p. 41). Whether all structures
share the same domainML is of great significance to which sentence of the language is valid. Suppose
the built-in domain ML of L has at least two objects. So the sentence ‘∃x∃y(x ̸= y)’ of L says that
there are at least two objects inML. Given that all constants in the sentence are logical, the sentence is a
logical truth if all structures share the same domainML. In contrast, if all structures do not necessarily
share the same domain, then the sentence is not valid, because its sentential function, i.e., itself, would
be false in all structures whose domains contain only one object. It is not up to me to determine which
reading is right here. I just take it that the domain can vary. For the point that the notion of logical truth
is sensitive to logicality, which I want to emphasize, the controversy is not that much important.

4According to Tarski, a sentence ϕ is the logical consequence of the sentences of the set R iff any
model of the sentential functions of the sentences of R is also a model of the sentential function of ϕ.
An extreme case of the notion of logical consequence is such thatR is empty. In such case, we have the
notion of logical truth. Now Tarski writes:

The extreme would be the case in which we treated all terms of the language as
logical: the concept of following formally5 would then coincide with the concept of
following materially-the sentence X would follow from the sentences of the class R if
and only if either the sentence X would be true or at least one sentence of the class R
were false. ([20], p. 188)



Weijun Shi / Logicality and the Logicism of Frege Arithmetic and Simple Type Theory 65

however, not true, because ‘Russell’ and ‘philosopher’ are logical, so that they are
to denote Russell and the property being a philosopher. So it is absolutely wrong to
assign 1 and {2} to them, respectively. In other words, any structure with the domain
{1, 2} is just not a structure of the sentential functions of the language L at all.

In contrast, if all of these primitive constants are extra-logical, then both (1) and
(2) are not logical-truths. ‘Russell’, ‘philosopher’, ‘∃’ and ‘=’ are of types e, (e),
((e)) and (e, e), respectively. Let ‘X1’, ‘X2’, ‘X3’ and ‘X4’ be variables of these
types, respectively. So ‘X2(X1)’ can serve as the sentential function of (1), while
‘X3x(xX4x)’ is the sentential function of (2). Then it is easy to find structures in
which these two sentential functions are not satisfied. Consequently, (1) and (2) are
not logical truths.

What distinguishes logical constants from extra-logical ones is that the former
are to be interpreted uniquely or in the same way on all structures, while the latter
do not have to be so. In Tarski’s original formulation of the concept of logical truth,
it is required that each sentence be transformed into its sentential function. This re-
quirement, however, is not necessary. For to assess the validity of a sentence, we
can interpret all of its logical constants as their default denotations or meanings on
all structures, and all of its extra-logical constants arbitrarily with their types being
respected; there is no need to replace those extra-logical constants by variables of the
same types, and then assign objects of the same types to these variables. For example,
given that ‘∃’ is logical, it is to be interpreted as {A : A ⊆ M,A ̸= ∅} on each struc-
ture with any domainM , in order to determine whether (say) ‘∃x(x = x)’ is valid. It
cannot be assigned other denotations, say, {M}. Similarly, if ‘Russell’ is logical, it is
to be interpreted as the person Betrand Russell on each structure. (In this connection,
Russell must be in the domain of the structure.) If a constant is extra-logical, then
besides its default denotation, it can be interpreted as any objects of the same type.
E.g. if ‘∃’ is extra-logical, then it can be interpreted as objects of the type ((e)), say,
{A : A ⊆ M} and {M}, on any structure with a domain M . By the same token,
if ‘Russell’ is extra-logical, then it can be interpreted as any object of type e on all
structures, even if Russell is not in their domains.6

5Here, by ‘following formally’ is meant what we call ‘logical consequence’ today.
6When I write these three paragraphs, I fully keep in mind Sher’s interpretation of what distinguishes

extra-logical constants from logical ones, which does not accord with my reading. Sher writes:
It has been said that to be a logical constant in a Tarskian logic is to have the same

interpretation in all models. Thus for “red” to be a logical constant in logic L, it has
to have a constant interpretation in all the models for L. I think this characterisation is
faulty because it is vague. ([18], p. 45)

I do not hold that from the perspective of Tarski, a logical constant such as ‘∃’ should have the same
interpretation in all models. Clearly, given any two nonidentical domains (sets), the interpretations of
this quantifier cannot be the same in the set-theoretical sense. Rather, I hold that logical constants should
be interpreted uniquely or in the same way. What the words ‘uniquely’ or ‘in the same way’ means is
already glossed by taking the example of ‘∃’ as logical in the paragraph. Now Sher asks how one can
interpret ‘red’ (assume that the predicate denotes the set of all red objects) in the same way in all models
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2 Frege’s logicism

Frege’s original system in [11], via. second-order logic plus the axiom V, is
inconsistent; but the system can be rendered as consistent in different ways. For
example, predicative second-order logic plus the axiom V is consistent ([13]). But it
is too weak to derive Peano arithmetic (PA)7 as its theorems ([13])8. In this paper, I
will not consider the system for two reasons. The first is its weakness; the second is
that from the perspective of ZFC,whichwe are going tomake use of as themetatheory,
the axiom V is just false. Instead, I will consider another version of Frege’s original
system, Frege arithmetic (FA), which is consistent and strong enough for PA ([4],
pp. 183–201).

The language of FA is a second-order language, which contains the following as
its primitive vocabulary:

(i.1) Variables: variables for concepts and relations and objects.
(i.2) Constants: first and second-order quantifiers, propositional connectives, iden-

tity.
(i.3) Constants: ♯.

Terms, formulas and sentences are defined in a canonical way. ‘♯’ is a functional
constant of type ((e), e), which is informally read as ‘The number of’. Syntactically,
attaching a variable ‘F ’ for concepts to ‘♯’ forms the term ‘♯F ’ for objects.

Besides all axioms of second-order logic, FA has two more axioms :

(HP) ∀F∀G(♯F = ♯G ↔ F eqG).9

(3) ∀F∃!x(x = ♯F ).

What (HP) expresses is that the numbers of two concepts are equal iff the concepts
are equinumerous. (3) says that every concept has a unique number.

Just as the first-order PA has a standard interpretation or standard model ([16],

if it is a logical constant. My answer is that if ‘red’ is to be counted as logical, then a model whose
domain does not contain all red objects just fails to qualify as a model of the logical language in which
‘red’ is identified as logical. In the case, not all sets can serve as the domain of models of the language.
For Sher’s point of view on the question of the roles of logical constants, see [18, pp. 46–52].

7PA has five axioms :

PA.1 Zero is a natural number.
PA.2 If x is a natural number, its successor is a natural number.
PA.3 If x is a natural number, its successor is not zero.
PA.4 If x and y are natural numbers and their successors are equal, then x is y.
PA.5 Induction axiom.

8In the paper, Heck shows that the induction axiom is not provable from the system. But what is
known as Robinson arithmetic is interpretable in the system.

9Here ‘F eqG’ is an abbreviation of a second-order formula which says that the concepts F and G
are equinumerous.
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p. 160), FA also has its standard interpretation. The denotation of the constant ‘♯’ in
the standard interpretation is its default denotation. Give a domainM , the domains of
object variables, concept variables and binary relation variables are M , P (M), and
P (M ×M), respectively. The constants of (i.2) are interpreted in the canonical way
given that they are logical. As for ‘♯’, its denotation is a function from P (M) to M .
But what function is the default denotation of the constant?

For Frege, (HP) is true, if not a logical principle. Frege sees the axiom V as
‘a fundamental law of logic’ ([10], p. 142) and derives (HP) as a theorem of it (plus
necessary definitions) in second-order logic. Hence Frege takes (HP) to be true. (Ad-
mittedly, the axiom V is inconsistent in second-order logic. But what concerns us
here is not the problem of consistency, but whether or not Frege thinks of (HP) as
true.) Therefore, the default denotation of ‘♯’ is such a function that renders (HP)
true. There is no such function in any structure with a finite domain ([4], pp. 213–
214, pp. 305–306), because if there are n (any finite number) objects in the domain,
there will be n+1 equinumerous concepts. Hence its default denotation is any func-
tion f : P (M) → M that satisfies the condition :

(C) For any F,G ∈ P (M), if f(F ) = f(G) iff |F | = |G|.10
M is infinite.

To assess if Frege’s logicism succeeds, it is necessary to determine the logicality
of the constant ‘♯’ with its default interpretation f , as well as of the constants in (i.2).
Boolos holds that:

(A) The constants in (i.2) are logical.11

(B) The constant ‘♯’ is extra-logical ([4], fn. 3, p. 186).12

To surveywhether (HP) is a logical truth, ‘♯’ is to be assigned any function of type
((e), e) in the structure with any domain, thanks to (B). (HP) is false in the structure
with the domain M , either finite or infinite, in which ‘♯’ is assigned the function g

that for any A,B ∈ P (M), g(A) = g(B). Therefore, (HP) is not a logical truth.
Besides, the rest axioms of FA except (HP) are logical truths.

Boolos’s assessment of Frege’s logicism is, therefore, as follows:

Premise (A) and (B) hold.
Conclusion The definability thesis and the provability thesis of Frege’s logicism are

not justified.

The reason that the provability thesis is not justified is that (HP) is not a logical truth.13

10|F | is the cardinality of the set F .
11Boolos does not explicitly hold (A). But (A) is usually taken for granted.
12Here Boolos explicitly says that he sees the constant as extra-logical, while Frege sees it as logical.
13(PA. 1), (PA. 2) and (PA. 5) are theorems of second-order logic (with additional definitions) plus

(3). The derivation of (PA. 3) and (PA. 4), which requires the existence of infinite objects, needs (HP).
Consequently, (PA. 1), (PA. 2) and (PA. 5) are logical truths, while (PA. 3) and (PA. 4) are not.
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But why is the definability thesis is said to be unjustifiable? It seems that Carnap
and Boolos both subscribe to such an inference: If the definition of any arithmetical
constant involves extra-logical constants, then the former is extra-logical; since the
constant ‘♯’ is extra-logical, so is any arithmetical constant whose definition involves
it. But the claim (+) that if the definition of any arithmetical constant involves extra-
logical constants, then the former is extra-logical is not guaranteed at all. Whether the
claim holds up depends upon what it is for a constant to be logical. As will be seen
later, although all constants in the language of Russell’s simple type theory are logical
in the sense that all of them are homomorphism-invariance, almost all arithmetical
constants for numbers are not homomorphism-invariance.

Before introducing Russell’s system, let us pause for a while to look at Carnap’s
assessment of the definability thesis. Carnap, as opposed to Boolos, thinks that the
definability thesis is fully justified. Carnap says that Frege and Russell arrive at the
same conclusion about the logical status of natural numbers independently: natural
numbers are ‘logical attributes which belong, not to things, but to concepts. ([2], p. 42)
To be precise, to say that the number of a concept F is n just means that there are
exactly n objects which fall under F . ‘The number of the concept F ’ is repressed by
Carnap as ‘nm(F )’. According to Carnap, ‘nm(F )’ is defined as:

∃x1 . . . ∃xn

[
x1 ̸= x2 ∧ . . . ∧ xn−1 ̸= xn ∧ F (x1) ∧ . . . ∧ F (xn)∧

∀y(F (y) → y = x1 ∨ . . . ∨ y = xn)

]

Carnap regards all familiar logical constants of first-order logic as logical, without
saying anything on second-order quantifiers. ([2], p. 42) (Of course, Carnap owes us
a criterion for logicality.) Since the definiens is a formula of first-order logic, Carnap
asserts that the notion ‘the number of the concept F ’ is logical. In addition, he holds
that other arithmetical concepts such as addition and natural numbers also can be
defined by formulae which involve only logical vocabulary. But I think that Carnap’s
assertions are not justified for two reasons.

First, the aforementioned definiens involves not only constants which Carnap
sees as logical but also the constant ‘F ’, which is a constant rather than a variable. The
constant is not on Carnap’s list of logical terms and is usually seen as extra-logical.
Second, Carnap asserts that other arithmetical concepts are definable in terms of the
logical terms of first-order logic. But it is hardly clear how this can be done.14 Take

14Hodges ([14]) forcefully argues that the arithmetic truths, say,

(4) 7 + 5 = 12.
(5) The successor of 1 equals to 2.

express the same thought (Gedanken) as
(6) ∀X∀Y [∃7xFx ∧ ∃5xGx ∧ ¬∃x(Fx ∧Gx) → ∃12x(Fx ∨Gx)].
(7) ∀F (∃1xFx ∧ ∃y¬Fy → ∃G∃2xGx).

(Hodges says clearly that (4) expresses the same thought as (6). That (5) expresses the same thought
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the concept ‘natural numbers’ as an example. Taking into consideration that Carnap
has defined ‘0m(F )’, ‘1m(F )’ and so on, one might suggest defining the concept
as ‘x = 0m(F ) ∨ . . . ∨ nm(F ) ∨ . . .’. However, the definiens is not a sentence of
first-order logic, because it contains infinitely many disjuncts.

3 Russell’s logicism

Simple type theory (STT), which is a simplification of the ramified system in
Principia Mathematica, is consistent. Moreover, it is so strong that not only PA but
also set theory can be devolved out of it. STT is a higher-order system. For deriving
PA, STT can be seen as a forth-order system. The language of STT contains the
following vocabulary:

(ii.1) Variables ‘xn’ (0 ⩽ n ⩽ 3) for objects of type n.
(ii.2) First-order quantifiers ( ‘∀x0’), second-order quantifiers ( ‘∀x1’), third-order

quantifiers ( ‘∀x2’), forth-order universal quantifiers ( ‘∀x3’) and propositional
connectives.

(ii.3) The constant ‘ϵ’ (for membership).

The atomic formula of the language is of the form ‘xnϵxn+1’ (informally, xn is a
member of the set xn+1).

STT has three axioms, i.e., the axiom of extension and the axiom of comprehen-
sion and the axiom of infinity ([16], pp. 290–291):

(Inf) ¬∀x3[02ϵx3 ∧ ∀x2(x2ϵx3 → sx2 ∈ x3) → ∅2ϵx3]. 15

(Inf) says that ∅2, the empty set of type 2, is not a number, which is equivalent to say
that there are infinitely many objects of type 0.

STT has its standard interpretations. SupposeM0 = M is the domain (any non-
empty set) of a structure. Let Mn+1 = P (Mn). Then each variable ‘xn’ ranges
over the set Mn. Since the constant ‘ϵ’ is of type (n, n+1), its denotation must be
some relation that is a subset of Mn ×Mn+1. The standard or default denotation of
the constant is the relation R = {(a, b) : a ∈ Mn, b ∈ Mn+1, a ∈ b}. Among all

as (7) is not mentioned by Hodges. But it is clear that this assertion is made in the spirit of Hodges. )
(6) and (7) are sentences of second-order logic. So no appeal can be made to these examples to back up
Carnap’s assertion that all arithmetical concepts can be defined in terms of formulae of first-order logic.

15The original formulation of the axiom of infinity in [16, pp. 290–291] is not (Inf). But it is equivalent
to (Inf). (Inf) contains three constants ‘0’ (zero of type 2), ‘s’ (successor) and ‘∅2’ (empty set of type
2). The occurrence of these constants can be eliminated from (Inf) by means of the definitions of them
as follows:

1. xnϵ∅n+1 iff xn ̸= xn.
2. x2 = 02 iff x2 = {∅1}.
3. s(x2) iff{y1 : ∃z0[z0ϵy1 ∧ y1 \ {z0}ϵx2}].

For more details, see [16, pp. 290–293].
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relations R is the relation {(a, b) : a ∈ Mn, b ∈ Mn+1, a ∈ b,M is infinite}, which
should be the default interpretation of the constant ‘ϵ’ if Russell sees (Inf) as a truth.
However, Russell sees (Inf) only as ‘an arithmetical hypothesis’ ([4], p. 268), so that
he does not assert that it is a truth, let alone a logical truth. So the default denotation
of the constant is any R.

In the same vein, to assess whether the definability thesis and the provability the-
sis of Russell’s logicism succeed, we have to determine the logicality of the constants
in (ii.2) and (ii.3). In this connection, it is generally held that:

(A*) The constants in (ii.2) are logical.
(B*) The constant ‘ϵ’ is logical.

Now it might be problematic to say that ‘ϵ’ is generally seen as extra-logical. For
in logical books, say, [12, ch. 4] and [16, pp. 289–293] in which the theory of types
is discussed in detail, the authors do not explicitly mention whether this constant is
logical. But I suggest that it is at least seen as logical by some authors. For example,
Boolos remarks that ‘one who accepts the theory of types will almost surely regard
Infin ax16 as true and in logical vocabulary’. ([4], p. 271) Another case that can be
made for (B*) has something to dowith the interpretation of the constant on structures.
According to Hatcher, the constant is assigned the relationR = {(a, b) : a ∈ Mn, b ∈
Mn+1, a ∈ b} on each structure with the domainM . This indicates that Hatcher sees
it as logical, otherwise it should be interpreted as any relation of type ((e), e).

Because of (A*) and (B*), the constants in (ii.2) are interpreted on each structure
in a canonical way, and ‘ϵ’ is interpreted asR = {(a, b) : a ∈ Mn, b ∈ Mn+1, a ∈ b}
on each structure. As a result, it is easy to show that the axioms of STT except (Inf)
are logical truths. (Inf) is not a logical truth, because it is false in any structure with
a finite domainM .

Concerning Russell’s logicism, it is generally held that

(Premise*) (A*) and (B*) hold.
(Conclusion*) The provability thesis of Russell’s logicism is not justified, while the

definability thesis thereof is justified.

The first part of (Conclusion*) holds, because (Inf) is not a logical truth.17 When it
comes to the second part of (Conclusion*), the claim (+) on p. 68 is taken for granted.
As is already pointed out, whether the claim holds is completely determined by the
conception of logicality. Anyone who wants to defend (Conclusion*) and (Conclu-
sion) has to offer a criterion for logicality which can justify (Premise*) and (Premise).
Now I will turn to such criterion next.

16By Infix ax is meant the axiom of infinity.
17All axioms of PA except (PA. 4) are theorems of the axioms of extension and comprehension. So

the former is logical truths. The derivation of (PA. 4) from STT needs (Inf). Since (Inf) is not a logical
truth, so is (PA. 4).
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4 Logicality as invariance under morphisms

There are different approaches to logicality. Among them is Tarski’s approach,
according to which logicality is to be characterised as invariance under isomorphisms.
This approach has the advantage of mathematical precision. For this reason, I will
look at if it can be invoked to justify (Premise) and (Premise*).

The motivation underlying Tarski’s approach is that logical notions are formal in
the sense that they do not distinguish objects, i.e., they are insensitive to the switching
of objects. SupposeM is a set of objects of type e. let f be any bijection onM . Then,
for any object O of type τ ∈ T , O is mapped under f to another object f(O). Tarski
suggests that O is a logical object if it is invariant under any transformation f , i.e.,
O = f(O) ([22]). A constant is logical if its reference is a logical object in Tarski’s
sense. However, unlike Tarski, logicians and philosophers after him tend to speak
of logicality of operations across domains, rather logicality of objects on a single
domain. But these two different modes of dealing with logicality are more or less the
same in their spirits. I will follow the mainstream in the paper.

There are three variants of the approach at issue: Tarski and Sher take logicality
to be isomorphism-invariance; Feferman takes it to be homomorphism-invariance;
Bonnay takes it to be potential isomorphism-invariance. For any constant whose type
level18 is⩽ 2, all of these variants fit for deciding their logicality. But for any constant
whose type level is larger than 2, the third variant is not applicable without being
generalised. The reason is related directly to the definition of potential isomorphisms,
as is to be explained as follows. For this reason, I shall not consider the third variant,
because some constants of the language of STT and FA have type levels larger than 2.

To formulate the content of the first two variants, we need the definitions of the
concepts ‘the denotation (or operator) of a constant associated with each domain’,
‘argument-structures’, ‘isomorphisms’ and ‘homomorphisms’. These definitions, or
more exactly, the ways of formulating these definitions, which I will make use of
below, are due to Sher.

Given a domain M (infinite on some occasion), each constant C of type τ has a
unique denotation fC(M) on M , which is a member of the set Mτ .19 By a domain
M is always meant a non-empty set of objects of type e. For simplicity, we say that
fC is the denotation of C on M . If the constant C is of type τ , we also say that its
denotation fC(M) is of type τ . Let us give some examples.

18The level of types are defined as follows. level(e) = 0. For any type τ = (τ1, . . . , τn) ∈ T ,
level(τ) = max(level(τ1), . . . , level(τn)) + 1.

19Sher requires that each constant should have a unique denotation on every domain. As a result, the
predicate ‘red’ is to have a denotation on a domain containing no red objects at all. I just require that it
have a denotation on a domain containing all red objects (and possibly others). So the any isomorphic
(or homomorphic) structures in (Tarski–Sher Thesis) and (Feferman Thesis) below are just such that
their domains contain the default denotation of the constant C. I deviate from Sher’s way of assigning
objects to constants.
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• fRussell(M) = Russell, if Russell ∈ M .
• f=(M) = {(a, b) : a ∈ M, b ∈ M,a = b}.
• f∀(M) = {M}.20
• f∃(M) = {A : A ⊆ M,A ̸= ∅}.
• f∃2k

(M) = {A : A ⊆ P (Mk), A ̸= ∅}.21

• f∀2k
(M) = {P (Mk)}.22

• f♯(M) = f , where f satisfies the condition:
(C) For any A,B ∈ P (M) and a, b ∈ M , if(A, a) ∈ f♯ ∧ (B, b) ∈ f♯, then
|A| = |B| if and only if a = b.

• fϵ(M) = {(a, b) : a ∈ Mτ , b ∈ M(τ), a ∈ b}, where τ = (. . . (e) . . .) (n pairs
of parenthesis, n ⩾ 0).23

Given any set M (maybe infinite on some occasions), with each vocabulary C
of type τ = (τ1, . . . , τn) is associated a n+1-tuples ⟨M, a1 . . . an⟩, where each ai is
of type τi and therefore is an element of the set Mτi . Each ai is the i-th argument of
the denotation fC(M) of C onM . Following Sher, let us call the tuple ⟨M, a1 . . . an⟩
the argument-structure of the constant C onM . For example:

• The argument-structure of ‘Russell’ is ⟨M,a⟩, where Russell is a member of
M and a ∈ M .

• The argument-structure of ‘=’ is ⟨M,a, b⟩, where a, b ∈ M .
• The argument-structure of ‘∀’ is ⟨M,A⟩, where A ∈ P (M).
• The argument-structure of ‘♯’ is ⟨M,A, a⟩, where A ∈ P (M), a ∈ M and M

is infinite.
• The argument-structure of ‘ϵ’ is ⟨M,a,A⟩, where a ∈ Mτ and A ∈ M(τ).

With the notion ‘argument-structures’ at our disposal, we can define the concepts
of isomorphic- and homomorphic argument-structures. Suppose M and N are two
universes and f is a bijection fromM toN . Then, the bijection will induce a bijection
from the setMτ to the set Nτ for any type τ = (τ0, . . . , τn).

20The first-order universal and existential quantifiers are of type ((e)).
21This kind of identification of k-ary second-order existential quantifier ∃2

k is due to J. Kontinen
([15]). Originally, given a domain M , J. Kontinen identifies the denotation of ∃2

k as the set {(M,A) :
A ⊆ P (M), A ̸= ∅}. In order to keep the uniformity, we change Kontinen’s original way of identifying
the denotation of constants into the current one. Such change is not essential, though. Kontinen says
that ‘the first example is the familiar k-ary second-order existential quantifiers.’ This remarks shows
that with respect to second-order quantifiers, we should not speak of their denotations generally; rather
we should speak of the denotation of a second-order quantifier binding a variable for k-aries relations.
The reason is that in (say) ‘∃x’ x denotes any object of type e, while in the second-order quantification
‘∃X’X denotes any k-ary relations of type (e, . . . , e) with k e’s.

22Here I followKontinen in his spirit in identifying the second-order universal quantifier in the frame-
work of relational types.

23The type symbol n is equivalent to (. . . (e) . . .) in the system of relational type symbols.
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Definition 3

1. If τ = e, then fτ = f .
2. If τ ̸= e, then fτ (A) = {(fτ0(a0), . . . , fτn(an)) : (a0, . . . , an) ∈ A)}, where

A ∈ Mτ .

Definition 4 Any two argument-structures ⟨M, a1, . . . , am⟩ and ⟨N, b1, . . . , bn⟩,
where ai and bi are of the same type τ = (τ0, . . . , τn), are isomorphic, if and only if:

1. m = n;
2. There is a bijection f fromM to N ;
3. For each 1 ⩽ i ⩽ m, fτ (ai) = bi, where fτ is defined in Definition 3.

We can drop the subscript for types, writing f(A) instead of fτ (A), because the
type of A makes it clear which function is at issue.24 Suppose M and N are two
universes and f is a surjection from M to N . Then, the bijection will also induce a
surjection from the setMτ to the set Nτ for any type τ = (τ0, . . . , τn).

Definition 5

1. If τ = e, then fτ = f .
2. If τ ̸= e, then the domain of fτ , in notation, Dom(fτ ), is defined as follows:

• Dom(fτ ) = {A ⊆ Mτ1 × . . .×Mτn : ∀a1, b1 ∈ Dom(fτ1) . . . ∀an, bn ∈
Dom(fτn)[fτ1(a1) = fτ1(b1)∧. . .∧fτn(an) = fτn(bn) ⇒ (a1, . . . , an) ∈
A ↔ (b1, . . . , bn) ∈ A]}.

• fτ (A) = {(fτ1(a1), . . . , fτn(an)) : (a1, . . . , an) ∈ A∩Dom(fτ1)×. . .×
Dom(fτn)}.25

Often we do not care what the induced function on Mτ with a very complex type τ
is. Rather, what concerns us is simple types. For example, for the type (e, . . . , e),
f(e,...,e) is defined as follows：
f(e)(A) = {(f(a1), . . . , f(an)) : (a1, . . . , an) ∈ A}, and its domain is {A ⊆ M :

∀ai, bi ∈ M,f(ai) = f(bi) ⇒ (a1, . . . , an) ∈ A ↔ (b1, . . . , bn) ∈ A}.

Definition 6 Any two structures ⟨M, a1, . . . , am⟩ and ⟨N, b1, . . . , bn⟩, where ai
and bi are of the same type τ = (τ0, . . . , τn), are homomorphic, if and only if:

1. m = n;
2. There is a surjection f fromM to N .
3. For each 1 ⩽ i ⩽ m, fτ (ai) = bi, where fτ is defined in Definition 5.

24For example, suppose that M = {1, 2}, N = {a, b} and f(1) = a, f(2) = b. Then, each set of
type (e), say, the set {1, 2}, will be mapped to the set {a, b}. Each set of type ((e)), say, the set {{1}},
will be mapped to the set{{a}}, etc.

25By ‘⇒’ and ‘↔’ are meant ‘if, then’ and ‘if and only if’.
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Definition 6 is very different fromSher’s formulation of homomorphic argument-
structures in [19, p. 334]. The difference lies in that the induced function that Sher
makes use of in her formulation is not the one defined in Definition 5. Rather, it is the
one that results from Definition 3 by replacing the bijection f therein with a surjec-
tion. I shall refer to this resultant definition as ‘Definition*’ later. Definition* is not
loyal to Feferman’s concept of homomorphism-invariance which is defined by using
functional types ([8]).26

SupposeM andN are any two domains, C is a constant of type τ = (τ1, . . . , τn),
and the denotations of C on M and N are fC(M) and fC(N), respectively. M =

⟨M, a1, . . . , am⟩ and N = ⟨N, b1, . . . , bn⟩ are the argument-structures of C on M

and N , respectively. According to Tarski and Sher ([18, 19, 22]), C is a logical con-
stant iff C is invariant under isomorphisms. To be precise,

Tarski–Sher Thesis
C is logicalTS if and only if
For any two isomorphic argument-structuresM = ⟨M, a1, . . . , am⟩ and
N = ⟨N, b1, . . . , bn⟩, (a1, . . . , an) ∈ fM

C if and only if (b1, . . . , bn) ∈
fN
C .

It is worthy of mentioning that Sher imposes such a restriction on the constant C ([18],
p. 54) that its level is ⩽ 2. We will not respect the restriction, because some of the
constants of the language of FA and STT have levels larger than 2.

Feferman rejects the thesis, because, among others, it overgeneralises the domain
of logical notions by admitting many mathematical and set-theoretical notions such
as alephs. In order to narrow the expanded field, Feferman uses homomorphism-
invariance to characterize logicality ([7, 8, 9]) :

Feferman Thesis
Any monadic C is logicalF if and only if
For any two homomorphic argument-structures M = ⟨M, a1, . . . , am⟩
andN = ⟨N, b1, . . . , bn⟩, (a1, . . . , an) ∈ fC(M) if and only if (b1, . . . , bn) ∈
fC(N).

Compared with (Tarski–Sher Thesis), Feferman’s thesis narrows the field of
logic notions dramatically. For example, all cardinal quantifiers ‘∃n’, either n < ℵ0

or n ⩾ ℵ0, fail to pass the test of the thesis. In addition,the constant for identity, which
is usually seen as a logical vocabulary, is also excluded by the thesis from the field
of logic. Having said that, there are still certain constants for set-theoretical notions,
say, ‘being a well-ordering’ and ‘being well-founded’, that survive the thesis.

Faced with these two shortcomings of (Feferman Thesis), i.e., the exclusion of
identity and the inclusion of the aforementioned set-theoretical notions, Feferman

26The concept of homomorphism invariance can be specified in terms of relational types or functional
types. Formore on the relation between these twomethods of specifying the concept, see [5, p. 18, p. 21].
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turns to Quine’s way of handling identity in a language with standard grammar ([17],
ch. 5) and the notion of polyadic quantifiers, respectively. Bonnay, while agreeing
with Feferman that (Tarksi-Sher thesis) overgeneralises logic, rejects the expedient
of appealing to the notion of polyadic quantifiers. Bonnay suggests characterizing
logicality in terms of potential isomorphism-invariance ([3]). However, Bonnay’s
approach is only applicable to constants whose type level is⩽ 2, because in his defini-
tion of the concept ‘partial isomorphism’ 27 between two structures ⟨M, a1, . . . , am⟩
and ⟨N, b1, . . . , bn⟩, each ai and bi are at most of level 1. As is already pointed out,
the concept of potential isomorphism-invariance can be generalised to any constant
with any type. But I will not do the generalisation here; rather I will focus on the two
theses mentioned above.

Now let me turn to set up a criterion of logicality for propositional connectives,
which denote truth-functions. Suppose S is a propositional connective and GS is
the truth-function it denotes. According to Sher and Feferman, S is logical, if GS is
permutation-invariant on the domain {T, F}. To be precise,

Truth-function Thesis
S is logical if and only if
For any identity function f on {T, F} and any x1, . . . , xn ∈ {T, F},
(x1, . . . , xn) ∈ GS = (f(x1), . . . , f(xn)) ∈ GS .

For constants with relational types, the thesis on logicality is that logicality is in-
variance under isomorphisms or homomorphisms. For propositional connectives, the
thesis on logicality is that logicality is permutation-invariance. One might be wonder-
ing if there is any connection between these two theses. In other words, what is moti-
vation for choosing the identity function rather than others in the latter thesis? There
is, in fact, a nice connection.28 Thanks to the connection, I do not distinguish be-
tween logicalityTS and logicalityF concerning propositional connectives. It stands
to reason that all propositional connectives in (i.2) and (ii.2) are both logicalTS and
logicalF.

27See [6, pp. 181–183].
28There are different accounts for the connection, see [22, fn. 6]; [19]; [3, p. 11]. For any vocabulary

C of the type (τ1, . . . , τn) in T , its denotation on domain M is the n-ary relation RM (α1, . . . , αn) ⊆
Mτ1 × . . . × Mτn , where each n-th argument is a member of the set Mτn . Now following
Bonnay, let us identify the denotation of C as the class of structures fC = {⟨M,α1, . . . , αn⟩ :
(α1, . . . , αn) ∈ RMand M is any domain}. C is logicalTS( logicalF), if for any two isomorphic ( or
homomorphic) argument-structures ⟨M,a1, . . . , an⟩ and ⟨N, b1, . . . , bn⟩, ⟨M,a1, . . . , an⟩ ∈ fC if
and only if ⟨N, b1, . . . , bn⟩ ∈ fC . Let the True and the False be the sets ∅ and {∅}, respectively. The
propositional connective, say, ‘¬’, has as its denotation the class f¬ = {⟨M, ∅, {∅}⟩, ⟨M, {∅}, ∅⟩ :
M is any domain}. This can be done for all propositional connectives. For any two argument-structures
⟨M,a1, . . . , an⟩ and ⟨M, b1, . . . , bn⟩, where each ai and bi is the True or the False, whatever function
g : M → N is, it is always the case that f(ai) = bi. So truth-values are not switched. Consequently,
all propositional connectives are logicalTS and logicalF.
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5 Logicality of quantifiers

It can be easily shown that all quantifiers in (i.2) and (ii.2) are logicalTS. Now let
us have a look at whether they are logicalF. Take universal quantifiers ‘∀’ and ‘∀2k’
as an example.

‘∀’ is not homomorphism-invariant according to Definition*. The argument-
structure of ‘∀’ on any domain M is ⟨M,A⟩, where A ⊆ M (A is of type (e)).
Consider the argument-structures ⟨M,A⟩ and ⟨N,B⟩, where M = {1, 2, 3}, N =

{4, 5}, A = {1, 2}, B = {4, 5}, and g : M → N is such that g(1) = 4, g(2) =

g(3) = 5. ⟨M,A⟩ and ⟨N,B⟩ are, then, homomorphic, because g is a surjection and
g(A) = B. It is not hard to see that ‘∀’ is not invariance under ⟨M,A⟩ and ⟨N,B⟩,
because {1, 2} /∈ f∀(M), i.e., {1, 2} ̸= M , but obviously, {4, 5} ∈ f∀(N), i.e.,
{4, 5} = N . However, Sher writes:

(a) isomorphism-invariant operators that are also homomorphism-invariant.
(ii) The existential and universal quantifiers. ([19], p. 335)

If Sher makes use of Definition*, she has to admit that ‘∀’ is not homomorphism
invariance.

As is said, Sher’s Definition* does not accord with Feferman’s own. It can be
proven easily that by Definition 6, ‘∀’ is logicalF. The structures ⟨M,A⟩ and ⟨N,B⟩
mentioned above, which are homomorphic in the sense of Definition*, are not homo-
morphic any more. For the function g(e) is not defined for the set A = {1, 2}, that is,
it is not a member of the domain of the function. This is so, because g(2) = g(3) = 5,
but 2 ∈ A and 3 /∈ A.

We have to decide whether or not the higher-order universal quantifiers in (i.2)
and (ii.2) are logicalF. As Feferman proves in the example 3 of [8], the second-order
universal quantifier ‘∀2k’ is not logicalF29. Let us give another, simple proof within
the framework of relational type symbols. Let M = {1, 2, 3} and N = {4, 5}, and
g : M → N such that g(3) = 5, g(1) = g(2) = 4. Consider ⟨M,A⟩ and ⟨N,B⟩,
which are two argument-structures of ‘∀21’, whereA = {{1, 2, 3}, {1, 2}, {3}, ∅} and
B = {{4, 5}, {4}, {5}, ∅}. Each member of A and B are of type (e). ⟨M,A⟩ and
⟨N,B⟩ are homomorphic under g.30 However, A /∈ f∀21(M), because A ̸= P (M),
while B ∈ f∀21(N), because B = P (N).

29Feferman only proves the special case in which k = 1. According to Feferman, the operation
associated with the quantifier ‘∀2

1’ on a domain M is the function f∀2
1
of type ((e → b) → b) → b

such that f∀2
1
(f) = [T, if ∀p ∈ Me→bf(p) = T, else F ], where f is of type (e → b). Feferman works

with functional type symbols. With relational type symbols, ‘∀2
k’ is of type (((e))), and the operation

associated with it on a domainM is, correspondingly, the set {P (M)}.
30To see this, we have to show that A is in the domain of the function g((e)). The domain of g(e) is

{X ⊆ M : ∀x, y ∈ M [g(x) = g(y) ⇒ x ∈ X ↔ y ∈ X]}. Therefore, domain of the function g((e))
is {Y ⊆ P (M) : ∀x, y ∈ Dom(ge)[ge(x) = ge(y) ⇒ x ∈ Y ↔ y ∈ Y ]}. Now it is easy to verify
that A ∈ Dom(g((e))). Similarly, it is easy to show that each member of A is in the domain of g(e).
Moreover, g((e))(A) = B.
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What is the implication of the fact that the quantifier ‘∀2k’ is not logicalF? Fefer-
man writes:

In any case, I count it as an argument in favor of the homomor-
phism invariance condition for logicality that it excludes second-order,
and thence higher-order, quantification, by example 3 of the preceding
section. ([8])

Feferman would be definitely right if he says that the second-order universal quanti-
fier, as well as universal quantifiers of even much higher-order, is not logicalF. But
he says ‘it excludes second-order, and thence higher-order’. I cannot see how (Fefer-
man Thesis) can exclude the second-order existential quantifier ‘∃2k’. Its denotation
on any non-empty domain M is f∃2k(M) = {A : A ⊆ P (Mk), A ̸= ∅}. Given
any two homomorphic argument-structures ⟨M,A⟩ and ⟨N,B⟩, where A and B are
of type ((e), . . . , (e)) (k occurrences of (e)), it cannot hold that A ∈ f∃2k

(M) and
B /∈ f∃2k

(N). Similarly, it is also impossible thatA /∈ f∃2k
(M) andB ∈ f∃2k

(N). For
no surjection can map a non-empty set (an empty set) onto an empty set (a non-empty
set).

It seems abnormal that the second-order quantifier ‘∀2k’ is not logicalF, while
the second-order ‘∃2k’ is so, because they are usually definable one another.31 E.g.,
‘∀2kX’ is defined as‘¬∃2kX¬’. Intuitively, given that ‘¬’ and ‘∃2k’ are logicalF, so
would be ‘∀2k’. But as is already shown, ∀2k is not logicalF. So the intuition might
be unreliable. The first-order universal and existential quantifiers are both logicalF.
This seems to verdict the observation that if we take one of them to be a primitive log-
ical constant and define the other in a canonical way, then the defined one would also
qualify as logical. This observation is proved by Feferman’s theorem 6 in [8], accord-
ing to which, any operation definable from the operations of first-order logic without
identity is also definable from monodic homomorphism-invariant operations in terms
of negation, conjunction and first-order existential quantifier, and vice versa. This
theorem has nothing to do second-order quantifiers, however. So the aforementioned
intuition does not get supported by it.

6 Logicality of the constants for the concept “The number of” and the
membership relation

Let us look at if the constant in (i.3), i.e., ‘♯’, and the constant in (ii.3), i.e., ‘ϵ’, are
logicalTS and logicalF. If a constant is not logicalTS, then it is not logicalF, because
any homomorphism invariance is isomorphism invariance. I will show that ‘♯’ is not
logicalTS. For this purpose, it suffices to find two isomorphic argument-structures

31One should not be concerned with this abnormality too much, because there is a version of in-
variance under homomorphism which even bans operations definable in terms of first-order logical
operations from being logical, see [5].
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⟨M,A, a⟩ and ⟨N,B, b⟩, where A ∈ P (M), a ∈ M , B ∈ P (N), b ∈ N , such that it
is not the case that (A, a) ∈ f♯(M) if and only if (B, b) ∈ f♯(N).

The required isomorphic argument-structures are constructed as follows. Let
M = N = N, i.e., the set of natural numbers. Let Fn = {F : F ∈ P (N), |F | = n}
for any 0 < n ∈ N. So Fn has ℵ0 elements, where 0 < n ∈ N. If n = 0, let F0 = ∅.
In addition, letG = {F ⊆ N : |F | = ℵ0}. It is clear that

∪
n∈N Fn ∪G = P (N). Let

f : P (N) → N be the following function: for each F ∈ Fn and n ⩾ 0, f(F ) = n+1

and for each F ∈ G, f(F ) = 0. This function satisfies the condition (C) on p. 67.
Obviously, f♯(M) = f♯(N) = f . Suppose g : M → N be such a function that
g(0) = 1, g(1) = 0 and g(x) = x for all x > 1. Obviously, g is a bijection. Let
⟨M,A, a⟩ = ⟨N, F0, 1⟩ and ⟨N,B, b⟩ = ⟨N, F0, 0⟩. Obviously, these two argument-
structures are isomorphic. However, (A, a) ∈ f♯(M) and (B, b) /∈ f♯(N), because
f♯(M)(F0) = 1 and f♯(N)(F0) = 1. Therefore, ‘♯’ is not logicalTS. So it is not
logicalF, either.

I claim that ‘ϵ’ is logicalST.32 ‘ϵ’ is of type (τ, (τ)), where τ = (. . . (e) . . .) (n
pairs of parenthesis, n ⩾ 0). I shall show that it is logicalST in the case that n = 1.
It can be shown in the similar way that it is logicalST when n > 1. Suppose there are
two isomorphic argument-structures of ‘ϵ’ ⟨M,a,A⟩ and ⟨N, b,B⟩, where a ∈ M ,
A ⊆ M , b ∈ N , B ⊆ N , such that (a,A) ∈ fϵ(M) but (b,B) /∈ fϵ(N). Since the
structures are isomorphic, there is a bijection g : M → N such that g(a) = b, and
g(A) = B. Since (a,A) ∈ fϵ(M), a ∈ A. Thus, g(a) = b ∈ g(A) = B. Therefore,
the supposition cannot hold.

The constant ‘ϵ’ is logicalF. Otherwise, suppose ⟨M,a,A⟩ and ⟨N, b,B⟩ are
two homomorphic argument-structures of ‘ϵ’ such that it is not the case that (a,A) ∈
fϵ(M) iff (b,B) ∈ fϵ(N), where f is a surjection from M to N . Suppose a ∈ A

but b ∈ B. Obviously, this cannot be the case. Suppose a /∈ A but b ∈ B. Since
b ∈ B and g(e)(A) = B, there is some c ∈ A that g(c) = b. Let us show that a ∈ A.
BecauseA is in the domain of g(e), it is the case that for all x, y ∈ M , if g(x) = g(y),
then x ∈ A iff y ∈ A. g(a) = g(c), so b ∈ A iff a ∈ A. Therefore, a ∈ A. So we
arrive at a contradiction. By the same token, we can show that the constant ‘ϵ’ is also
logicalF for n > 1.

7 Conclusion

Undoubtedly, the provability thesis of Frege-Russellian logicism is certainly un-
justifiable. So let us focus on the definability thesis. Insofar as logicality is either

32Sher already points out the conclusion about ‘ϵ’ But she only considers the case in which ‘ϵ’ is
of type (e, (e)). ([19], p. 305) Similarly, Tarski also mentions that it is logical and claims, further, that
‘using the method of Principia Mathematica, set theory is simply part of logic.’ ([22], p. 152) So Tarski
claims that the definability thesis of Russell’s logicism succeeds, although he does not show in his paper
that the quantifiers and propositional connectives are also logical.
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isomorphism invariance or homomorphism invariance, the constant ‘♯’ for the con-
cept “ the number of ” is not logical, while all constants in (i.2) are so. Consequently,
Boolos’s assessment of Frege’s logicism on p. 70 is right. It is easy to show that there
are arithmetical concepts that are not isomorphism invariance. Because any homo-
morphism invariance is also isomorphism invariance, any arithmetical concept that is
not isomorphism invariance is not homomorphism invariance.

Let us take 0 as an example of non-isomorphism invariance in Frege’s system.
The constant 0 is defined as ♯[x : x ̸= x] in Frege’s system. 0 is of type e and its
argument-structures are ⟨M,a⟩，where a ∈ M and M is infinite. It holds in any
arbitrary domain M that f♯([x : x ̸= x]) = f♯(∅) ∈ M . Suppose f♯(∅) = a ∈ M .
Therefore, f0(M) = m, i.e., the numeral 0 denotes the object a inM . LetN be such
a set that f0(N) = b ∈ N , where |N | = |M |. There is a bijection f : M → N

such that f(a) = c ∈ N and c ̸= b. Therefore, ⟨M,a⟩ and ⟨N, c⟩ are isomorphic.
However, a = f0(M) and c ̸= f0(N). Therefore, 0 is not isomorphism invariance.

If logicality is isomorphism invariance, then the definability thesis of Russell’s
logicism is fully justified, because in the case the claim (+) on p. 68 holds for the
language of STT.33

If logicality is homomorphism invariance, then the definability thesis of Rus-
sell’s logicism cannot be fully justified. Higher-order universal quantifiers are not
logicalF, but its corresponding existential quantifiers are logicalF. Let us replace
the higher-order universal quantifiers occurring in the axioms of STT by the corre-
sponding existential quantifiers. Then, all constants in (ii.2) and (ii.3) are logicalF.34
However, the claim (+) does not hold any more provided that logicality is homomor-
phism invariance. To see this, let us take the cardinal numeral n2 (its denotation is
the number n of type ((e))) in STT as an example.

The argument-structure of n2 is (M,A), where M is any non-empty set and
A ⊆ M . fn2(M) = {A ⊆ M : |A| = n} if |M | ⩾ n; otherwise,fn2(M) = ∅.
Let M = {u1, . . . , un}, N = {v1, . . . , vn−1} and f : M → N be a surjection that
f(u1) = f(u2) = v1 and for 2 < m ⩽ n, f(um) = vm−1. It is not hard to verify
that ⟨M,M⟩ 和 ⟨N,N⟩ are homomorphic, because M ∈ Dom(f(e)). Obviously,
M ∈ fn2(M) and N /∈ fn2(N). Therefore, n2 is not homomorphism invariance.
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逻辑性和弗雷格算数与简单类型论的逻辑主义

石伟军

摘 要

弗雷格和罗素的逻辑主义由两个部分构成：可证明性论题和可定义性论题。

可以很确信地说，可证明性论题并不能得到完全的辩护。但是，为了向两者，特

别是可定义性论题，提供辩护或者拒斥之，我们需要逻辑性的标准来决定，除了

其它常元的逻辑性之外，表示数的常元和表示属于关系的常元的逻辑性。我将采

用的逻辑性标准是塔尔斯基和谢尔提出的同构不变量标准和费弗曼提出的同态不

变量标准。塔尔斯基和谢尔在不同的地方已经指出罗素的表示属于关系的常元是

同构不变量。在本文中，我将证明如下结论：第一，表示属于关系的常元是同态

不变量；第二，弗雷格的表示数的常元既不是同构不变量也不是同态不变量；第

三，如果逻辑性是同构不变量或者同态不变量，弗雷格的逻辑主义（弗雷格算数）

的可定义性论题不成立；第四，如果逻辑性是同构不变量，罗素的逻辑主义（简

单类型论）的可定义论题成立，但若逻辑性是同态不变量，这个论题则不成立。

石伟军 中国人民大学哲学系

柏林洪堡大学哲学系

2015000867@ruc.edu.cn


	Introduction
	Frege's logicism 
	Russell's logicism
	Logicality as invariance under morphisms
	Logicality of quantifiers
	Logicality of the constants for the concept ``The number of'' and the membership relation
	Conclusion

