Studies in Logic, Vol. 13, No. 3 (2020): 32-61
PII: 1674-3202(2020)-03-0032-30

Some Results on Rewritability in Modal Logics over
Tree Models*

Shanshan Du

Abstract. We have investigated locally equivalent and m-conservative rewritabilities in
modal logics over tree models. The modal languages studied in this paper are ML, MLI, MLG
and MLGI.

1 Introduction

Over the past 100 years, many artificial languages in distinct expressiveness
powers and complexity degrees have been introduced. They range from classical
first-order and higher-order predicate languages to a large variety of modal languages.

Different types of languages may be “expressed” by other languages. For exam-
ple, it is well known that each ML-formula is locally equivalently rewritable into a
first-order formula over models. However, the converse does not hold:

* There are fisrt-order formulas that cannot be locally equivalently rewritable into
an ML-formula.

van Benthem Characterization Theorem in [2] characterizes when exactly a first-order
formula is locally equivalently rewritable into an ML-formula. Following van Ben-
them Characterization Theorem, (locally) equivalent rewritability has become an im-
portant and active research problem in modal logic ([4]) and computer science ([11,
12]) over the past 40 years.

E. Rosen has proved characterization theorems on (locally) equivalent rewritabil-
ity over finite Kripke models in [16]. Characterization theorems over any class of
Kripke models are proved by M. Otto in [14], where different versions of character-
ization theorems for MLI, ML plus a global modality and MLI plus a global modal-
ity are also proved. M. de Rijke proves characterization theorems for MLG in [15].
Otto proves similar theorems for uML ! in [13]. A. Dawar and Otto proves several
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characterization theorems over kinds of classes of frames in [6]. A model-theoretic
characterization of MSO 2 to uML is proved by D. Janin and I. Walukiewicz in [9].
G. Fontaine proves a model-theoretic characterization of MSO to uML over tree mod-
els in [7]. Some theorems on globally equivalent rewritability of MLI to ML, MLG
to ML, ML to EL 3 over models are proved by F. Wolter in [17].

Equivalent rewritability is an important notion, but it is rather strict for it cannot
introduce additional non-logical symbols. So it is necessary to introduce a weaker
notion admitting additional non-logical symbols, i.e., “conservative rewritability”,
which aims at a conservative extension rather than an equivalent one. Conservative
rewritability is often studied in description logics ([1]). Some important theorems in
this area are proved by [10] and [12]. [7] resolves the global case of m-conservative
(i.e., model conservative) rewritability of MSO to uML over tree models. The locally
m-conservative rewritability of MLG to ML over tree models can be inferred from
some results in [7]. [17] characterizes the global cases of s-conservative 4 and m-
conservative rewritability of MLI to ML, MLG to ML and ML to EL over models.

Local equivalent and m-conservative rewritability over tree models are studied in
this paper. Modal lauguages considered include ML, MLI, MLG and MLGI. Section
3 of this paper proves that each MLI-formula is equivalently rewritable into an ML-
formula at roots over tree models. Section 4 resolves whether each MLGI-formula
is equivalently rewritable into an MLG-formula at roots over tree models. Section 5
characterizes the equivalent and m-conservative rewritability of “MLGI to MLI” over
tree models. Section 6 resolves m-conservative rewritability of “MLGI to ML” over
tree models.

2 Preliminaries
Syntax  ML-formulas are formed according to the rule:

pu=p|lop|eAp|Op

where p is a propositional variable. Other connectives are defined as follows: ¢ V
Y u=—a(np A=), T u=pV-p, Lu=-T,dp u= O,
MLI is ML plus ©~,® MLG is ML plus ©=" and MLGI is ML plus ¢=" and

2MSO represents “monadic second-order”.

*ML is the standard modal language; MLI is ML plus inverse modalities; MLG is ML plus graded
modalities; MLGI is ML plus graded and inverse modalities; EL is a tractable modal language. For
reference, see [17].

*S-conservative rewritability is another notion of conservative rewritability, being different from
m-conservative rewritability. However, it is not studied in this paper. For reference, see [10].
3% represents 021,

8¢~ represents O =1
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&~27 Tt should be noticed that
OSp i= (O )

and
OT=p 1= =(07=M ),

while n € N, n > 1 and N is the set of natural numbers.

Model A (Kripke) frame F is a pair (W, R) and a (Kripke) model M is a triple
(W, R, V'), where W is a non-empty set of states, R is a binary relation on W and V'
is a valuation. A pointed model is a pair (M, d), where M is a model and d € W.

Let R be the reflexive transitive closure of R. If there is a unique d* € W
such that d* R™d for each d € W, then the frame (W, R) is called rooted and d* is
its root. A rooted frame (W, R) with d* being its root is a tree if each state d € W
is reachable from d* by a unique R-path d*R--- Rd. A model (W, R, V) is a tree
model if its underlying frame (W, R) is a tree.

The truth-relations for ML-formulas (MLI-formulas, MLG-formulas and MLGI-
formulas) are defined in the familiar way for the atomic and boolean cases. The other
cases are as follows:

s (M,d) E OZ"aiff (M,d') |= o for at least n different points d’ € W such
that dRd';

« (M,d) &= O~2"aiff (M,d') = « for at least n different points d’ € W such
that d’ Rd;

V() is defined as {d € W : (M, d) = ¢} for each formula (.

Rewritability Let L; (i € {1,2}) be a modal language. An L;-formula ¢ is
locally equivalently rewritable into an Lo-formula (or a set of Lo-formulas A*) over
a class of models C' if there is an Ly-formula 1) (or a set of Lo-formulas A*) such that

* foreachmodel M = (W, R,V) € Candd € W, (M,d) E ¢ iff (M,d) = ¢
(or (M,d) = A¥).

An Li-formula ¢ is locally m-conservatively rewritable’ into an Lo-formula (or a set
of Lo-formulas A*) over a class of models C' if there is an Lo-formula ¢ (or a set of
Lo-formulas A*) such that

* foreachmodel M = (W, R,V) € Candd € W, if (M,d) =+ (or (M,d) =
A*), then (M, d) = ¢.

« for each model M = (W,R,V) € C and d € W such that (M,d) = ¢,
there is a model M’ € C such that M’ = (W, R, V') and M =g,y M’ and

(M, d) |= 4 (or (M, d) |= AY).

"For reference, see [10].

sig
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Here M =g,y M’ means that V(p) = V’(p) for each propositional variable p €
sig(p) and sig(p) represents the set of propositional variables occurring in (.

According to the definition of locally m-conservative rewritability, the unique
difference between M and M’ is valuations of propositional variables, i.e., M = M’
iff V' = V’. Therefore, if an L;-formula is locally equivalently rewritable into an
Lo-formula v(or a set of Lo-formulas A*) over a class of models C, then it is locally
m-conservatively rewritable into the Lo-formula t(or the set of Lo-formulas A*) over
the class of models C'.

When C' is the set of all Kripke models, “over a class of models C” is omit-
ted. When C' = {(M,d*) : M is a tree model and d* is its root }, an L;-formula ¢
is said to be equivalently (or m-conservatively) rewritable into an Lo-formula (or a
set of Lo-formulas) at roots over tree models.

Degree The degree of an MLGI-formula is defined as follows:

* Deg(p) =

* Deg(l) =

. g(w) = Deg(p),

* Deg(p NY) ZmaX{Deg( ), Deg(v))},
* Deg(© 2@) eg(p) + 1,

* Deg(O™2"p) = Deg(tp) + 1.
The degree of an MLI-formula (or an MLG-formula) is defined similarly.

Bisimulation Let M7 = (Wl, Ry, Vl) and My = (Wg, Rs, Vg) be two Kripke
models.

A non-empty relation S C Wy x Wy is a bisimulation® between (M, d;) and
(My, ds) if the following conditions are satisfied:

(d1,d2) € S;

* if (u,v) € S, u and v satisfy the same propositional variables;

if (u,v) € S and uR;z1, there is an x5 such that v Roxo such that (x1,x2) €
S (the forth condition);

o if (u,v) € S and vRyx2, there is an x1 such that uR z; such that (z,z9) €
S (the back condition).

A non-empty relation S C Wy x Wy is an i-bisimulation between (M, d;) and
(Ma, dg) if S satisfies all the conditions for bisimulation and the following conditions:

e if (u,v) € S and x; Ryu, there is an zo such that xo Rov such that (z7,z9) €
S (the inverse forth condition);

8For reference, see [5].
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e if (u,v) € S and x9 Ryv, there is an x1 such that 21 Rju such that (z1,z9) €
S (the inverse back condition).

A non-empty relation S C Wy x Wy is an n-bisimulation between (M, dy) and
(M, do)? if there is a sequence of relations S,, C --- C Sy such that: § = U S
0<i<n
and foreach0 < i < n
° (d17d2) € Sn;
* if (u,v) € Sp, u and v satisfy the same propositional variables;
o if (u,v) € Sij+1 and uRjx1, there is xo such that vRoxe and (x1,x2) €
S; (the forth condition);
o if (u,v) € S;y1 and vRaxo, there is x; such that uR 2z and (z1,x2) €
S; (the back condition).

A non-empty relation S C Wy x Wy is an n-i-bisimulation between (M1, d;)
and (Ma, ds) if there is a sequence of binary relations S,, C --- C Sy such that

S = |J & and it satisfies all the conditions for n-bisimulation and the following
0<i<n
conditions, i.e., foreach 0 < i < n

e if (u,v) € S;11 and x1Ryju, there is xo such that zoRov and (z1,22) €
S; (the inverse forth condition);

o if (u,v) € Si41 and x9Ryv, there is z; such that 1 Rju and (x1,x2) €
S; (the inverse back condition).

van Benthem Characterization Theorem equivalently rewrites a first-order for-
mula into an ML-formula by bisimulation. (See [2] and [3].)

Theorem 1 (van Benthem Characterization Theorem). A first-order formula A(x)
is invariant under bisimulations iff it is locally equivalently rewritable into the stan-
dard translation of an ML-formula.

A non-empty binary relation S C Wy x Wy is a counting bisimulation between
(Mjy,dy) and (Mo, ds) if the following conditions are satisfied:

* (di,do) € S;

e if (u,v) € S, u and v satisfy the same propositional variables;

e if (u,v) € Sand X1 C utis finite'?, there is an X5 C v such that S contains
a bijection between X and Xs (the forth condition);

¢ if (u,v) € S and X5 C v7 is finite, there is an X; C u? such that S contains a
bijection between X1 and Xo (the back condition).

°For reference, see [5].
V21 = {y € W : zRy}.
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A non-empty binary relation S C Wy x Wy is an n,,-counting bisimulation"!
between (M7, dy) and (Mo, ds) if there is a sequence of binary relations S,, C --- C
So such that S = |J S; and it satisfies the following conditions, i.e., for each

<i<
0<i<n e

° (d17d2) € Sn;

e if (u,v) € Sp, u and v satisfy the same propositional variables;

o if (u,v) € Sit1, | X7 |< mand X1 C ut, there is an Xy C v1 such that S;
contains a bijection between X, and Xy (the forth condition);

o if (u,v) € Siy1, | Xo |< mand Xy C v, there is an X; C w1 such that S;
contains a bijection between X; and X (the back condition).

A non-empty binary relation S C W x Ws is an n,,-ix-counting bisimula-
tion'*between (M, dy) and (Mo, do) if there is a sequence of binary relations S,, C
- C Spsuch that S = |J S; and it satisfies the conditions for 7,,-counting
0<i<n
bisimulation and the following conditions, i.e., for each 0 < i < n:
e if (u,v) € Six1, | Y1 |< kand Y C ul'3, then there is a Yo C v such that S;
contains a bijection between Y] and Y5 (the inverse forth condition);
o if (u,v) € Sit1, | Yo |< kand Yy C v], then there is a Y7 C wJ such that S;
contains a bijection between Y] and Y5 (the inverse back condition).

Let us discuss these different but resembled bisimulations. According to their
definitions, it is known that

* each counting bisimulation is also a bisimulation. However, the inverse does
not hold, i.e., not each bisimulation is a counting one.

* each (n-)i-bisimulation is also an (n-)bisimulation since ¢ only means the extra
conditions for predecessors. However, it is obvious that the inverse does not
hold.

* each n,,-ip-counting bisimulation is also an n,,-counting bisimulation. The
inverse does not hold.

* when m = 1, the n,,-counting bisimulation becomes an n-bisimulation. It
means that an n-bisimulation is in fact a special case of n,,-counting bisimu-
lations when m = 1.

« when m = 1 and k£ = 1, the n,,-ig-counting bisimulation becomes an n-i-
bisimulation. In fact, an n-i-bisimulation is a special case of n,-i;-counting
bisimulation when m = 1 and k = 1. It should be noticed that each 7,,-is-

"If “m” is changed into “finite”, it is an n-counting bisimulation.

121f«k” is changed into “finite”, it is an 1, -i-counting bisimulation. If “m” and “k” are both changed
into “finite”, it is an n-i-counting bisimulation.

Bal ={y € W :yRx}.
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counting bisimulation between two tree models is in fact an n,,-i1-counting
bisimulation since any point, except the root'#, in a tree model has only one
predecessor.

Figure 1 gives an example of 29-71 -counting bisimulation S. Let M7 = (W7, Ry,
V1) and My = (Wy, Re, Va) be two (tree) models showed in Figure 1 with Vi (p) =
Va(p) for each propositional variable p. Define a sequence of binary relations So C
S1 C Sy as follows:

Sa = {(ao,bo)}
Sl = {(a(JabO): (a17b2)> (a2ab1)a (a3vb2)}
So = {(ao,bo), (a1,b2), (az,b1), (a3, b2), (as,b3), (a5, bs), (a6, ba)}.

Let S = |J ;. Itiseasy to prove that S is a 29-i1-counting bisimulation between
0<i<2
M 1 and MQ.

Figure 1

A p-morphism from (M, dy) to (M, dz) is a special bisimulation S'> between
(My,dy) and (Maz, ds) if S is a surjective function from W; to Wo.

An i-p-morphism from (M, d;) to (Ma,ds) is a special i-bisimulation S be-
tween (M, d;) and (Ma, dg) if S is a surjective function from W5 to Wha.

Let X be a set of propositional variables. Each type of #-bisimulation is called a
>.-#-bisimulation, if no truth of propositional variables except those in ¥ are consid-
ered.

Invariance An L-formula ¢ is invariant under #-bisimulations over a class of
models C 10, if

(M, dy) | @ iff (My,do) = .7

"The root of a tree model has no predecessor.
5For reference, see [5].
184 represents a type of bisimulation.

If it is substituted by “if (M1, d1) = ¢, then (Ma, d2) |= ¢”, then it means “preservation under
#-bisimulations over a class of models C”’.
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for each #-bisimulation between (M, dy), (Ma,d2) € C.

An L-formula ¢ is locally preserved under inverse (i-)p-morphisms over a class
of models C if there is a(n) (i-)p-morphism f from the pointed model (M, d;) € C to
the pointed model (Ma, f(d1)) € C such that (Ma, f(d1)) = ¢, then (M1,d1) = ¢.
When C' is the class of all models, “over a class of models C” is omitted.

This paper focuses on the class of all tree models. In some sections, the case that
C = {(M,d*) : M is atree model and d* is its root } will be considered and it says
to be invariant (or preserved) under #-bisimulations at roots over tree models.

Clearly invariance (or perservation) under bisimulations implies invariance (or
perservation) under n-bisimulations for each n € N.!8

3 MLI to ML

The following theorem is proved in this section: “each MLI-formula is equiva-
lently rewritable into an ML-formula at roots over tree models”. However, Lemma 1
has to be proved first.

Lemmal From each bisimulation between tree models with their roots being mapped
to each other, an ¢-bisimulation is constructed between the same two tree models with
their roots being mapped to each other.

Proof Let My = (W1, Ry, V1) and My = (Wa, Rg, Vo) be two tree models with
di and d5 being their roots respectively. Assume that S is a bisimulation between
(M, dy) and (Mo, d5) with (df,d5) € S. Now S; C S (i € N) is defined as
follows:

So = {(dy, d3)}.

Siv1 = {(u,v) € §: FxFy(xRiu A yRov A (z,y) € Si)}.

S§* = Usi.

1EN

Let

Since each S; C S, S* C S. For constructing S*, those pairs having no predecessor
pairs that belong to S are deleted from S .

Assume that (d,e) € S* and dR;d’. Then (d,e) € S; for some i € N. So
(d,e) € S. By the assumption that S is a bisimulation between (M7, d}) and (M, d5)
with (d}, d5) € S, there is a point ¢/ € W5 such that eRse’ and (d',¢’) € S. By the
definition of S*, (d’,¢’) € S;+1 and then (d’,¢’) € S*. That is, S* satisfies the forth
condition. The back condition can be proved similarly. Now consider the inverse
forth and inverse back conditions. Since M; and M> are both tree models, each point
except their roots has only one predecessor. If a pair in S* is not the root pair (d7, d5),

8For reference, see p. 265 in [8].
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the inverse forth and back conditions hold by the definition of S*. If a pair in S* is the
root pair (d}, d), the inverse forth and back conditions also hold because the roots
have no predecessors at all. O

Proposition 2 follows from Lemma 1 directly.

Proposition 2 From each n-bisimulation between tree models with their roots being
mapped to each other, an n-i-bisimulation is constructed between the same two tree
models with their roots being mapped to each other.

Proposition3 Each MLI-formula ¢ with Deg(y) < n isinvariant under n-i-bisimul-
ations.

Proof Let ¢ be an MLI-formula with Deg(yp) < n. Assume that there is an n-i-
bisimulation Sy with a sequence S,, C --- C Sy between (M, w) and (M’ w') and
(w,w') € S,,. We should prove that

(M, w) = @ iff (M) |= . (1)

We prove (1) by induction on the construction of MLI-formulas. The basis and
boolean cases are trivial.

Now consider the case that ¢ = <. Assume that (M, w) = ¢. Then there
is a successor v of w in M such that (M,v) | 1. By the definition of an n-i-
bisimulation, there is a successor v" of w’ in M’ such that (v,v’) € S,,—1. So there
is an (n — 1)-i-bisimulation Sy with S,,—; C --- C Sy between (M, v) and (M’ v')
and (v,v") € S,,_1. Since Deg(1)) < n — 1, by induction hypothesis,

(M, ) |= 4 iff (M, 0) = v

By (M,v) = v, we have that (M’ ,v") = . Thus (M’,w') = . The inverse is
proved similarly.

Now consider the case that ¢ = &7 1). Assume that (M, w) = ¢. Then there
is a predecessor v of w in M such that (M,v) = 1. By the definition of an n-i-
bisimulation, there is a predecessor v’ of w’ in M’ such that (v,v") € S,—1. Then
there is an (n — 1)-i-bisimulation Sy with S,,_1 C --- C Sy between (M, v) and
(M',v") and (v,v") € Sp,—1. Since Deg(1)) < n — 1, by induction hypothesis,

(M, v) = iff (M) = 1)

By (M,v) | 9, we have that (M’,v") = 1. Thus (M’,w’) = ¢. The inverse is
proved similarly. O

We introduce characteristic ML-formulas XFM, d in [8].
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Definition 4 (Characteristic ML-Formula) Let ® be a finite set of propositional
variables and (M, d) be a pointed model with M = (W, R). The characteristic ML-
formula XFM d (n € N) is defined as follows:

. X([)M d is purely propositional, consisting of the conjunction of all p € & that
are true at the point d and all —p for those p € ® that are false at d;

+1 _ .0
X = Xbra A N OXhra1 A8V Xvay
dRd’ dRd’

The main result of this section Theorem 5 is proved now.

Theorem 5. Each MLI-formula is equivalently rewritable into an ML-formula at
roots over tree models.

Proof Assume that ¢ is an MLI-formula and Deg(p) < n. Let C be the class
of tree models (M, d*) with d* being its root such that (M, d*) = ¢. Assume that
(Mj,d}) € C and there is an n-bisimulation S between the tree model (M1, d}) and a
tree model (M’, d") with d’ being its root such that (d}, d’) € S. By Proposition 2, an
n-i-bisimulation S* between (M, d}) and (M’, d') with (d},d') € S* is constructed.
Then by Proposition 3, (M;,d;) € C and (M,d}) = ¢, we have that (M, d') = .
Therefore, (M’,d’) € C. Thatis, C is closed under n-bisimulations at roots over
tree models. By Corollary 34 of [8]'°, since C is closed under n-bisimulations, C'is
definable by the ML-formula

V' X

(M,d*)eC

with ® = sig(p) 2%of Definition 4. Therefore, the MLI-formula ¢ is equivalently
rewritable into an ML-formula at roots over tree models. ]

Proposition 6 follows directly from Theorem 5.

Proposition 6 Each MLI-formula is m-conservatively rewritable into an ML-formula
at roots over tree models.

However, is each MLI-formula equivalently rewritable into an ML-formula at
any point over tree models? The answer is “No”, answered by Example 7.

P Corollary 34 in [8] says that a class of pointed Kripke structures being closed under n-bisimulations
is definable by an ML-formula in a finite vocabulary.

2The ML-formula is finite as there are only finitely many such X[ar,4+) Up to logical equivalence in
the vocabulary sig(p) of .
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Example 7 Assume that &~ T is equivalently rewritable into an ML-formula 1) at
each point over tree models, i.e.,

(M, d) = O~ Tiff (M, d) = o

for each tree model (M, d). Figure 2 says that (M, a) = O~ T and then (M, a) &
1. The tree model M is a generated submodel of M5 in Figure 2. Since v is an ML-
formula, (Ms,a) [~ . However, (Ma,a) = O~ T. Thus &~ T is not equivalently
rewritable into an ML-formula at each point over tree models.

GOT s
M, * @ a I true. M,

= O
]
-

Figure 2

4 MLGI to MLG
For an MLGI-formula ¢, let
Ind(p) = max{n € N : ©=" occurring in ¢}

and
Ind™ (¢) = max{n € N : ©~=" occurring in ¢}.

Proposition8 Each MLGI-formula ¢ with Deg(y) < n, Ind(¢) < mand Ind~ ()
< k is invariant under n,,-i;-counting bisimulations.

Proof This proposition is proved by induction on the construction of MLGI-formulas
e with Deg(p) < n, Ind(p) < mand Ind () < k. Assume that there is an n,,,-ij-
counting bisimulation S between (M, d) and (M’,d"). The basis and boolean cases
are trivial.

Now consider the case that ¢ = ©Z!t). Assume that (M, d) |= ¢. Then there
are at least [ different successors dy, - -- ,d; of d in M such that (M, d;) = ¢ for
each 1 < ¢ < [. By the definition of an n,,-i;-counting bisimulation, n > 1 and
I < m, there are at least [ different successors d/,--- ,d; of d’ in M’ such that
(di,dy),---,(d;,d;) € S. Thenthereisan (n—1),,-ix-counting bisimulation S} C S
between (M, d;) and (M, d}) for each 1 < i <. Since Deg(¢)) < n—1, Ind(y)) <
m and Ind~ () < k, by induction hypothesis, (M, d;) = ¢ iff (M’,d}) = 4 for
eachl <i<1.By(M,d;) Fv foreachl <i <,

(M, d;) =
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foreach 1 <4 <. Thus (M’,d’) | ¢. The inverse can be proved similarly.

Now consider the case that ¢ = ©~=l). Assume that (M,d) = ¢. Then
there are at least [ different predecessors dy, - - - , d; of d in M such that (M, d;) = ¢
for each 1 < ¢ < [. By the definition of an n,,-i;-counting bisimulation, n > 1
and | < k, there are at least [ different predecessors df, - - - ,d; of d’ in M’ such that
(di,dy), -+ ,(d;,d}) € S. Thenthereisan (n—1),,-ix-counting bisimulation S} C S
between (M, d;) and (M, d;) for each 1 < i <. Since Deg(¢)) < n—1, Ind(y)) <
m and Ind~ (¢)) < k, by induction hypothesis, (M, d;) = v iff (M’,d}) = 4 for
eachl <i<1.By(M,d;) EFv foreach1 <i <,

(M’ dy) b= o
foreach 1 <4 <. Thus (M’,d’) | ¢. The inverse can be proved similarly. O

Proposition 9 From each n,,-counting bisimulation between two tree models with
their roots being mapped to each other, an n,,-ix-counting bisimulation (k > 1) is
constructed between these two tree models with their roots being mapped to each
other.

Proof Let M; = (Wi, Ry, V1) and My = (Wa, Ra, V) be two tree models with d}
and d3 being their roots respectively. Assume that

is an n,,-counting bisimulation between (M1, d}) and (Ma, d5) with (df,d%) € S.
Let S, - - ,S), be as follows:

57{ = {(u/a ’Ul) : URlu/v UR2v/7 u/SiU/ & US£+1’I)}-

s'= 1 s

0<i<n

Let

By the proof of Lemma 1, S’ C S is an n-i;-bisimulation between (M, d}) and
(My, d5). We prove first that

S’ is an n,,-i1-counting bisimulation . (1)

Assume the contrary, i.e., S’ is not an n,,,-i1-counting bisimulation. We can assume
without loss of generality that there is a pair u'Sjv’ (1 < j < n)and a set D C u't
with | Dy |< m, butthereisno Dy C v'1 such that S’ contains a bijection between D4
and Dy. Since u'S%v’, u'S;v" holds according to the definition of S’. By the definition
of n,,-counting bisimulation, there is a set Dy C v’ such that S contains a bijection
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between D; and Ds. According to the definition of 7, S’ contains a bijection between
D7 and D,, which is contrary to our assumption. So (1) holds. Since each point in
a tree has only one predecessor, by the definition of 7n,,,-i-counting bisimulation, S’
is any n,,-ix-counting bisimulation for each £ > 1 between (M7, d}) and (Mo, d3)
with their roots being mapped to each other. ]

In order to prove the main theorem of this section Theorem 11, Theorem 4.11 of
[15] is introduced first:

Theorem 10 (Theorem 4.11 in [15]). Assume that the language of MLG contains
finitely many propositional variables. Let K be a class of pointed models. Then K is
definable by a single MLG-formula iff K is closed under n,-counting bisimulations
for somen,m € N.

Theorem 11. Each MLGI-formula is equivalently rewritable into an MLG-formula
at roots over tree models.

Proof Give an MLGI-formula ¢ with Deg(¢) < n, Ind(¢) < mand Ind (¢) < k
for n,m,k > 1. By Theorem 10, it needs to prove that each MLGI-formula is in-
variant under n,,-counting bisimulations at roots over tree models. By Proposition
9, from each n,,-counting bisimulation between two tree models with their roots be-
ing mapped to each other, an n,,-i;-counting bisimulation is constructed between
these two tree models with their roots being mapped to each other. By Proposition
8, it can be easily proved that each MLGI-formula ¢ is invariant under n,,,-counting
bisimulations at roots over tree models. O

The following proposition follows directly from Theorem 11.

Proposition 12 Each MLGI-formula is m-conservatively rewritable into an MLG-
formula at roots over tree models.

However, not each MLGI-formula is locally equivalently rewritable into an MLG-
formula at any point over tree models. Our example is still &7 T in Example 7.
&7 T is also an MLGI-formula. Since each MLG-formula is invariant under count-
ing bisimulations at any point over tree models®!, if &~ T can be locally equiva-
lently rewritable into an MLG-formula, it should be invariant under counting bisim-
ulations at any point over tree models. Now Figure 2 shows that it is not the truth, for
(Ma,a) =<7, (My,a) = O~ T and there is a counting bisimulation S = {(a,a)}
between the two tree models (M7, a) and (Ma, a).

2For reference, see Proposition 3.3 in [15], which says that each MLG-formula is invariant under
counting bisimulations.



Shanshan Du / Some Results on Rewritability in Modal Logics over Tree Models 45

Instead, the following theorem can be proved from Proposition 3.3 in [15], The-
orem 10 (i.e., Theorem 4.11 in [15]) and a similar proof of Theorem 17.2

Theorem 13. Let ¢ be an MLGI-formula with Deg(¢) < n. Then the following
conditions are equivalent:

(i) o is locally equivalently rewritable into an MLG-formula over tree models;
(ii)  is locally preserved (or invariant) under n-counting bisimulations over tree
models;
(iii)  is locally preserved (or invariant) under counting bisimulations over tree
models.

S MLGI to MLI

5.1 Equivalent rewritability of MLGI to MLI

Definition 14 (Height of States in Rooted Models) Let M = (W,R,V) be a
rooted model with the root d*. The height H(d*) of the root d* of M is 0; if the
height H(d) of d in M is n (n € N), then for each immediate successor®® d’ of d
in M, the height H(d') of d’ in M that has not been assigned a height smaller than
n + 1isn + 1. The height H (M) of a rooted model M is n if the maximum height
of points in M is n. Otherwise, H (M) is infinite.

Definition 15 (Submodel of M/ Induced by X) The submodel M x of a model
M = (W,R,V) induced by X C W is defined as M|x = (X, R|x, V|x), where
Rix = RN (X x X)and V|x = V(p) N X for each propositional variable p.

Proposition 16 Let M = (W,R,V),d € Wand X = {e € W : H(e) <
max{H(d') : d € Xg,}}, where X4, = d1® U --- U d1". Then there are an
n-bisimulation and an n-i-bisimulation between (M, x, d) and (M, d).

Proof A sequence of binary relations .S,, C --- C S is defined as follows (1 < i <
n):

S, = {(d. )}, |

Si 1 =5 U{(e,e) € X x X :e € df" "}
It is easy to prove that (M|x, d) and (M, d) is both n-bisimular and n-i-bisimular. [J

The following theorem holds for MLGI-formulas, also for MLG-formulas and
MLI-formulas.

22We should add “counting” before the word “bisimulations” in Theorem 17 and a quite similar the-
orem to Theorem 17 can be proved by a similar way of Theorem 17.

2 A successor y of x is an immediate successor of z if x # y, -y Rz and 2 RzRy implies z = x or
z=vyforeachz € W.
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Theorem 17. Let ¢ be an MLGI-formula with Deg(p) < n. The following two
conditions are equivalent:

(i) @ is locally preserved (or invariant) under n-bisimulations over tree models;
(ii)  is locally preserved (or invariant) under bisimulations over tree models.

Proof We only need to prove (=). Assume thatan MLGI-formula ¢ with Deg(p) <
n is locally preserved®* under n-bisimulations over tree models. Let My = (Wy, Ry,
V1) and My = (W2, R, V2) be two tree models, .S be a bisimulation between (M7, d)
and (Ma,e) and (M;,d) = ¢. By Proposition 16, there is an n-bisimulation be-
tween (M x,,d) and (M1, d), where X1 = {d" € Wy : H(d") < max{H(d') :
d e X}y, }yand X3, = dt?U---Udt". Since ¢ is locally preserved under n-
bisimulations over tree models, by (M1,d) = ¢, we have that (M;x,,d) = .
Similarly, there is an n-bisimulation between (Mj|x,, e) and (Ma, e), where Xp =
{" € Wy : H(e") <max{H (/) : ¢ € X2,}} and X2, = et" U---Uet™. Define
a sequence of binary relations S, C S,,_1--- C Sy as follows (1 < i < n):

Sn ={(d; )},
Si.1=5;U {(d//, 6//) € X1 x Xy (d/, 6/) S Si,d/Rld//, €/R2€// & (d”, 6”) S S}

Let
s =] s

0<j<n

Since (d,e) € S, S* C S. Then it is easy to prove that S* is an n-bisimulation be-
tween (M x,, d) and (My, x,, €). By our assumption that ¢ is locally preserved under
n-bisimulations over tree models, from (Mx,,d) = ¢ we have that (Myx,,€) |=
¢. Since there is an n-bisimulation between (M) x,, e) and (Maz, e), (Ma, e) = ¢.
Therefore, ¢ is locally preserved under bisimulations over tree models. O

Not each MLGI-formula is equivalently rewritable into an MLI-formula at roots
over tree models. For example, O22T. Assume that =2 T is equivalently rewritable
into an MLI-formula at roots over tree models. Since each MLI-formula is invariant
under i-bisimulations at roots over tree models, ¢=2T should be invariant under -
bisimulations at roots over tree models. However, it is not the truth. We show it as
follows.

Let My = (W1, Ry,V1) and My = (Wa, Re, Va) be the two tree models in
Figure 3 respectively. Here V7 (p) = Va(p) = () for each propositional variable p. It
is obvious that (M1, ag) = OZ2T, (Ma, by) = OZ2T, but there is an i-bisimulation
S = {(ap,by), (a1,b1), (az, by)} between the two tree models (M7, ag) and (Ma, by).

The following theorem is proved, instead.

*The “invariant”-case can be proved similarly.
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Theorem 18. Let ¢ be an MLGI-formula with Deg(¢) < n. Then the following
conditions are equivalent:

(i) @ is equivalently rewritable into an MLI-formula at roots over tree models;
(ii) « is preserved (or invariant) under bisimulations at roots over tree models;
(iii) « is preserved (or invariant) under n-bisimulations at roots over tree models;
(iv)  is preserved (or invariant) under n-i-bisimulations at roots over tree models;
(v) @ is preserved (or invariant) under i-bisimulations at roots over tree models.

Proof 2 < 3 can be proved by a very similar proof of Theorem 17.

3 & 4 is prove as follows: 3 = 4 follows directly from the fact that each
n-i-bisimulation is also an n-bisimulation by the definitions of n-bisimulation and
n-i-bisimulation. 4 = 3 follows from Proposition 2.

2 & 5 is proved as follows: 2 = 5 follows directly from the fact that each i-
bisimulation is also a bisimulation by the definitions of bisimulation and ¢-bisimulation.
5 = 2 follows from Lemma 1.

Now we prove that 1 < 5. (1 = 5) Assume that an MLGI-formula ¢ is equiv-
alently rewritable into an MLI-formula 1) at roots over tree models. Since each MLI-
formula is preserved (or invariant) under ¢-bisimulations at roots over tree models, ¢
is preserved (or invariant) under ¢-bisimulations at roots over tree models. (5 = 1)
Assume that ¢ is an MLGI-formula with Deg(¢) < n and is preserved (or invari-
ant) under i-bisimulations at roots over tree models. There are only finitely many
non-equivalent MLI-formulas 5 with Deg(3) < m and sig(3) C sig(y) for each
m € N. For each tree model M = (W,R,V) and d € W, let the MLI-formula
0/(7}/[7 a) be the conjunction of all these finitely many non-equivalent MLI-formulas /3
with Deg(5) < m, sig() C sig(y) and (M, d) = 5. Now let

a= \/ Y(M,d)
(M,d)Ep

where M is a tree model with d being its root such that (M, d) = ¢. Being a disjunc-

tion of finitely many non-equivalent MLI-formulas, « is a proper MLI-formula.
Now we prove that ¢ is equivalently rewritable into the MLI-formula « at roots

over tree models. Let M* be a tree model and d* be its root. Assume that (M*,d*) =
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¢. By the definition of o and )y, ;. it is clear that (M*,d*) = (js+ 4+ and then
(M*,d*) = a.

Now assume that M* = (W*, R*,V*) is a tree model, d* is the root of M*
and (M*,d*) |= a. Then there is a tree model M’ = (W', R', V') with d’ being its
root and (M',d’) = o such that (M*,d*) |= &y ay- Now we prove the following
claim:

 There is an n-i-bisimulation S between (M’ d’) and (M*, d*) with (d’, d*) €
S.

Since (M*,d*) = Opp an)» it 1s easy to prove that (M*,d*) = oiff (M, d) =
§ for each MLI-formula § with Deg(d) < n and sig(d) C sig(p).

Assume that d* R*v. By (M*,v) = O‘?z\}}*,v) and then (M*,d*) Oa?ﬂﬁ,v)‘
From (M*,d") |= ofyp 4, we have that (M*,d") |= & iff (M',d") = ¢ for each
MLI-formula § with Deg(d) < n and sig(d) C sig(¢). So (M',d") = Oa?ﬂ}ijv).
Thus there is a point v' € W' such that ' R'v' and (M', ) |= a?];[l’v). Then for
each MLI-formula § with Deg(d) < n — 1 and sig(d) C sig(yp), (M*,v) = § iff
(M’ v") |= 4. By a similar argument, we can also prove that if d’ R'v’, there is a point
v € W* such that d* R*v and for each MLI-formula ¢ with Deg(d) < n — 1 and
sig(0) Csig(p), (M*,v) E 6 iff (M',v") E 4.

Now let S;,—1 be the union of S,, = {(d’, d*)} and the set of all the above selected
pairs (v, v) such that ' R'v/, d* R*v and (M*,v) |= §iff (M’,v") = 6 for each MLI-
formula 6 with Deg(d) < n — 1 and sig(6) C sig(). Similarly, a sequence of binary
relations S,, C S,_1 C --- C Sy is defined as follows:

foreach 1 < ¢ < n, S;_; is the union of 5; and the set of all the selected pairs
(v',v) satisfying that w’'R'v', wR*v for some (w',w) € S; and (M*,v) = ¢ iff
(M’ v") = § for each MLI-formula § with Deg(d) < i — 1 and sig(d) C sig(p). It
is easy to prove that

So = U S;

0<i<n
is an n-i-bisimulation between (M’, d’) and (M*, d*) with (d’, d*) € Sp.
Since ¢ is preserved (or invariant) under ¢-bisimulations at roots over tree mod-

els,by2 < 5,2 & 3and 3 < 4, ¢ is preserved (or invariant) under n-i-bisimulations
at roots over tree models. Then by (M’,d’) = ¢, we have that (M*,d*) = ¢. O

If being preserved (or invariant) at each point of a tree model is considered, we
have the following theorem:

Theorem 19. Let ¢ be an MLGI-formula with Deg(v) < n. Then the following
conditions are equivalent:

(i) @ is locally equivalently rewritable into an MLI-formula over tree models,



Shanshan Du / Some Results on Rewritability in Modal Logics over Tree Models 49

(ii) @ is locally preserved (or invariant) under n-i-bisimulations over tree models;
(iii) « is locally preserved (or invariant) under i-bisimulations over tree models.

Proof 2 < 3 can be proved by a similar argument to the proof of Theorem 17.
3 & 1 follows from a similar argument to the proof of 1 < 5 of Theorem 18. ]

5.2 m-Conservative rewritability of MLGI to MLI

Lemma 2 follows from the fact that each ¢-p-morphism is an i-bisimulation by
their definitions and the fact that each MLI-formula is preserved (or invariant) under
i-bisimulations.

Lemma 2 Let A be a set of propositional variables, f be a A-i-p-morphism from
M; to My. Then (My,d) = ¢ iff (Ms, f(d)) | ¢ for each MLI-formula ¢ with

sig(p) C A.

We prove Theorem 20 by Lemma 2.

Theorem 20. Let ¢ be an MLGI-formula, A* be a set of MLI-formulas and A be a
set of propositional variables such that sig(p) C A and sig(a) C A for each MLI-
Sformula o € A*. If v is locally m-conservatively rewritable into A*, then it is locally
preserved under inverse A-i-p-morphisms.

Proof Let ¢ be an MLGI-formula, A* be a set of MLI-formulas and A be a set of
propositional variables such that sig(¢) C A and sig(«) C A for each MLI-formula
a € A*. Assume that ¢ is locally m-conservatively rewritable into A* and there is a
A-i-p-morphism f from a model M; = (W7, Ry, V1) to amodel My = (Wy, R, Va)
with dy € Wi, da € Wa, f(d1) = do and (Ma,d2) = ¢. We need to prove that
(My,d1) E . According to our assumption that (M2, ds) = ¢ and the definition
of locally m-conservative rewritability, there is a pointed model (M}, d2) with M} =
(Wa, R, V) such that (M}, d2) = A* and M, M. By Mo M}, we
have that

“sig(p) —sig(p)

V3(p) = Va(p)
for each propositional variable p € sig(p). Let M| = (W1, Ry, V{), while
Vip) = f1(V3(p) = {e € W1 f(e) € V5(p)}

for each propositional variable p € A. It is obvious that f is also a A-i-p-morphism
from (M7, dy) to (M}, ds) with f(d1) = da. From (M), ds) = A* and sig(a) C A
for each MLI-formula o € A*, by Lemma 2 we have that

(M, dy) = A
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By the definition of locally m-conservative rewritability, (M, d) = A* implies (M, d)
= ¢ for each pointed model (M, d), then by (M, d1) = A* we have that

(M{7d1) ): p-

Since V{(p) = f~1(VJ(p)) = f~1(Va(p)) = Vi(p) for each propositional variable
p € sig(p), we get that

(My,d1) = ¢
O
Give an MLGI-formula ¢ with Deg(p) < ¢. Let ¥*(y¢) be the set of all sub-
formulas of . Take new propositional variables p¥, qu, e pﬁ for each subformla
P = 0= € B*(p) (n > 2), and let ¥ be the union of sig(p) and the set

of all the new propositional variables pzp,pif, e pﬁf. For each x € X*(p), let

x* be the MLI-formula obtained from y by replacing all the topmost subformulas
P = 02 and G2 of x (n > 2) with p¥ and L respectively. Yt is defined
as the set of the MLI-formula (* and the following infinite many formulas for each
Y = 0%y € () (n > 2);

A oY= (N @ Al N\ —pD))

0<i<t 1<i<n 1<j£i<n

and
A SN @ Avn N\ =) =),
0<i<t 1<i<n 1<j#i<n
while each 1; (1 < i < n) is an MLI-formula with sig(1;) C ¥ and O represents a
sequence of ¢ operators O (¢ € N).
Now we can prove the main result Theorem 21 of this subsection.

Theorem 21. Let ¢ be an MLGI-formula, A* be a set of MLI-formulas and A be a
set of propositional variables such that sig(p) C A and sig(a) C A for each MLI-
formula o € A*. Then the MLGI-formula o is locally m-conservatively rewritable
into A* over tree models iff ¢ is locally preserved under inverse A-i-p-morphisms
over tree models.

Proof (=) It follows directly from Theorem 20. (<) Let ¢ be an MLGI-formula,
3*(¢) be the set of all subformulas of ¢, 3 be sig() together with all the fresh propo-
sitional variables pY, plf, ey pf and X be the set of MLI-formulas being defined
above. Assume that the MLGI-formula ¢ with Deg(p) < ¢ is locally preserved under
inverse A-i-p-morphisms over tree models with sig() C A and sig(a) C A for each
MLI-formula o € X ;. We prove that ¢ can be locally m-conservatively rewritable
into the set ¥ i of MLI-formulas over tree models. We need to prove that
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Claim 1 for each tree model M = (W, R, V) and d € W such that (M, d) = ¢, there

is a tree model M = (W, R, V") such that M =,y M" and (M’,d) |= X 4;

Claim 2 for each tree model M = (W, R,V) and d € W, if (M,d) = X, then

(M. d) |= .
To prove Claim 1, we should notice that each point in a tree model has only one
predecessor, and then each MLGI-formula & ~2"1) (n > 2) is equivalent to L at each

point of a tree model. Assume that M = (W, R, V) is a tree model, d € W and
(M,d) = ¢. Let

V(p), pesigly)
Vi(p) = V@), p=pYandy = 0=y € T*(¢) (n > 2)
W, p=plandy =02 e S*(p) (1 <i<nandn >2)

Then a new model M’ = (W, R,V’) is constructed from M. It is obvious that
M =sig(y) M’ and (M/, d) ': Zgof'

Let’s consider Claim 2. Give a tree model M = (W, R, V) withd € W and d*
being its root. Assume that (M, d) = ¥+ and (M, d) = ¢. Let Sy = {d' € W :
3k € N(d' € d};)}.*> Assume that Sy C S;--- C S, have already been defined.
Fix a point e € S,,.

Step (i) Foreach O=™1)’ € ¥*(¢p) suchthat (M, e) = 0=/, select m pointsey, - - -

em € W such that eRe; and (M, e;) = ¢/ foreach 1 < i < m. For each
O~y € B*()? such that (M, e) = &9/, select the only predecessor e’ of
e?” such that (M, €') = 1.

Step (ii) For each ¢y = 02"/ € ¥*(¢) (m > 2) such that (M,e) = p?, select m

points ey, - - - , e, € W such that eRe; and
(M, e;) = ApY A N\ —pY
J#i
foreachl < i <m.

Step (iii) For each subformula ¢ of ¢* such that (M, e) = O+, select a point ¢/ € W

such that eRe’ and (M, ¢’) |= . For each subformula ¢~ of ¢* such that
(M, e) = O™, select the only predecessor €’ € W of e such that (M, €') |= .

Step (iv) For each subformula ¢ of 1/f with O=™) € ¥*(p) (n > 2) such that

(M,e) | <, select a point ¢/ € W such that eRe’ and (M,e’) E 7.
For each subformula ¢~ of ¢ with G2/ € ¥*(¢) (n > 2) such that
(M, e) = O™, select the only predecessor ¢’ € W of e such that (M, €') |= .

®dly, ={d € W : 3dy---dy—1 € W(d'Rdx_1---daRd1Rd)} for k € N. When k = 0,
dl, = {d}. We should notice that the root of M belongs to So, i.e., d* € So.
21fop = O~ 2™ o (m/ > 2), then (M, e) - .

2"The predecessor e’ of e is unique because M is a tree model.
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Repeat the above selection process for each point e € S,,. Let .S, 11 contains all
these points e; or ¢’ selected by the above selection process (i)—(iv). Next, for each
two dq, do € Sy, such that dy is X-i-bisimilar to do in M 28 if led’l (or d’lel) and
d} € Sp+1, then each successor (or the only predecessor) d), of dy being X-i-bisimilar
to d) in M should be added into S, ;1. Let Sy, +1 be the smallest set of points satisfying
all of the above conditions. Then the sequence of sets of points Sp C Sy -+ C Sy, - -+
is defined completely.

The selection process (i)—(iv) may choose two successors of one point which
are equivalent over MLI-formulas o with sig(a) € ¥ in M but not X-i-bisimilar
to each other in M. Assume that such a case occurs, i.e., there are two successors
dy,ds € Siy1 0of d € S; (i € N) such that dy, ds are equivalent over MLI-formulas
a with sig(a)) € ¥ in M but d; is not X-i-bisimilar to do in M. Let

Bg; ={eW:ImeNm>20+1&¢ € ef™&e is X-i-bisimilar to
d1 or d2 n M)}

We delete the points of the sets Bg; from each .S; (i € N) for each two points dy, do €
W. Let S} (i € N) be the remaining set of points after the above deletion process.
Then a new sequence S, C S7--- C S}, --- is constructed from the sequence Sy C
Sy - C S, --.
Now a new model M’ = (W', R', V') can be defined as follows:
W=y s
0<ieN
R =RN (W' xW'),
V'(p) = V(p) N W for each propositional variable p.

According to the assumption that M is a tree model with d* being its root, M is also a
tree model with d* being its root.?’ Then by (M, d) [~ o, we have that (M’ d) = .
We need to prove that (M’, d) = X+. Since we have Step (ii), the only cases in 3
needed to be considered are the formulas
A TN @@ AwA N =) =),
0<i<t 1<i<n 1<j#i<n
while each ¢; (1 < i < nand n > 2) is an MLI-formula with sig(¢;) C 3.

Assume the contrary, i.e., there are a pointd’ € dt™ C W/ (0 < m < /)
and MLI-formulas 1, -+ , 1, (n > 2) with sig(¢;) C X (1 < i < n) such that
(M',d") £ p¥ for some 1) = G2 € ¥*(¢p) and

M d)E N @EAGA N\ ).

1<i<n 1<j#i<n

BEach point is ¥-i-bisimilar to itself in M. Therefore, if d1 = da, then d; is definitely 3-i-bisimilar
to ds in M.

»We should notice that d* € S and d* won’t be deleted from each S; (i € N) since it is the root of
M.Sod* e W',
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It means that d’ has n different R’-successors that are not equivalent over MLI-
formulas o with sig(«r) C ¥ in M’, and then not YX-i-bisimilar to each other in M’.
By the construction of M’, if d; € W' is Y-i-bisimilar to do € W' in M, then d; is Y-
i-bisimilar to ds in M’. So d’ has n different R-successors that are not Y-i-bisimilar
to each other in M. We prove that the n different R-successors of d’ are also not
equivalent over MLI-formulas o with sig(«r) C ¥ in M.

Assume the contrary, i.e., there are two successors dj € W’ and d) € W’
of d € W’ satisfying that d} and d, are not equivalent over MLI-formulas o with
sig(a) € X in M’ and not Y-i-bisimilar to each other in M, but they are equivalent
over MLI-formulas o with sig(o) € ¥ in M. Since ¥ is finite®* and d} and d}, are
equivalent over MLI-formulas o with sig(«) C X in M, d} is X-2¢-i-bisimilar to d5
in M 3! According to the construction of the sequence Sj C Sf--- C S, ---, d}
is X-i-bisimilar to d’, in M’. Therefore, d} is equivalent to d}, over MLI-formulas «
with sig(a)) C X in M’, which is contrary to our assumption that d} and d, are not
equivalent over MLI-formulas o with sig(a) € X in M. Sod' € d}™(0 < m <
¢) has n different R-successors that are not equivalent over MLI-formulas o with
sig(a) C ¥ to each other in M.

Since these n different R-successors of d’3? satisfy 1f in M’, according to the
construction of M’, each of them also satisfies )% in M. Then there are MLI-formulas
P, with sig(1]) € X (1 < ¢ < n) such that

(M,d) = N (e@FAagin N\ ). (0%)

1<i<n 1<j#4i<n

Last, from (M,d) | Y+, d € df™(0 < m < £) € W' C W and (0*), we have
that (M, d') |= p¥. It means that (M’,d’) |= p¥ by the construction of M’, which is
contrary to our assumption that (M’, d') = p¥. Therefore, (M’,d) |= ¥+ is proved.

Since “being X-i-bisimilar to” is an equivalence relation, let [e] = {¢/ € W' :
(M, e) is X-i-bisimilar to (M’,¢’)} fore € W’. A new model M" = (W",R" V")
can be defined from M’ as follows:

W" ={le] : e € W},
[d1]R" [ds] iff there are e; € [d1] and ey € [da] such that e; R es.
V"(p) ={le] € W": e € V'(p)} for each propositional variable p € X.

According to the construction of M’ and M”, M" is of finite outdegrees, i.e., each
point in M has only finitely many successors.

30If 5 is finite, there are only finitely many non-equivalent MLI-formulas o with sig(«) C 3 and
Deg(a) < 24.

31The proof of this part is similar to Proposition 2.31 of [5].

32These n points are also R’-successors of d’.
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Now we show that f : e — [e] fore € W and [e] € W is a ¥-i-p-morphism
from M’ to M". The valuation and the forth conditions are obviously satisfied by the
definition of M"'. We prove the back condition as follows:

Assume that [e;] R"[eg] for [e1], [e2] € W”. Then there are €] € [e1] and €}, €
[e2] such that ¢} R'e), according to the definition of R”. By €} € [e1], (M',¢}) is
Y-i-bisimilar to (M’, eq). Then from €} R'e}, we have that there is an e € W’ such
that e; R'e} and (M, e}) is X-i-bisimilar to (M, €}). So e} € [e}] = [e2]. That is,
f(ei) = [ef] = [e2]. Thus the back condition holds.

The inverse forth condition follows from the definition of R”. Now we prove the
inverse back condition as follows:

Assume that [e1] R [es]. Then there are €] € [e1] and €}, € [ea] such that €} R'¢f,
according to the definition of R”. By €}, € [es], (M, €}) is X-i-bisimilar to (M, e3).
Then from e} R'¢}, the unique predecessor e} of ey in M’ satisfies that (M, e3) is
Y-i-bisimilar to (M, €}). So €5 € [¢}] = [e1]. Thatis, f(e5) = [e5] = [e1]. Thus
the inverse back condition holds.

Therefore, f : e — [e] for e € W' and [e] € W" is a ¥-i-p-morphism from M’
to M".

We prove that M” is a tree model. Since M’ is a tree model with d* being its root,
there is an R”-path from [d*] to [e] for each [e] € W”. If [d*]*3 has a predecessor in
M", d* has a predecessor in M’ according to the definition of R”, which is contrary
to our assumption that d* is the root of the tree model M’. Therefore, [d*] is the
root of M"”. Now we prove that there is a unique path from [d*] to [e] for each [e]
in M". Assume the contrary, i.e., there is a [e] in M" such that [e] has two different
predecessors [d;] and [da] in M”. Since f is a 3-i-p-morphism from M’ to M”, there
are two points d} € [d1] and d, € [d2] such that d} R'e and d, R'e. Since [d1] # [da],
d} is also different from df. It means that the point e has two different predecessors
in the tree model M’, which is contrary to the definition of a tree model. So there
is only one unique path from [d*] to [e] for each [e] in M". Therefore, M" is a tree
model with [d*] being its root.

Next we prove the following claims:

Claim (1) (M",[d]) E Tt
Claim (2) Let [u] and [v] be successors of a point [w] € W in M". For each
MLI-formula « with sig(«) C %, if (M”, [u]) E « iff (M",[v]) E «, then
[u] = [v];
Claim (1) (M",[d]) | ¢.
Claim (1) follows directly from Lemma 2 and (M’, d) = Tt 3% Claim (2) is proved
as follows:

3*We have proved that there is a ¥-i-p-morphism from M’ to M"’
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Let [u] and [v] be successors of a point [w] € W in M”. Assume that
(M", [u]) | aiff (M", [v]) = o (17)

for each MLI-formula « with sig(«) C X. Since M” is of finite outdegrees, [u] is
Y-i-bisimilar to [v] in M”.3 Since [u], [v] are successors of the point [w] in M" and
there is a X-i-p-morphism from M’ to M", there are points u; € [u1] = [u] and
v1 € [v1] = [v] such that wR'u; and wR'v;. According to Lemma 2 and the fact that
f:e[e] fore € W and [e] € W is a ¥-i-p-morphism from M’ to M”,

(M uy) | aiff (M",[u]) E «
and
(M, 0n) [ aiff (M, [o]) =
for each MLI-formula o with sig(a)) C X. Then by (1*), we have that

(M',uq) | aiff (M v1) E a

for each MLI-formula « with sig(a) C .

Now we prove that u is X-i-bisimilar to vy in M’. Assume the contrary, i.e., uy
is not X-i-bisimilar to v; in M’. Since u; and v; has the same unique R’-predecessor
w in the tree model M’, we can assume without loss of generality that there is a
point u} € W’ such that u; R'u) and no successor of vy is equivalent to u} over
MLI-formulas « with sig(a) C ¥ in M’ . From u; R'u) and the fact that there is a
Y-i-p-morphism from M’ to M”, [u1] R"[u}] and then [u] R”[u}] by [u] = [u1]. Since
[u] is X-i-bisimilar to [v] in M”, there is a point [v'] € W such that [v] R”[v'] and
[u}] is X-i-bisimilar to [v'] in M”. Then

(M”, [uh]) = ariff (M", [V]) = (2%)

for each MLI-formula o with sig(a) C ¥. By Lemma 2 and the fact that there is a
Y-i-p-morphism from M’ to M"”,

(M) = aiff (M, [u}]) F o

and
(M) = aiff (M, V) E «

for each MLI-formula « with sig(a)) C X. Thus, by (2*), we have that

(M’ ) E aiff (M) E (3%)

3Since [u] and [v] has the same unique predecessor [w] in M”, the proof of this part is similar to the
proof of Theorem 2.24 (i.e., Hennessy-Milner Theorem) in [5].
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for each MLI-formula o with sig(«) C X. From [v]R”[v] and [v1] = [v], [v1] R"[V']
holds. By the fact that there is a X-i-p-morphism from M’ to M", there is a point
v} € W' such that v1 R'v} and v} € [v]] = [¢]. Then from v} € [v'] we get that

(M',0}) = «iff (M',0) F a (4%)

for each MLI-formula « with sig(«) C 3. Therefore, by (3*) and (4*),

(M) = aiff (M, 0) = a (5°)

for each MLI-formula o with sig(a) C . However, (5*) is contrary to our assump-
tion that no successors of v; is equivalent to u} over MLI-formulas o with sig(«) C 2
in M’. Thus w; is X-i-bisimilar to v; in M’.

Since uy is X-i-bisimilar to vy in M’, then [u;] = [v1]. By [u1] = [u] and
[v1] = [v], we finally get that [u] = [v]. That is, Claim (2) is proved.

We prove Claim (3) by showing that

(M",[d]) = p¥ iff (M", [d]) o (6%)

for each ¢y = O™’ € ¥*(yp) (n > 2) and for each [d'] € [d|1° U [d]t! U
[d]Tf—Deg(lﬁ).

Since M" is a tree model, we should notice that

(M”, [e]) = Liff (M", [e]) = v

for each [e] € W” and for each v = 072" € ¥*(¢) (n > 2). So we can assume
without loss of generality that there are no such subformulas v = 072"/ (n >
2) occurring in each ¢ = G2 € $*(¢).>® We prove (6*) by inductlon on the
numbers of subformulas O=!3 (¢ > 2) occurring in ¢’ for ¢p = O=")' € T*(p)
(n > 2). Lety = 02" € ¥*(p) (n > 2) and k be the number of subformulas
OZtB (t > 2) occurring in 1)

Assume that k = 0. Then ¢’ = "%, Let [d'] € [d]t°U[d]t' U--- U [d]1! P,
Assume that (M, [d']) |= p¥. By Claim (1) that (M”, [d]) = S and[ "l € [dt°U
[t U- - U [d]1Pe®)| we have that

M dDE N @ AP A N\ -p)))

1<i<n jFi
So (M”,[d]) |= ©="¢, ie.,

(M, [d)) | 0=

3%1f such a subformula v = & ~="~' (n > 2) occurs in 1, we can substitute v with L immediately.
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Assume that (M", [d']) |= . Then [d'] has n different successors [d}], - - - , [d},] such
that (M", [d}]) = ¢’ (n > 2)foreach 1 < i < n. Noneof [d}],--- ,[d]] is equivalent
to another over MLI-formulas « with sig(«) C X according to Claim (2). Therefore,
there are n different MLI-formulas 1)1, - - - , 1, with sig(¢;) C X such that

(M, [d]) b= o iffj =i

for 1 <,j < n. By Claim (1) that (M",[d]) = ¥+, we have that

(M@ E N (©C@FAY A N ) = p”

1<i<n i

From ¢/ = ¢, we get that (M", [d']) = p¥. That is, (6*) holds for k = 0.

Now assume that (6*) holds for &k < m € N. Let’s consider the case that
k=m+1. Let[d] € [dOU[d]t U- - -U[d]1 P80 Letyy = 0=mgy, -l =
&2, (¢ € N) be the topmost subformulas having the form ©="6 (n > 2) occur-
ring in 1. Let k; be the number of subformulas G276 (n > 2) occurring in §; for
each 1 < i < ¢. By induction hypothesis that (6*) holds for & < m and the fact that

each k; < k <mforl <1 < g, we have that
(M",[d"]) = p¥ iff (M", [d")) |= o

for each [d"] € [d]t° U [d]t! U - U [d]1¢~Pe¢¥) and each 1 < i < ¢. Thus
(M",[d")) |= 9" iff (M", [d"]) = o/ (7)

for each [d”] € [d]f° U [t U - - - U [d) 1t ma{Peg(vi)1<i<q}
Assume that (M", [d']) |= p¥. Then from Claim (1) that (M",[d]) = ¥, we
have that

M @) E A @ ap AN -p))). (8%)
1<i<n j#i
From (8*), we get that there are n different successors [d}],- - - , [d],] of [d'] such that

(M",[d]) o

for each 1 < i < n. Since [d'] € [d1° U [dft U--- U [dt7Pe®), [d] e [d1° U
[Tt U U [dr=Pee®)=Y for each 1 < i < n. Since Deg(v)') = Deg(1)) — 1 and
max{Deg(}) : 1 < i < q} < Deg(),

[d;] c [d]TO U [d]/]\l U---U [d}Tf—max{Deg(tﬁ;/)ClSiSQ}
for each 1 < i < n. So by (7*),

(M, [di)) = o/
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for each 1 < i < n. It means that (M", [d']) | O=")'.

Now assume that (M”, [d']) = 1. Then [d'] has n different successors [d], - - -,
[d],] such that (M",[d}]) = ¢ (n > 2) for each 1 < ¢ < n. Being similar to the case
that & = 0, there are n different MLI-formulas 1, - - - , ¢, with sig(¢;) C X such
that

(M",[d}]) | iff j = (97)
for 1 <4i,j <nandn > 2. By Claim (1) that (M", [d]) }= X+, we have that
(M [d) N (@AY A N\ ) = p” (10%)
1<i<n i

Since [d'] € [d]tU[d]t'U- - U1 PEW), [d]] € [d)1Oufd)ttu. - U]t (PeE) =)
for each 1 < i < n. Since Deg(v)’) = Deg(1)) — 1 and max{Deg(¢)}) : 1 < i <
q} < Deg(y'),

[d) € [dI° U [dltt U - - U [d)pt-maxiDesv)1<isa}
for each 1 < i < n. Then by (7*),
(", d]) | v (11

for each 1 < i < n. From (9%), (10*) and (11*), we get that (M",[d']) | p¥.
Therefore, (6*) is proved.

Last, from (6*), Claim (1) and ¢f € %
proved.

Since ¢ is locally preserved under inverse A-i-p-morphisms over tree models
such that sig(¢) C A and sig(ar) € A for each MLI-formula o € Yt from
Claim (3) and the fact that there is a X-i-p-morphism from M’ to M", we have that
(M',d) = ¢, which is contrary to what we have prove that (M’, d) = ¢. Therefore,
for each tree model M = (W, R, V) withd € W,if (M, d) = X+, then (M, d) = ¢,
i.e., Claim 2 is proved. U

i, Claim (3) that (M",[d]) | ¢ is

6 MLGI to ML

Now we consider the problem of locally m-conservative rewritability of MLGI
to ML over tree models.
Theorem 22, the main result of this subsection, can be proved by Theorem 21.

Theorem 22. Let ¢ be an MLGI-formula, A* be a set of ML-formulas and A be a
set of propositional variables such that sig(p) C A and sig(a)) € A for each ML-
formula o € A*. Then the MLGI-formula o is locally m-conservatively rewritable
into A* over tree models iff p is locally preserved under inverse A-p-morphisms over
tree models.
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Proof (=) This part can be proved by a similar one to the proof of Theorem 20.
(<) Let ¢ be an MLGI-formula, A* be a set of ML-formulas and A be a set of
propositional variables such that sig() C A and sig(«) C A for each ML-formula
a € A*. Assume that an MLGI-formula ¢ is locally preserved under inverse A-p-
morphisms over tree models. Since each i-p-morphism is also a p-morphism, ¢ is
locally preserved under inverse i-p-morphisms over tree models. By Theorem 21 and
the fact that each ML-formula is also an MLI-formula, ¢ is locally m-conservatively
rewritable into A* over tree models. U

Lemma 3 says, a p-morphism between two tree models f itself is also an i-p-
morphism.

Lemma 3 Let M; and M5 be tree models. Then each p-morphism from M; to My
is also an i-p-morphism from M; to Mo.

Proof Assume that My and M are tree models with d7, d5 being their roots re-
spectively. Let f be a p-morphism from M; to Ms. We prove that f is also an
i-p-morphism from M; and M. Assume the contrary, i.e., f is not an ¢-p-morphism
from M to Ms. It means that f(z)Raf(y) with z,y € W) but there is no point
z € Wj such that zRyy and f(z) = f(z). Since M; and Ms are tree models and
f(d}) = di by the definition of p-morphisms, di # y. Then there is an R;-path
diRyz1Ryzg - - - Rizp Ryy from dj to y in M. Thus, according to the definition of
p-morphisms, there is an Ro-path d5Ro f(z1)Raf(z2)Ra - - Raf (zn)Raf(y) from
d5 to f(y) in M. Since there is no point z € W such that zR,y and f(z2) = f(x),
we have that f(x,) # f(z). Then the point f(y) in My has two different prede-
cessors f(x) and f(x,). It is contrary to our assumption that M, is a tree model.
Therefore, f itself is also an ¢-p-morphism from M; and Mo. U

From Theorem 22 and Lemma 3, the following theorem is got immediately,
whose proof is omitted for its clearness.

Theorem 23. Let ¢ be an MLGI-formula, A* be a set of ML-formulas and A be a
set of propositional variables such that sig(p) C A and sig(a)) € A for each ML-
formula o € A*. The following conditions are equivalent for the MLGI-formula ¢:

(i) o is locally m-conservatively rewritable into A* over tree models;
(ii) o is locally preserved under inverse A-p-morphisms over tree models;
(iii)  is locally preserved under inverse A-i-p-morphisms over tree models.
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