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Some Results on Rewritability in Modal Logics over
Tree Models*

Shanshan Du

Abstract. We have investigated locally equivalent and m-conservative rewritabilities in
modal logics over tree models. The modal languages studied in this paper are ML, MLI, MLG
and MLGI.

1 Introduction

Over the past 100 years, many artificial languages in distinct expressiveness
powers and complexity degrees have been introduced. They range from classical
first-order and higher-order predicate languages to a large variety of modal languages.

Different types of languages may be “expressed” by other languages. For exam-
ple, it is well known that each ML-formula is locally equivalently rewritable into a
first-order formula over models. However, the converse does not hold:

• There are fisrt-order formulas that cannot be locally equivalently rewritable into
an ML-formula.

van BenthemCharacterization Theorem in [2] characterizes when exactly a first-order
formula is locally equivalently rewritable into an ML-formula. Following van Ben-
them Characterization Theorem, (locally) equivalent rewritability has become an im-
portant and active research problem in modal logic ([4]) and computer science ([11,
12]) over the past 40 years.

E. Rosen has proved characterization theorems on (locally) equivalent rewritabil-
ity over finite Kripke models in [16]. Characterization theorems over any class of
Kripke models are proved by M. Otto in [14], where different versions of character-
ization theorems for MLI, ML plus a global modality and MLI plus a global modal-
ity are also proved. M. de Rijke proves characterization theorems for MLG in [15].
Otto proves similar theorems for µML 1 in [13]. A. Dawar and Otto proves several
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characterization theorems over kinds of classes of frames in [6]. A model-theoretic
characterization of MSO 2 to µML is proved by D. Janin and I. Walukiewicz in [9].
G. Fontaine proves a model-theoretic characterization ofMSO to µMLover tree mod-
els in [7]. Some theorems on globally equivalent rewritability of MLI to ML, MLG
to ML, ML to EL 3 over models are proved by F. Wolter in [17].

Equivalent rewritability is an important notion, but it is rather strict for it cannot
introduce additional non-logical symbols. So it is necessary to introduce a weaker
notion admitting additional non-logical symbols, i.e., “conservative rewritability”,
which aims at a conservative extension rather than an equivalent one. Conservative
rewritability is often studied in description logics ([1]). Some important theorems in
this area are proved by [10] and [12]. [7] resolves the global case of m-conservative
(i.e., model conservative) rewritability of MSO to µML over tree models. The locally
m-conservative rewritability of MLG to ML over tree models can be inferred from
some results in [7]. [17] characterizes the global cases of s-conservative 4 and m-
conservative rewritability of MLI to ML, MLG to ML and ML to EL over models.

Local equivalent andm-conservative rewritability over treemodels are studied in
this paper. Modal lauguages considered include ML, MLI, MLG and MLGI. Section
3 of this paper proves that each MLI-formula is equivalently rewritable into an ML-
formula at roots over tree models. Section 4 resolves whether each MLGI-formula
is equivalently rewritable into an MLG-formula at roots over tree models. Section 5
characterizes the equivalent and m-conservative rewritability of “MLGI toMLI” over
tree models. Section 6 resolves m-conservative rewritability of “MLGI to ML” over
tree models.

2 Preliminaries

Syntax ML-formulas are formed according to the rule:

φ ::= p | ¬φ | φ ∧ φ | 3φ5

where p is a propositional variable. Other connectives are defined as follows: φ ∨
ψ ::= ¬(¬φ ∧ ¬ψ), > ::= p ∨ ¬p, ⊥::= ¬>, 2φ ::= ¬3¬φ.

MLI is ML plus 3−,6 MLG is ML plus 3≥n and MLGI is ML plus 3≥n and

2MSO represents “monadic second-order”.
3ML is the standard modal language; MLI is ML plus inverse modalities; MLG is ML plus graded

modalities; MLGI is ML plus graded and inverse modalities; EL is a tractable modal language. For
reference, see [17].

4S-conservative rewritability is another notion of conservative rewritability, being different from
m-conservative rewritability. However, it is not studied in this paper. For reference, see [10].

53 represents 3≥1.
63− represents 3−≥1.
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3−≥n. It should be noticed that

3≤nφ ::= ¬(3≥n+1φ)

and
3−≤nφ := ¬(3−≥n+1φ),

while n ∈ N , n ≥ 1 and N is the set of natural numbers.

Model A (Kripke) frame F is a pair (W,R) and a (Kripke) model M is a triple
(W,R, V ), whereW is a non-empty set of states, R is a binary relation onW and V
is a valuation. A pointed model is a pair (M,d), whereM is a model and d ∈W .

Let Rrt be the reflexive transitive closure of R. If there is a unique d∗ ∈ W

such that d∗Rrtd for each d ∈ W , then the frame (W,R) is called rooted and d∗ is
its root. A rooted frame (W,R) with d∗ being its root is a tree if each state d ∈ W

is reachable from d∗ by a unique R-path d∗R · · ·Rd. A model (W,R, V ) is a tree
model if its underlying frame (W,R) is a tree.

The truth-relations forML-formulas (MLI-formulas, MLG-formulas andMLGI-
formulas) are defined in the familiar way for the atomic and boolean cases. The other
cases are as follows:

• (M,d) |= 3≥nα iff (M,d′) |= α for at least n different points d′ ∈ W such
that dRd′;

• (M,d) |= 3−≥nα iff (M,d′) |= α for at least n different points d′ ∈ W such
that d′Rd;

V (φ) is defined as {d ∈W : (M,d) |= φ} for each formula φ.

Rewritability Let Li (i ∈ {1, 2}) be a modal language. An L1-formula φ is
locally equivalently rewritable into an L2-formula (or a set of L2-formulas∆∗) over
a class of models C if there is an L2-formula ψ (or a set of L2-formulas∆∗) such that

• for each modelM = (W,R, V ) ∈ C and d ∈W , (M,d) |= φ iff (M,d) |= ψ

(or (M,d) |= ∆∗).

An L1-formula φ is locally m-conservatively rewritable7 into an L2-formula (or a set
of L2-formulas ∆∗) over a class of models C if there is an L2-formula ψ (or a set of
L2-formulas∆∗) such that

• for each modelM = (W,R, V ) ∈ C and d ∈W , if (M,d) |= ψ (or (M,d) |=
∆∗), then (M,d) |= φ.

• for each model M = (W,R, V ) ∈ C and d ∈ W such that (M,d) |= φ,
there is a modelM ′ ∈ C such thatM ′ = (W,R, V ′) andM =sig(φ) M

′ and
(M ′, d) |= ψ (or (M ′, d) |= ∆∗).

7For reference, see [10].
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Here M =sig(φ) M
′ means that V (p) = V ′(p) for each propositional variable p ∈

sig(φ) and sig(φ) represents the set of propositional variables occurring in φ.
According to the definition of locally m-conservative rewritability, the unique

difference betweenM andM ′ is valuations of propositional variables, i.e.,M =M ′

iff V = V ′. Therefore, if an L1-formula is locally equivalently rewritable into an
L2-formula ψ(or a set of L2-formulas∆∗) over a class of models C, then it is locally
m-conservatively rewritable into theL2-formulaψ(or the set ofL2-formulas∆∗) over
the class of models C.

When C is the set of all Kripke models, “over a class of models C” is omit-
ted. When C = {(M,d∗) : M is a tree model and d∗ is its root }, an L1-formula φ
is said to be equivalently (or m-conservatively) rewritable into an L2-formula (or a
set of L2-formulas) at roots over tree models.

Degree The degree of an MLGI-formula is defined as follows:

• Deg(p) = 0,
• Deg(⊥) = 0,
• Deg(¬φ) = Deg(φ),
• Deg(φ ∧ ψ) = max{Deg(φ),Deg(ψ)},
• Deg(3≥nφ) = Deg(φ) + 1,
• Deg(3−≥nφ) = Deg(φ) + 1.

The degree of an MLI-formula (or an MLG-formula) is defined similarly.

Bisimulation Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be two Kripke
models.

A non-empty relation S ⊆ W1 ×W2 is a bisimulation8 between (M1, d1) and
(M2, d2) if the following conditions are satisfied:

• (d1, d2) ∈ S;

• if (u, v) ∈ S, u and v satisfy the same propositional variables;
• if (u, v) ∈ S and uR1x1, there is an x2 such that vR2x2 such that (x1, x2) ∈
S (the forth condition);

• if (u, v) ∈ S and vR2x2, there is an x1 such that uR1x1 such that (x1, x2) ∈
S (the back condition).

A non-empty relation S ⊆ W1 × W2 is an i-bisimulation between (M1, d1) and
(M2, d2) ifS satisfies all the conditions for bisimulation and the following conditions:

• if (u, v) ∈ S and x1R1u, there is an x2 such that x2R2v such that (x1, x2) ∈
S (the inverse forth condition);

8For reference, see [5].
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• if (u, v) ∈ S and x2R2v, there is an x1 such that x1R1u such that (x1, x2) ∈
S (the inverse back condition).

A non-empty relation S ⊆W1×W2 is an n-bisimulation between (M1, d1) and
(M2, d2)

9 if there is a sequence of relations Sn ⊆ · · · ⊆ S0 such that: S =
∪

0≤i≤n
Si

and for each 0 ≤ i < n

• (d1, d2) ∈ Sn;
• if (u, v) ∈ S0, u and v satisfy the same propositional variables;
• if (u, v) ∈ Si+1 and uR1x1, there is x2 such that vR2x2 and (x1, x2) ∈
Si (the forth condition);

• if (u, v) ∈ Si+1 and vR2x2, there is x1 such that uR1x1 and (x1, x2) ∈
Si (the back condition).

A non-empty relation S ⊆ W1 ×W2 is an n-i-bisimulation between (M1, d1)

and (M2, d2) if there is a sequence of binary relations Sn ⊆ · · · ⊆ S0 such that
S =

∪
0≤i≤n

Si and it satisfies all the conditions for n-bisimulation and the following

conditions, i.e., for each 0 ≤ i < n

• if (u, v) ∈ Si+1 and x1R1u, there is x2 such that x2R2v and (x1, x2) ∈
Si (the inverse forth condition);

• if (u, v) ∈ Si+1 and x2R2v, there is x1 such that x1R1u and (x1, x2) ∈
Si (the inverse back condition).

van Benthem Characterization Theorem equivalently rewrites a first-order for-
mula into an ML-formula by bisimulation. (See [2] and [3].)

Theorem 1 (van BenthemCharacterization Theorem). A first-order formulaA(x)
is invariant under bisimulations iff it is locally equivalently rewritable into the stan-
dard translation of an ML-formula.

A non-empty binary relation S ⊆W1 ×W2 is a counting bisimulation between
(M1, d1) and (M2, d2) if the following conditions are satisfied:

• (d1, d2) ∈ S;

• if (u, v) ∈ S, u and v satisfy the same propositional variables;
• if (u, v) ∈ S andX1 ⊆ u↑ is finite10, there is anX2 ⊆ v↑ such that S contains
a bijection betweenX1 and X2 (the forth condition);

• if (u, v) ∈ S andX2 ⊆ v↑ is finite, there is anX1 ⊆ u↑ such that S contains a
bijection between X1 and X2 (the back condition).

9For reference, see [5].
10x↑ = {y ∈W : xRy}.
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A non-empty binary relation S ⊆ W1 ×W2 is an nm-counting bisimulation11

between (M1, d1) and (M2, d2) if there is a sequence of binary relations Sn ⊆ · · · ⊆
S0 such that S =

∪
0≤i≤n

Si and it satisfies the following conditions, i.e., for each

0 ≤ i < n

• (d1, d2) ∈ Sn;

• if (u, v) ∈ S0, u and v satisfy the same propositional variables;
• if (u, v) ∈ Si+1, | X1 |≤ m and X1 ⊆ u↑ , there is an X2 ⊆ v↑ such that Si
contains a bijection betweenX1 and X2 (the forth condition);

• if (u, v) ∈ Si+1, | X2 |≤ m and X2 ⊆ v↑, there is an X1 ⊆ u↑ such that Si
contains a bijection betweenX1 and X2 (the back condition).

A non-empty binary relation S ⊆ W1 × W2 is an nm-ik-counting bisimula-
tion12between (M1, d1) and (M2, d2) if there is a sequence of binary relations Sn ⊆
· · · ⊆ S0 such that S =

∪
0≤i≤n

Si and it satisfies the conditions for nm-counting

bisimulation and the following conditions, i.e., for each 0 ≤ i < n:

• if (u, v) ∈ Si+1, | Y1 |≤ k and Y1 ⊆ u↓13, then there is a Y2 ⊆ v↓ such that Si
contains a bijection between Y1 and Y2 (the inverse forth condition);

• if (u, v) ∈ Si+1, | Y2 |≤ k and Y2 ⊆ v↓, then there is a Y1 ⊆ u↓ such that Si
contains a bijection between Y1 and Y2 (the inverse back condition).

Let us discuss these different but resembled bisimulations. According to their
definitions, it is known that

• each counting bisimulation is also a bisimulation. However, the inverse does
not hold, i.e., not each bisimulation is a counting one.

• each (n-)i-bisimulation is also an (n-)bisimulation since i only means the extra
conditions for predecessors. However, it is obvious that the inverse does not
hold.

• each nm-ik-counting bisimulation is also an nm-counting bisimulation. The
inverse does not hold.

• when m = 1, the nm-counting bisimulation becomes an n-bisimulation. It
means that an n-bisimulation is in fact a special case of nm-counting bisimu-
lations whenm = 1.

• when m = 1 and k = 1, the nm-ik-counting bisimulation becomes an n-i-
bisimulation. In fact, an n-i-bisimulation is a special case of nm-ik-counting
bisimulation when m = 1 and k = 1. It should be noticed that each nm-ik-

11If “m” is changed into “finite”, it is an n-counting bisimulation.
12If “k” is changed into “finite”, it is annm-i-counting bisimulation. If “m” and “k” are both changed

into “finite”, it is an n-i-counting bisimulation.
13x↓ = {y ∈W : yRx}.
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counting bisimulation between two tree models is in fact an nm-i1-counting
bisimulation since any point, except the root14, in a tree model has only one
predecessor.

Figure 1 gives an example of 22-i1-counting bisimulationS. LetM1 = (W1, R1,

V1) andM2 = (W2, R2, V2) be two (tree) models showed in Figure 1 with V1(p) =
V2(p) for each propositional variable p. Define a sequence of binary relations S2 ⊆
S1 ⊆ S0 as follows:

S2 = {(a0, b0)}
S1 = {(a0, b0), (a1, b2), (a2, b1), (a3, b2)}
S0 = {(a0, b0), (a1, b2), (a2, b1), (a3, b2), (a4, b3), (a5, b4), (a6, b4)}.

Let S =
∪

0≤i≤2
Si. It is easy to prove that S is a 22-i1-counting bisimulation between

M1 andM2.

Figure 1

A p-morphism from (M1, d1) to (M2, d2) is a special bisimulation S15 between
(M1, d1) and (M2, d2) if S is a surjective function fromW1 toW2.

An i-p-morphism from (M1, d1) to (M2, d2) is a special i-bisimulation S be-
tween (M1, d1) and (M2, d2) if S is a surjective function fromW1 toW2.

Let Σ be a set of propositional variables. Each type of #-bisimulation is called a
Σ-#-bisimulation, if no truth of propositional variables except those in Σ are consid-
ered.

Invariance An L-formula φ is invariant under #-bisimulations over a class of
models C 16, if

(M1, d1) |= φ iff (M2, d2) |= φ.17

14The root of a tree model has no predecessor.
15For reference, see [5].
16# represents a type of bisimulation.
17If it is substituted by “if (M1, d1) |= φ, then (M2, d2) |= φ”, then it means “preservation under

#-bisimulations over a class of models C”.
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for each #-bisimulation between (M1, d1), (M2, d2) ∈ C.
An L-formula φ is locally preserved under inverse (i-)p-morphisms over a class

of modelsC if there is a(n) (i-)p-morphism f from the pointed model (M1, d1) ∈ C to
the pointed model (M2, f(d1)) ∈ C such that (M2, f(d1)) |= φ, then (M1, d1) |= φ.
When C is the class of all models, “over a class of models C” is omitted.

This paper focuses on the class of all tree models. In some sections, the case that
C = {(M,d∗) : M is a tree model and d∗ is its root } will be considered and it says
to be invariant (or preserved) under #-bisimulations at roots over tree models.

Clearly invariance (or perservation) under bisimulations implies invariance (or
perservation) under n-bisimulations for each n ∈ N .18

3 MLI to ML

The following theorem is proved in this section: “each MLI-formula is equiva-
lently rewritable into an ML-formula at roots over tree models”. However, Lemma 1
has to be proved first.

Lemma1 From each bisimulation between treemodels with their roots beingmapped
to each other, an i-bisimulation is constructed between the same two tree models with
their roots being mapped to each other.

Proof Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be two tree models with
d∗1 and d∗2 being their roots respectively. Assume that S is a bisimulation between
(M1, d

∗
1) and (M2, d

∗
2) with (d∗1, d

∗
2) ∈ S. Now Si ⊆ S (i ∈ N ) is defined as

follows:

S0 = {(d∗1, d∗2)}.
Si+1 = {(u, v) ∈ S : ∃x∃y(xR1u ∧ yR2v ∧ (x, y) ∈ Si)}.

Let
S∗ =

∪
i∈N

Si.

Since each Si ⊆ S, S∗ ⊆ S. For constructing S∗, those pairs having no predecessor
pairs that belong to S are deleted from S .

Assume that (d, e) ∈ S∗ and dR1d
′. Then (d, e) ∈ Si for some i ∈ N . So

(d, e) ∈ S. By the assumption thatS is a bisimulation between (M1, d
∗
1) and (M2, d

∗
2)

with (d∗1, d
∗
2) ∈ S, there is a point e′ ∈ W2 such that eR2e

′ and (d′, e′) ∈ S. By the
definition of S∗, (d′, e′) ∈ Si+1 and then (d′, e′) ∈ S∗. That is, S∗ satisfies the forth
condition. The back condition can be proved similarly. Now consider the inverse
forth and inverse back conditions. SinceM1 andM2 are both tree models, each point
except their roots has only one predecessor. If a pair in S∗ is not the root pair (d∗1, d∗2),

18For reference, see p. 265 in [8].
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the inverse forth and back conditions hold by the definition of S∗. If a pair in S∗ is the
root pair (d∗1, d∗2), the inverse forth and back conditions also hold because the roots
have no predecessors at all. □

Proposition 2 follows from Lemma 1 directly.

Proposition 2 From each n-bisimulation between tree models with their roots being
mapped to each other, an n-i-bisimulation is constructed between the same two tree
models with their roots being mapped to each other.

Proposition 3 EachMLI-formulaφwithDeg(φ) ≤ n is invariant undern-i-bisimul-
ations.

Proof Let φ be an MLI-formula with Deg(φ) ≤ n. Assume that there is an n-i-
bisimulation S0 with a sequence Sn ⊆ · · · ⊆ S0 between (M,w) and (M ′, w′) and
(w,w′) ∈ Sn. We should prove that

(M,w) |= φ iff (M ′, w′) |= φ. (1)

We prove (1) by induction on the construction of MLI-formulas. The basis and
boolean cases are trivial.

Now consider the case that φ = 3ψ. Assume that (M,w) |= φ. Then there
is a successor v of w in M such that (M, v) |= ψ. By the definition of an n-i-
bisimulation, there is a successor v′ of w′ inM ′ such that (v, v′) ∈ Sn−1. So there
is an (n− 1)-i-bisimulation S0 with Sn−1 ⊆ · · · ⊆ S0 between (M, v) and (M ′, v′)

and (v, v′) ∈ Sn−1. Since Deg(ψ) ≤ n− 1, by induction hypothesis,

(M, v) |= ψ iff (M ′, v′) |= ψ.

By (M, v) |= ψ, we have that (M ′, v′) |= ψ. Thus (M ′, w′) |= φ. The inverse is
proved similarly.

Now consider the case that φ = 3−ψ. Assume that (M,w) |= φ. Then there
is a predecessor v of w in M such that (M, v) |= ψ. By the definition of an n-i-
bisimulation, there is a predecessor v′ of w′ in M ′ such that (v, v′) ∈ Sn−1. Then
there is an (n − 1)-i-bisimulation S0 with Sn−1 ⊆ · · · ⊆ S0 between (M, v) and
(M ′, v′) and (v, v′) ∈ Sn−1. Since Deg(ψ) ≤ n− 1, by induction hypothesis,

(M, v) |= ψ iff (M ′, v′) |= ψ.

By (M, v) |= ψ, we have that (M ′, v′) |= ψ. Thus (M ′, w′) |= φ. The inverse is
proved similarly. □

We introduce characteristic ML-formulas χn[M,d] in [8].
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Definition 4 (Characteristic ML-Formula) Let Φ be a finite set of propositional
variables and (M,d) be a pointed model withM = (W,R). The characteristic ML-
formula χn[M,d] (n ∈ N ) is defined as follows:

• χ0
[M,d] is purely propositional, consisting of the conjunction of all p ∈ Φ that

are true at the point d and all ¬p for those p ∈ Φ that are false at d;
•

χn+1
[M,d] = χ0

[M,d] ∧
∧
dRd′

3χn[M,d′] ∧2
∨
dRd′

χn[M,d′]

.

The main result of this section Theorem 5 is proved now.

Theorem 5. Each MLI-formula is equivalently rewritable into an ML-formula at
roots over tree models.

Proof Assume that φ is an MLI-formula and Deg(φ) ≤ n. Let C be the class
of tree models (M,d∗) with d∗ being its root such that (M,d∗) |= φ. Assume that
(M1, d

∗
1) ∈C and there is an n-bisimulation S between the tree model (M1, d

∗
1) and a

tree model (M ′, d′) with d′ being its root such that (d∗1, d′) ∈ S. By Proposition 2, an
n-i-bisimulation S∗ between (M1, d

∗
1) and (M ′, d′)with (d∗1, d′) ∈ S∗ is constructed.

Then by Proposition 3, (M1, d
∗
1) ∈ C and (M1, d

∗
1) |= φ, we have that (M ′, d′) |= φ.

Therefore, (M ′, d′) ∈ C. That is, C is closed under n-bisimulations at roots over
tree models. By Corollary 34 of [8]19, since C is closed under n-bisimulations, C is
definable by the ML-formula ∨

(M,d∗)∈C

χn[M,d∗]

with Φ = sig(φ) 20of Definition 4. Therefore, the MLI-formula φ is equivalently
rewritable into an ML-formula at roots over tree models. □

Proposition 6 follows directly from Theorem 5.

Proposition 6 EachMLI-formula ism-conservatively rewritable into anML-formula
at roots over tree models.

However, is each MLI-formula equivalently rewritable into an ML-formula at
any point over tree models? The answer is “No”, answered by Example 7.

19Corollary 34 in [8] says that a class of pointed Kripke structures being closed under n-bisimulations
is definable by an ML-formula in a finite vocabulary.

20The ML-formula is finite as there are only finitely many such χn
[M,d∗] up to logical equivalence in

the vocabulary sig(φ) of φ.
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Example 7 Assume that 3−> is equivalently rewritable into an ML-formula ψ at
each point over tree models, i.e.,

(M,d) |= 3−> iff (M,d) |= ψ

for each tree model (M,d). Figure 2 says that (M1, a) 6|= 3−> and then (M1, a) 6|=
ψ. The tree modelM1 is a generated submodel ofM2 in Figure 2. Since ψ is an ML-
formula, (M2, a) 6|= ψ. However, (M2, a) |= 3−>. Thus 3−> is not equivalently
rewritable into an ML-formula at each point over tree models.

Figure 2

4 MLGI to MLG

For an MLGI-formula φ, let

Ind(φ) = max{n ∈ N : 3≥n occurring in φ}

and
Ind−(φ) = max{n ∈ N : 3−≥n occurring in φ}.

Proposition 8 EachMLGI-formulaφwithDeg(φ) ≤ n, Ind(φ) ≤ m and Ind−(φ)
≤ k is invariant under nm-ik-counting bisimulations.

Proof This proposition is proved by induction on the construction ofMLGI-formulas
φwithDeg(φ) ≤ n, Ind(φ) ≤ m and Ind−(φ) ≤ k. Assume that there is an nm-ik-
counting bisimulation S between (M,d) and (M ′, d′). The basis and boolean cases
are trivial.

Now consider the case that φ = 3≥lψ. Assume that (M,d) |= φ. Then there
are at least l different successors d1, · · · , dl of d in M such that (M,di) |= ψ for
each 1 ≤ i ≤ l. By the definition of an nm-ik-counting bisimulation, n ≥ 1 and
l ≤ m, there are at least l different successors d′1, · · · , d′l of d′ in M ′ such that
(d1, d

′
1), · · · , (dl, d′l) ∈ S. Then there is an (n−1)m-ik-counting bisimulationS′

i ⊆ S

between (M,di) and (M ′, d′i) for each 1 ≤ i ≤ l. Since Deg(ψ) ≤ n− 1, Ind(ψ) ≤
m and Ind−(ψ) ≤ k, by induction hypothesis, (M,di) |= ψ iff (M ′, d′i) |= ψ for
each 1 ≤ i ≤ l. By (M,di) |= ψ for each 1 ≤ i ≤ l,

(M ′, d′i) |= ψ
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for each 1 ≤ i ≤ l. Thus (M ′, d′) |= φ. The inverse can be proved similarly.
Now consider the case that φ = 3−≥lψ. Assume that (M,d) |= φ. Then

there are at least l different predecessors d1, · · · , dl of d inM such that (M,di) |= ψ

for each 1 ≤ i ≤ l. By the definition of an nm-ik-counting bisimulation, n ≥ 1

and l ≤ k, there are at least l different predecessors d′1, · · · , d′l of d′ inM ′ such that
(d1, d

′
1), · · · , (dl, d′l) ∈ S. Then there is an (n−1)m-ik-counting bisimulationS′

i ⊆ S

between (M,di) and (M ′, d′i) for each 1 ≤ i ≤ l. Since Deg(ψ) ≤ n− 1, Ind(ψ) ≤
m and Ind−(ψ) ≤ k, by induction hypothesis, (M,di) |= ψ iff (M ′, d′i) |= ψ for
each 1 ≤ i ≤ l. By (M,di) |= ψ for each 1 ≤ i ≤ l,

(M ′, d′i) |= ψ

for each 1 ≤ i ≤ l. Thus (M ′, d′) |= φ. The inverse can be proved similarly. □

Proposition 9 From each nm-counting bisimulation between two tree models with
their roots being mapped to each other, an nm-ik-counting bisimulation (k ≥ 1) is
constructed between these two tree models with their roots being mapped to each
other.

Proof LetM1 = (W1, R1, V1) andM2 = (W2, R2, V2) be two tree models with d∗1
and d∗2 being their roots respectively. Assume that

S =
∪

0≤i≤n
Si

is an nm-counting bisimulation between (M1, d
∗
1) and (M2, d

∗
2) with (d∗1, d

∗
2) ∈ S.

Let S′
0, · · · , S′

n be as follows:

S′
n = {(d∗1, d∗2)},
S′
i = {(u′, v′) : uR1u

′, vR2v
′, u′Siv

′ & uS′
i+1v}.

Let
S′ =

∪
0≤i≤n

S′
i.

By the proof of Lemma 1, S′ ⊆ S is an n1-i1-bisimulation between (M1, d
∗
1) and

(M2, d
∗
2). We prove first that

S′ is an nm-i1-counting bisimulation . (1)

Assume the contrary, i.e., S′ is not an nm-i1-counting bisimulation. We can assume
without loss of generality that there is a pair u′S′

jv
′ (1 ≤ j ≤ n) and a set D1 ⊆ u′↑

with | D1 |≤ m, but there is noD2 ⊆ v′↑ such thatS′ contains a bijection betweenD1

andD2. Since u′S′
jv

′, u′Sjv′ holds according to the definition ofS′. By the definition
of nm-counting bisimulation, there is a setD2 ⊆ v′↑ such that S contains a bijection
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betweenD1 andD2. According to the definition ofS′, S′ contains a bijection between
D1 and D2, which is contrary to our assumption. So (1) holds. Since each point in
a tree has only one predecessor, by the definition of nm-ik-counting bisimulation, S′

is any nm-ik-counting bisimulation for each k ≥ 1 between (M1, d
∗
1) and (M2, d

∗
2)

with their roots being mapped to each other. □

In order to prove the main theorem of this section Theorem 11, Theorem 4.11 of
[15] is introduced first:

Theorem 10 (Theorem 4.11 in [15]). Assume that the language of MLG contains
finitely many propositional variables. LetK be a class of pointed models. ThenK is
definable by a single MLG-formula iffK is closed under nm-counting bisimulations
for some n,m ∈ N .

Theorem 11. Each MLGI-formula is equivalently rewritable into an MLG-formula
at roots over tree models.

Proof Give anMLGI-formulaφwithDeg(φ) ≤ n, Ind(φ) ≤ m and Ind−(φ) ≤ k

for n,m, k ≥ 1. By Theorem 10, it needs to prove that each MLGI-formula is in-
variant under nm-counting bisimulations at roots over tree models. By Proposition
9, from each nm-counting bisimulation between two tree models with their roots be-
ing mapped to each other, an nm-ik-counting bisimulation is constructed between
these two tree models with their roots being mapped to each other. By Proposition
8, it can be easily proved that each MLGI-formula φ is invariant under nm-counting
bisimulations at roots over tree models. □

The following proposition follows directly from Theorem 11.

Proposition 12 Each MLGI-formula is m-conservatively rewritable into an MLG-
formula at roots over tree models.

However, not eachMLGI-formula is locally equivalently rewritable into anMLG-
formula at any point over tree models. Our example is still 3−> in Example 7.
3−> is also an MLGI-formula. Since each MLG-formula is invariant under count-
ing bisimulations at any point over tree models21, if 3−> can be locally equiva-
lently rewritable into an MLG-formula, it should be invariant under counting bisim-
ulations at any point over tree models. Now Figure 2 shows that it is not the truth, for
(M2, a) |= 3−>, (M1, a) 6|= 3−> and there is a counting bisimulation S = {(a, a)}
between the two tree models (M1, a) and (M2, a).

21For reference, see Proposition 3.3 in [15], which says that each MLG-formula is invariant under
counting bisimulations.
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Instead, the following theorem can be proved from Proposition 3.3 in [15], The-
orem 10 (i.e., Theorem 4.11 in [15]) and a similar proof of Theorem 17.22

Theorem 13. Let φ be an MLGI-formula with Deg(φ) ≤ n. Then the following
conditions are equivalent:

(i) φ is locally equivalently rewritable into an MLG-formula over tree models;
(ii) φ is locally preserved (or invariant) under n-counting bisimulations over tree

models;
(iii) φ is locally preserved (or invariant) under counting bisimulations over tree

models.

5 MLGI to MLI

5.1 Equivalent rewritability of MLGI to MLI

Definition 14 (Height of States in Rooted Models) Let M = (W,R, V ) be a
rooted model with the root d∗. The height H(d∗) of the root d∗ of M is 0; if the
height H(d) of d in M is n (n ∈ N), then for each immediate successor23 d′ of d
in M , the height H(d′) of d′ in M that has not been assigned a height smaller than
n+ 1 is n+ 1. The height H(M) of a rooted modelM is n if the maximum height
of points inM is n. Otherwise, H(M) is infinite.

Definition 15 (Submodel of M Induced by X) The submodel M|X of a model
M = (W,R, V ) induced by X ⊆ W is defined as M|X = (X,R|X , V|X), where
R|X = R ∩ (X ×X) and V|X = V (p) ∩X for each propositional variable p.

Proposition 16 Let M = (W,R, V ), d ∈ W and X = {e ∈ W : H(e) ≤
max{H(d′) : d′ ∈ Xd,n}}, where Xd,n = d↑0 ∪ · · · ∪ d↑n. Then there are an
n-bisimulation and an n-i-bisimulation between (M|X , d) and (M,d).

Proof A sequence of binary relations Sn ⊆ · · · ⊆ S0 is defined as follows (1 ≤ i ≤
n):

Sn = {(d, d)},
Si−1 = Si ∪ {(e, e) ∈ X ×X : e ∈ d↑n−i+1}.

It is easy to prove that (M|X , d) and (M,d) is both n-bisimular and n-i-bisimular. □

The following theorem holds for MLGI-formulas, also for MLG-formulas and
MLI-formulas.

22We should add “counting” before the word “bisimulations” in Theorem 17 and a quite similar the-
orem to Theorem 17 can be proved by a similar way of Theorem 17.

23A successor y of x is an immediate successor of x if x ̸= y, ¬yRx and xRzRy implies z = x or
z = y for each z ∈W .
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Theorem 17. Let φ be an MLGI-formula with Deg(φ) ≤ n. The following two
conditions are equivalent:

(i) φ is locally preserved (or invariant) under n-bisimulations over tree models;
(ii) φ is locally preserved (or invariant) under bisimulations over tree models.

Proof Weonly need to prove (⇒). Assume that anMLGI-formulaφwithDeg(φ) ≤
n is locally preserved24 under n-bisimulations over tree models. LetM1 = (W1, R1,

V1) andM2 = (W2, R2, V2) be two tree models, S be a bisimulation between (M1, d)

and (M2, e) and (M1, d) |= φ. By Proposition 16, there is an n-bisimulation be-
tween (M1|X1

, d) and (M1, d), where X1 = {d′′ ∈ W1 : H(d′′) ≤ max{H(d′) :

d′ ∈ X1
d,n}} and X1

d,n = d↑0 ∪ · · · ∪ d↑n. Since φ is locally preserved under n-
bisimulations over tree models, by (M1, d) |= φ, we have that (M1|X1

, d) |= φ.
Similarly, there is an n-bisimulation between (M2|X2

, e) and (M2, e), where X2 =

{e′′ ∈W2 : H(e′′) ≤ max{H(e′) : e′ ∈ X2
e,n}} andX2

e,n = e↑0 ∪ · · · ∪ e↑n. Define
a sequence of binary relations Sn ⊆ Sn−1 · · · ⊆ S0 as follows (1 ≤ i ≤ n):

Sn = {(d, e)},
Si−1 = Si ∪ {(d′′, e′′) ∈ X1 ×X2 : (d

′, e′) ∈ Si, d
′R1d

′′, e′R2e
′′ & (d′′, e′′) ∈ S}.

Let
S∗ =

∪
0≤j≤n

Sj .

Since (d, e) ∈ S, S∗ ⊆ S. Then it is easy to prove that S∗ is an n-bisimulation be-
tween (M1|X1

, d) and (M2|X2
, e). By our assumption thatφ is locally preserved under

n-bisimulations over tree models, from (M1|X1
, d) |= φ we have that (M2|X2

, e) |=
φ. Since there is an n-bisimulation between (M2|X2

, e) and (M2, e), (M2, e) |= φ.
Therefore, φ is locally preserved under bisimulations over tree models. □

Not each MLGI-formula is equivalently rewritable into an MLI-formula at roots
over tree models. For example,3≥2>. Assume that3≥2> is equivalently rewritable
into an MLI-formula at roots over tree models. Since each MLI-formula is invariant
under i-bisimulations at roots over tree models, 3≥2> should be invariant under i-
bisimulations at roots over tree models. However, it is not the truth. We show it as
follows.

Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be the two tree models in
Figure 3 respectively. Here V1(p) = V2(p) = ∅ for each propositional variable p. It
is obvious that (M1, a0) |= 3≥2>, (M2, b0) 6|= 3≥2>, but there is an i-bisimulation
S = {(a0, b0), (a1, b1), (a2, b1)} between the two tree models (M1, a0) and (M2, b0).

The following theorem is proved, instead.

24The “invariant”-case can be proved similarly.
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Figure 3

Theorem 18. Let φ be an MLGI-formula with Deg(φ) ≤ n. Then the following
conditions are equivalent:

(i) φ is equivalently rewritable into an MLI-formula at roots over tree models;
(ii) φ is preserved (or invariant) under bisimulations at roots over tree models;
(iii) φ is preserved (or invariant) under n-bisimulations at roots over tree models;
(iv) φ is preserved (or invariant) under n-i-bisimulations at roots over tree models;
(v) φ is preserved (or invariant) under i-bisimulations at roots over tree models.

Proof 2 ⇔ 3 can be proved by a very similar proof of Theorem 17.
3 ⇔ 4 is prove as follows: 3 ⇒ 4 follows directly from the fact that each

n-i-bisimulation is also an n-bisimulation by the definitions of n-bisimulation and
n-i-bisimulation. 4 ⇒ 3 follows from Proposition 2.

2 ⇔ 5 is proved as follows: 2 ⇒ 5 follows directly from the fact that each i-
bisimulation is also a bisimulation by the definitions of bisimulation and i-bisimulation.
5 ⇒ 2 follows from Lemma 1.

Now we prove that 1 ⇔ 5. (1 ⇒ 5) Assume that an MLGI-formula φ is equiv-
alently rewritable into an MLI-formula ψ at roots over tree models. Since each MLI-
formula is preserved (or invariant) under i-bisimulations at roots over tree models, φ
is preserved (or invariant) under i-bisimulations at roots over tree models. (5 ⇒ 1)
Assume that φ is an MLGI-formula with Deg(φ) ≤ n and is preserved (or invari-
ant) under i-bisimulations at roots over tree models. There are only finitely many
non-equivalent MLI-formulas β with Deg(β) ≤ m and sig(β) ⊆ sig(φ) for each
m ∈ N . For each tree model M = (W,R, V ) and d ∈ W , let the MLI-formula
αm(M,d) be the conjunction of all these finitely many non-equivalent MLI-formulas β
with Deg(β) ≤ m, sig(β) ⊆ sig(φ) and (M,d) |= β. Now let

α =
∨

(M,d)|=φ

αn(M,d),

whereM is a tree model with d being its root such that (M,d) |= φ. Being a disjunc-
tion of finitely many non-equivalent MLI-formulas, α is a proper MLI-formula.

Now we prove that φ is equivalently rewritable into the MLI-formula α at roots
over tree models. LetM∗ be a tree model and d∗ be its root. Assume that (M∗, d∗) |=
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φ. By the definition of α and αn(M,d), it is clear that (M
∗, d∗) |= αn(M∗,d∗) and then

(M∗, d∗) |= α.
Now assume that M∗ = (W ∗, R∗, V ∗) is a tree model, d∗ is the root of M∗

and (M∗, d∗) |= α. Then there is a tree modelM ′ = (W ′, R′, V ′) with d′ being its
root and (M ′, d′) |= φ such that (M∗, d∗) |= αn(M ′,d′). Now we prove the following
claim:

• There is an n-i-bisimulation S between (M ′, d′) and (M∗, d∗) with (d′, d∗) ∈
S.

Since (M∗, d∗) |= αn(M ′,d′), it is easy to prove that (M
∗, d∗) |= δ iff (M ′, d′) |=

δ for each MLI-formula δ with Deg(δ) ≤ n and sig(δ) ⊆ sig(φ).
Assume that d∗R∗v. By (M∗, v) |= αn−1

(M∗,v) and then (M∗, d∗) |= 3αn−1
(M∗,v).

From (M∗, d∗) |= αn(M ′,d′), we have that (M
∗, d∗) |= δ iff (M ′, d′) |= δ for each

MLI-formula δ with Deg(δ) ≤ n and sig(δ) ⊆ sig(φ). So (M ′, d′) |= 3αn−1
(M∗,v).

Thus there is a point v′ ∈ W ′ such that d′R′v′ and (M ′, v′) |= αn−1
(M∗,v). Then for

each MLI-formula δ with Deg(δ) ≤ n − 1 and sig(δ) ⊆ sig(φ), (M∗, v) |= δ iff
(M ′, v′) |= δ. By a similar argument, we can also prove that if d′R′v′, there is a point
v ∈ W ∗ such that d∗R∗v and for each MLI-formula δ with Deg(δ) ≤ n − 1 and
sig(δ) ⊆ sig(φ), (M∗, v) |= δ iff (M ′, v′) |= δ.

Now letSn−1 be the union ofSn = {(d′, d∗)} and the set of all the above selected
pairs (v′, v) such that d′R′v′, d∗R∗v and (M∗, v) |= δ iff (M ′, v′) |= δ for each MLI-
formula δ with Deg(δ) ≤ n− 1 and sig(δ) ⊆ sig(φ). Similarly, a sequence of binary
relations Sn ⊆ Sn−1 ⊆ · · · ⊆ S0 is defined as follows:

for each 1 ≤ i ≤ n, Si−1 is the union of Si and the set of all the selected pairs
(v′, v) satisfying that w′R′v′, wR∗v for some (w′, w) ∈ Si and (M∗, v) |= δ iff
(M ′, v′) |= δ for each MLI-formula δ with Deg(δ) ≤ i − 1 and sig(δ) ⊆ sig(φ). It
is easy to prove that

S0 =
∪

0≤i≤n
Si

is an n-i-bisimulation between (M ′, d′) and (M∗, d∗) with (d′, d∗) ∈ S0.
Since φ is preserved (or invariant) under i-bisimulations at roots over tree mod-

els, by 2 ⇔ 5, 2 ⇔ 3 and 3 ⇔ 4, φ is preserved (or invariant) under n-i-bisimulations
at roots over tree models. Then by (M ′, d′) |= φ, we have that (M∗, d∗) |= φ. □

If being preserved (or invariant) at each point of a tree model is considered, we
have the following theorem:

Theorem 19. Let φ be an MLGI-formula with Deg(φ) ≤ n. Then the following
conditions are equivalent:

(i) φ is locally equivalently rewritable into an MLI-formula over tree models;
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(ii) φ is locally preserved (or invariant) under n-i-bisimulations over tree models;
(iii) φ is locally preserved (or invariant) under i-bisimulations over tree models.

Proof 2 ⇔ 3 can be proved by a similar argument to the proof of Theorem 17.
3 ⇔ 1 follows from a similar argument to the proof of 1 ⇔ 5 of Theorem 18. □

5.2 m-Conservative rewritability of MLGI to MLI

Lemma 2 follows from the fact that each i-p-morphism is an i-bisimulation by
their definitions and the fact that each MLI-formula is preserved (or invariant) under
i-bisimulations.

Lemma 2 Let ∆ be a set of propositional variables, f be a ∆-i-p-morphism from
M1 to M2. Then (M1, d) |= φ iff (M2, f(d)) |= φ for each MLI-formula φ with
sig(φ) ⊆ ∆.

We prove Theorem 20 by Lemma 2.

Theorem 20. Let φ be an MLGI-formula, ∆∗ be a set of MLI-formulas and ∆ be a
set of propositional variables such that sig(φ) ⊆ ∆ and sig(α) ⊆ ∆ for each MLI-
formula α ∈ ∆∗. If φ is locally m-conservatively rewritable into∆∗, then it is locally
preserved under inverse ∆-i-p-morphisms.

Proof Let φ be an MLGI-formula, ∆∗ be a set of MLI-formulas and ∆ be a set of
propositional variables such that sig(φ) ⊆ ∆ and sig(α) ⊆ ∆ for each MLI-formula
α ∈ ∆∗. Assume that φ is locally m-conservatively rewritable into∆∗ and there is a
∆-i-p-morphism f from a modelM1 = (W1, R1, V1) to a modelM2 = (W2, R2, V2)

with d1 ∈ W1, d2 ∈ W2, f(d1) = d2 and (M2, d2) |= φ. We need to prove that
(M1, d1) |= φ. According to our assumption that (M2, d2) |= φ and the definition
of locally m-conservative rewritability, there is a pointed model (M ′

2, d2) withM ′
2 =

(W2, R2, V
′
2) such that (M ′

2, d2) |= ∆∗ andM2 =sig(φ) M
′
2. ByM2 =sig(φ) M

′
2, we

have that
V ′
2(p) = V2(p)

for each propositional variable p ∈ sig(φ). LetM ′
1 = (W1, R1, V

′
1), while

V ′
1(p) = f−1(V ′

2(p)) = {e ∈W1 : f(e) ∈ V ′
2(p)}

for each propositional variable p ∈ ∆. It is obvious that f is also a ∆-i-p-morphism
from (M ′

1, d1) to (M ′
2, d2) with f(d1) = d2. From (M ′

2, d2) |= ∆∗ and sig(α) ⊆ ∆

for each MLI-formula α ∈ ∆∗, by Lemma 2 we have that

(M ′
1, d1) |= ∆∗.
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By the definition of locallym-conservative rewritability, (M,d) |= ∆∗ implies (M,d)

|= φ for each pointed model (M,d), then by (M ′
1, d1) |= ∆∗ we have that

(M ′
1, d1) |= φ.

Since V ′
1(p) = f−1(V ′

2(p)) = f−1(V2(p)) = V1(p) for each propositional variable
p ∈ sig(φ), we get that

(M1, d1) |= φ.

□

Give an MLGI-formula φ with Deg(φ) ≤ ℓ. Let Σ∗(φ) be the set of all sub-
formulas of φ. Take new propositional variables pψ, pψ1 , . . . , p

ψ
n for each subformla

ψ = 3≥nψ′ ∈ Σ∗(φ) (n ≥ 2), and let Σ be the union of sig(φ) and the set
of all the new propositional variables pψ, pψ1 , . . . , p

ψ
n . For each χ ∈ Σ∗(φ), let

χ♯ be the MLI-formula obtained from χ by replacing all the topmost subformulas
ψ = 3≥nψ′ and 3−≥nψ′ of χ (n ≥ 2) with pψ and ⊥ respectively. Σφ† is defined
as the set of the MLI-formula φ♯ and the following infinite many formulas for each
ψ = 3≥nψ′ ∈ Σ∗(φ) (n ≥ 2):∧

0≤i≤ℓ
2i(pψ → (

∧
1≤i≤n

(3(ψ′♯ ∧ pψi ∧
∧

1≤j ̸=i≤n
¬pψj ))))

and ∧
0≤i≤ℓ

2i((
∧

1≤i≤n
(3(ψ′♯ ∧ ψi ∧

∧
1≤j ̸=i≤n

¬ψj))) → pψ),

while each ψi (1 ≤ i ≤ n) is an MLI-formula with sig(ψi) ⊆ Σ and 2i represents a
sequence of i operators 2 (i ∈ N ).

Now we can prove the main result Theorem 21 of this subsection.

Theorem 21. Let φ be an MLGI-formula, ∆∗ be a set of MLI-formulas and ∆ be a
set of propositional variables such that sig(φ) ⊆ ∆ and sig(α) ⊆ ∆ for each MLI-
formula α ∈ ∆∗. Then the MLGI-formula φ is locally m-conservatively rewritable
into ∆∗ over tree models iff φ is locally preserved under inverse ∆-i-p-morphisms
over tree models.

Proof (⇒) It follows directly from Theorem 20. (⇐) Let φ be an MLGI-formula,
Σ∗(φ) be the set of all subformulas ofφ,Σ be sig(φ) together with all the fresh propo-
sitional variables pψ, pψ1 , . . . , p

ψ
n and Σφ† be the set of MLI-formulas being defined

above. Assume that the MLGI-formula φwithDeg(φ) ≤ ℓ is locally preserved under
inverse∆-i-p-morphisms over tree models with sig(φ) ⊆ ∆ and sig(α) ⊆ ∆ for each
MLI-formula α ∈ Σφ† . We prove that φ can be locally m-conservatively rewritable
into the set Σφ† of MLI-formulas over tree models. We need to prove that
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Claim 1 for each tree modelM = (W,R, V ) and d ∈ W such that (M,d) |= φ, there
is a tree modelM ′ = (W,R, V ′) such thatM =sig(φ) M

′ and (M ′, d) |= Σφ† ;

Claim 2 for each tree model M = (W,R, V ) and d ∈ W , if (M,d) |= Σφ† , then
(M,d) |= φ.

To prove Claim 1, we should notice that each point in a tree model has only one
predecessor, and then each MLGI-formula3−≥nψ (n ≥ 2) is equivalent to⊥ at each
point of a tree model. Assume that M = (W,R, V ) is a tree model, d ∈ W and
(M,d) |= φ. Let

V ′(p) =


V (p), p ∈ sig(φ)
V (ψ), p = pψ and ψ = 3≥nψ′ ∈ Σ∗(φ) (n ≥ 2)
W, p = pψi and ψ = 3≥nψ′ ∈ Σ∗(φ) (1 ≤ i ≤ n and n ≥ 2)

Then a new model M ′ = (W,R, V ′) is constructed from M . It is obvious that
M =sig(φ) M

′ and (M ′, d) |= Σφ† .
Let’s consider Claim 2. Give a tree modelM = (W,R, V ) with d ∈ W and d∗

being its root. Assume that (M,d) |= Σφ† and (M,d) 6|= φ. Let S0 = {d′ ∈ W :

∃k ∈ N(d′ ∈ d↓k)}.25 Assume that S0 ⊆ S1 · · · ⊆ Sn have already been defined.
Fix a point e ∈ Sn.

Step (i) For each3≥mψ′ ∈ Σ∗(φ) such that (M, e) |= 3≥mψ′, selectm points e1, · · · ,
em ∈ W such that eRei and (M, ei) |= ψ′ for each 1 ≤ i ≤ m. For each
3−ψ′ ∈ Σ∗(φ)26 such that (M, e) |= 3−ψ′, select the only predecessor e′ of
e27 such that (M, e′) |= ψ′.

Step (ii) For each ψ = 3≥mψ′ ∈ Σ∗(φ) (m ≥ 2) such that (M, e) |= pψ, select m
points e1, · · · , em ∈W such that eRei and

(M, ei) |= ψ′♯ ∧ pψi ∧
∧
j ̸=i

¬pψj

for each 1 ≤ i ≤ m.
Step (iii) For each subformula 3γ of φ♯ such that (M, e) |= 3γ, select a point e′ ∈ W

such that eRe′ and (M, e′) |= γ. For each subformula 3−γ of φ♯ such that
(M, e) |= 3−γ, select the only predecessor e′ ∈W of e such that (M, e′) |= γ.

Step (iv) For each subformula 3γ of ψ′♯ with 3≥nψ′ ∈ Σ∗(φ) (n ≥ 2) such that
(M, e) |= 3γ, select a point e′ ∈ W such that eRe′ and (M, e′) |= γ.
For each subformula 3−γ of ψ′♯ with 3≥nψ′ ∈ Σ∗(φ) (n ≥ 2) such that
(M, e) |= 3−γ, select the only predecessor e′ ∈W of e such that (M, e′) |= γ.

25d↓k = {d′ ∈ W : ∃d1 · · · dk−1 ∈ W (d′Rdk−1 · · · d2Rd1Rd)} for k ∈ N . When k = 0,
d↓0 = {d}. We should notice that the root ofM belongs to S0, i.e., d∗ ∈ S0.

26If ψ = 3−≥m′
ψ′ (m′ ≥ 2), then (M, e) ̸|= ψ.

27The predecessor e′ of e is unique becauseM is a tree model.
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Repeat the above selection process for each point e ∈ Sn. Let Sn+1 contains all
these points ei or e′ selected by the above selection process (i)–(iv). Next, for each
two d1, d2 ∈ Sn such that d1 is Σ-i-bisimilar to d2 inM28 , if d1Rd′1 (or d′1Rd1) and
d′1 ∈ Sn+1, then each successor (or the only predecessor) d′2 of d2 beingΣ-i-bisimilar
to d′1 inM should be added intoSn+1. LetSn+1 be the smallest set of points satisfying
all of the above conditions. Then the sequence of sets of points S0 ⊆ S1 · · · ⊆ Sn · · ·
is defined completely.

The selection process (i)–(iv) may choose two successors of one point which
are equivalent over MLI-formulas α with sig(α) ⊆ Σ in M but not Σ-i-bisimilar
to each other in M . Assume that such a case occurs, i.e., there are two successors
d1, d2 ∈ Si+1 of d′ ∈ Si (i ∈ N ) such that d1, d2 are equivalent over MLI-formulas
α with sig(α) ⊆ Σ inM but d1 is not Σ-i-bisimilar to d2 inM . Let

Bd1
d2

= {e′ ∈W : ∃m ∈ N(m ≥ 2ℓ+ 1& e′ ∈ e↑m& e is Σ-i-bisimilar to
d1 or d2 inM)}.

We delete the points of the setsBd1
d2

from each Si (i ∈ N ) for each two points d1, d2 ∈
W . Let S′

i (i ∈ N ) be the remaining set of points after the above deletion process.
Then a new sequence S′

0 ⊆ S′
1 · · · ⊆ S′

n · · · is constructed from the sequence S0 ⊆
S1 · · · ⊆ Sn · · · .

Now a new modelM ′ = (W ′, R′, V ′) can be defined as follows:

W ′ =
∪

0≤i∈N
S′
i,

R′ = R ∩ (W ′ ×W ′),
V ′(p) = V (p) ∩W ′ for each propositional variable p.

According to the assumption thatM is a tree model with d∗ being its root,M ′ is also a
tree model with d∗ being its root.29 Then by (M,d) 6|= φ, we have that (M ′, d) 6|= φ.
We need to prove that (M ′, d) |= Σφ† . Since we have Step (ii), the only cases in Σφ†

needed to be considered are the formulas∧
0≤i≤ℓ

2i((
∧

1≤i≤n
(3(ψ′♯ ∧ ψi ∧

∧
1≤j ̸=i≤n

¬ψj))) → pψ),

while each ψi (1 ≤ i ≤ n and n ≥ 2) is an MLI-formula with sig(ψi) ⊆ Σ.
Assume the contrary, i.e., there are a point d′ ∈ d↑m ⊆ W ′ (0 ≤ m ≤ ℓ)

and MLI-formulas ψ1, · · · , ψn (n ≥ 2) with sig(ψi) ⊆ Σ (1 ≤ i ≤ n) such that
(M ′, d′) 6|= pψ for some ψ = 3≥nψ′ ∈ Σ∗(φ) and

(M ′, d′) |=
∧

1≤i≤n
(3(ψ′♯ ∧ ψi ∧

∧
1≤j ̸=i≤n

¬ψj)).

28Each point isΣ-i-bisimilar to itself inM . Therefore, if d1 = d2, then d1 is definitelyΣ-i-bisimilar
to d2 inM .

29We should notice that d∗ ∈ S0 and d∗ won’t be deleted from each Si (i ∈ N) since it is the root of
M . So d∗ ∈W ′.
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It means that d′ has n different R′-successors that are not equivalent over MLI-
formulas α with sig(α) ⊆ Σ inM ′, and then not Σ-i-bisimilar to each other inM ′.
By the construction ofM ′, if d1 ∈W ′ isΣ-i-bisimilar to d2 ∈W ′ inM , then d1 isΣ-
i-bisimilar to d2 inM ′. So d′ has n different R-successors that are not Σ-i-bisimilar
to each other in M . We prove that the n different R-successors of d′ are also not
equivalent over MLI-formulas α with sig(α) ⊆ Σ inM .

Assume the contrary, i.e., there are two successors d′1 ∈ W ′ and d′2 ∈ W ′

of d′ ∈ W ′ satisfying that d′1 and d′2 are not equivalent over MLI-formulas α with
sig(α) ⊆ Σ inM ′ and not Σ-i-bisimilar to each other inM , but they are equivalent
over MLI-formulas α with sig(α) ⊆ Σ inM . Since Σ is finite30 and d′1 and d′2 are
equivalent over MLI-formulas α with sig(α) ⊆ Σ inM , d′1 is Σ-2ℓ-i-bisimilar to d′2
in M .31 According to the construction of the sequence S′

0 ⊆ S′
1 · · · ⊆ S′

n · · · , d′1
is Σ-i-bisimilar to d′2 inM ′. Therefore, d′1 is equivalent to d′2 over MLI-formulas α
with sig(α) ⊆ Σ inM ′, which is contrary to our assumption that d′1 and d′2 are not
equivalent over MLI-formulas α with sig(α) ⊆ Σ in M ′. So d′ ∈ d↑m(0 ≤ m ≤
ℓ) has n different R-successors that are not equivalent over MLI-formulas α with
sig(α) ⊆ Σ to each other inM .

Since these n different R-successors of d′32 satisfy ψ′♯ inM ′, according to the
construction ofM ′, each of them also satisfiesψ′♯ inM . Then there areMLI-formulas
ψ′
1, · · · , ψ′

n with sig(ψ′
i) ⊆ Σ (1 ≤ i ≤ n) such that

(M,d′) |=
∧

1≤i≤n
(3(ψ′♯ ∧ ψ′

i ∧
∧

1≤j ̸=i≤n
¬ψ′

j)). (0∗)

Last, from (M,d) |= Σφ† , d′ ∈ d↑m(0 ≤ m ≤ ℓ) ⊆ W ′ ⊆ W and (0∗), we have
that (M,d′) |= pψ. It means that (M ′, d′) |= pψ by the construction ofM ′, which is
contrary to our assumption that (M ′, d′) 6|= pψ. Therefore, (M ′, d) |= Σφ† is proved.

Since “being Σ-i-bisimilar to” is an equivalence relation, let [e] = {e′ ∈ W ′ :

(M ′, e) is Σ-i-bisimilar to (M ′, e′)} for e ∈W ′. A newmodelM ′′ = (W ′′, R′′, V ′′)

can be defined fromM ′ as follows:

W ′′ = {[e] : e ∈W ′},
[d1]R

′′[d2] iff there are e1 ∈ [d1] and e2 ∈ [d2] such that e1R′e2.
V ′′(p) = {[e] ∈W ′′ : e ∈ V ′(p)} for each propositional variable p ∈ Σ.

According to the construction of M ′ and M ′′, M ′′ is of finite outdegrees, i.e., each
point inM ′′ has only finitely many successors.

30If Σ is finite, there are only finitely many non-equivalent MLI-formulas α with sig(α) ⊆ Σ and
Deg(α) ≤ 2ℓ.

31The proof of this part is similar to Proposition 2.31 of [5].
32These n points are also R′-successors of d′.
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Now we show that f : e 7→ [e] for e ∈ W ′ and [e] ∈ W ′′ is a Σ-i-p-morphism
fromM ′ toM ′′. The valuation and the forth conditions are obviously satisfied by the
definition ofM ′′. We prove the back condition as follows:

Assume that [e1]R′′[e2] for [e1], [e2] ∈ W ′′. Then there are e′1 ∈ [e1] and e′2 ∈
[e2] such that e′1R′e′2 according to the definition of R′′. By e′1 ∈ [e1], (M ′, e′1) is
Σ-i-bisimilar to (M ′, e1). Then from e′1R

′e′2 we have that there is an e∗1 ∈ W ′ such
that e1R′e∗1 and (M ′, e∗1) is Σ-i-bisimilar to (M ′, e′2). So e∗1 ∈ [e′2] = [e2]. That is,
f(e∗1) = [e∗1] = [e2]. Thus the back condition holds.
The inverse forth condition follows from the definition of R′′. Now we prove the
inverse back condition as follows:

Assume that [e1]R′′[e2]. Then there are e′1 ∈ [e1] and e′2 ∈ [e2] such that e′1R′e′2
according to the definition ofR′′. By e′2 ∈ [e2], (M ′, e′2) is Σ-i-bisimilar to (M ′, e2).
Then from e′1R

′e′2, the unique predecessor e∗2 of e2 in M ′ satisfies that (M ′, e∗2) is
Σ-i-bisimilar to (M ′, e′1). So e∗2 ∈ [e′1] = [e1]. That is, f(e∗2) = [e∗2] = [e1]. Thus
the inverse back condition holds.

Therefore, f : e 7→ [e] for e ∈ W ′ and [e] ∈ W ′′ is a Σ-i-p-morphism fromM ′

toM ′′.
We prove thatM ′′ is a tree model. SinceM ′ is a tree model with d∗ being its root,

there is an R′′-path from [d∗] to [e] for each [e] ∈ W ′′. If [d∗]33 has a predecessor in
M ′′, d∗ has a predecessor inM ′ according to the definition of R′′, which is contrary
to our assumption that d∗ is the root of the tree model M ′. Therefore, [d∗] is the
root of M ′′. Now we prove that there is a unique path from [d∗] to [e] for each [e]

inM ′′. Assume the contrary, i.e., there is a [e] inM ′′ such that [e] has two different
predecessors [d1] and [d2] inM ′′. Since f is aΣ-i-p-morphism fromM ′ toM ′′, there
are two points d′1 ∈ [d1] and d′2 ∈ [d2] such that d′1R′e and d′2R′e. Since [d1] 6= [d2],
d′1 is also different from d′2. It means that the point e has two different predecessors
in the tree model M ′, which is contrary to the definition of a tree model. So there
is only one unique path from [d∗] to [e] for each [e] inM ′′. Therefore, M ′′ is a tree
model with [d∗] being its root.

Next we prove the following claims:

Claim (1) (M ′′, [d]) |= Σφ† ;
Claim (2) Let [u] and [v] be successors of a point [w] ∈W ′′ inM ′′. For each
MLI-formula α with sig(α) ⊆ Σ, if (M ′′, [u]) |= α iff (M ′′, [v]) |= α, then
[u] = [v];
Claim (1) (M ′′, [d]) |= φ.

Claim (1) follows directly from Lemma 2 and (M ′, d) |= Σφ† .34 Claim (2) is proved
as follows:

33[d∗] = {d∗}.
34We have proved that there is a Σ-i-p-morphism fromM ′ toM ′′



Shanshan Du / Some Results on Rewritability in Modal Logics over Tree Models 55

Let [u] and [v] be successors of a point [w] ∈W ′′ inM ′′. Assume that

(M ′′, [u]) |= α iff (M ′′, [v]) |= α (1∗)

for each MLI-formula α with sig(α) ⊆ Σ. Since M ′′ is of finite outdegrees, [u] is
Σ-i-bisimilar to [v] inM ′′.35 Since [u], [v] are successors of the point [w] inM ′′ and
there is a Σ-i-p-morphism from M ′ to M ′′, there are points u1 ∈ [u1] = [u] and
v1 ∈ [v1] = [v] such that wR′u1 and wR′v1. According to Lemma 2 and the fact that
f : e 7→ [e] for e ∈W ′ and [e] ∈W ′′ is a Σ-i-p-morphism fromM ′ toM ′′,

(M ′, u1) |= α iff (M ′′, [u]) |= α

and
(M ′, v1) |= α iff (M ′′, [v]) |= α

for each MLI-formula α with sig(α) ⊆ Σ. Then by (1∗), we have that

(M ′, u1) |= α iff (M ′, v1) |= α

for each MLI-formula α with sig(α) ⊆ Σ.
Now we prove that u1 is Σ-i-bisimilar to v1 inM ′. Assume the contrary, i.e., u1

is not Σ-i-bisimilar to v1 inM ′. Since u1 and v1 has the same uniqueR′-predecessor
w in the tree model M ′, we can assume without loss of generality that there is a
point u′1 ∈ W ′ such that u1R′u′1 and no successor of v1 is equivalent to u′1 over
MLI-formulas α with sig(α) ⊆ Σ inM ′ . From u1R

′u′1 and the fact that there is a
Σ-i-p-morphism fromM ′ toM ′′, [u1]R′′[u′1] and then [u]R′′[u′1] by [u] = [u1]. Since
[u] is Σ-i-bisimilar to [v] in M ′′, there is a point [v′] ∈ W ′′ such that [v]R′′[v′] and
[u′1] is Σ-i-bisimilar to [v′] inM ′′. Then

(M ′′, [u′1]) |= α iff (M ′′, [v′]) |= α (2∗)

for each MLI-formula α with sig(α) ⊆ Σ. By Lemma 2 and the fact that there is a
Σ-i-p-morphism fromM ′ toM ′′,

(M ′, u′1) |= α iff (M ′′, [u′1]) |= α

and
(M ′, v′) |= α iff (M ′′, [v′]) |= α

for each MLI-formula α with sig(α) ⊆ Σ. Thus, by (2∗), we have that

(M ′, u′1) |= α iff (M ′, v′) |= α (3∗)

35Since [u] and [v] has the same unique predecessor [w] inM ′′, the proof of this part is similar to the
proof of Theorem 2.24 (i.e., Hennessy-Milner Theorem) in [5].
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for each MLI-formula α with sig(α) ⊆ Σ. From [v]R′′[v′] and [v1] = [v], [v1]R′′[v′]

holds. By the fact that there is a Σ-i-p-morphism from M ′ to M ′′, there is a point
v′1 ∈W ′ such that v1R′v′1 and v′1 ∈ [v′1] = [v′]. Then from v′1 ∈ [v′] we get that

(M ′, v′1) |= α iff (M ′, v′) |= α (4∗)

for each MLI-formula α with sig(α) ⊆ Σ. Therefore, by (3∗) and (4∗),

(M ′, u′1) |= α iff (M ′, v′1) |= α (5∗)

for each MLI-formula α with sig(α) ⊆ Σ. However, (5∗) is contrary to our assump-
tion that no successors of v1 is equivalent to u′1 overMLI-formulasαwith sig(α) ⊆ Σ

inM ′. Thus u1 is Σ-i-bisimilar to v1 inM ′.
Since u1 is Σ-i-bisimilar to v1 in M ′, then [u1] = [v1]. By [u1] = [u] and

[v1] = [v], we finally get that [u] = [v]. That is, Claim (2) is proved.
We prove Claim (3) by showing that

(M ′′, [d′]) |= pψ iff (M ′′, [d′]) |= ψ (6∗)

for each ψ = 3≥nψ′ ∈ Σ∗(φ) (n ≥ 2) and for each [d′] ∈ [d]↑0 ∪ [d]↑1 ∪ · · · ∪
[d]↑ℓ−Deg(ψ).

SinceM ′′ is a tree model, we should notice that

(M ′′, [e]) |= ⊥ iff (M ′′, [e]) |= γ

for each [e] ∈ W ′′ and for each γ = 3−≥nγ′ ∈ Σ∗(φ) (n ≥ 2). So we can assume
without loss of generality that there are no such subformulas γ = 3−≥nγ′ (n ≥
2) occurring in each ψ = 3≥nψ′ ∈ Σ∗(φ).36 We prove (6∗) by induction on the
numbers of subformulas 3≥tβ (t ≥ 2) occurring in ψ′ for ψ = 3≥nψ′ ∈ Σ∗(φ)

(n ≥ 2). Let ψ = 3≥nψ′ ∈ Σ∗(φ) (n ≥ 2) and k be the number of subformulas
3≥tβ (t ≥ 2) occurring in ψ′.

Assume that k = 0. Then ψ′ = ψ′♯. Let [d′] ∈ [d]↑0∪ [d]↑1∪· · ·∪ [d]↑ℓ−Deg(ψ).
Assume that (M ′′, [d′]) |= pψ. By Claim (1) that (M ′′, [d]) |= Σφ† and [d′] ∈ [d]↑0 ∪
[d]↑1 ∪ · · · ∪ [d]↑ℓ−Deg(ψ), we have that

(M ′′, [d′]) |=
∧

1≤i≤n
(3(ψ′♯ ∧ pψi ∧

∧
j ̸=i

¬pψj )).

So (M ′′, [d′]) |= 3≥nψ′♯, i.e.,

(M ′′, [d′]) |= 3≥nψ′.

36If such a subformula γ = 3−≥nγ′ (n ≥ 2) occurs in ψ, we can substitute γ with ⊥ immediately.
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Assume that (M ′′, [d′]) |= ψ. Then [d′] has n different successors [d′1], · · · , [d′n] such
that (M ′′, [d′i]) |= ψ′ (n ≥ 2) for each 1 ≤ i ≤ n. None of [d′1], · · · , [d′n] is equivalent
to another over MLI-formulas α with sig(α) ⊆ Σ according to Claim (2). Therefore,
there are n different MLI-formulas ψ1, · · · , ψn with sig(ψi) ⊆ Σ such that

(M ′′, [d′i]) |= ψj iff j = i

for 1 ≤ i, j ≤ n. By Claim (1) that (M ′′, [d]) |= Σφ† , we have that

(M ′′, [d′]) |= (
∧

1≤i≤n
(3(ψ′♯ ∧ ψi ∧

∧
j ̸=i

¬ψj))) → pψ.

From ψ′ = ψ′♯, we get that (M ′′, [d′]) |= pψ. That is, (6∗) holds for k = 0.
Now assume that (6∗) holds for k ≤ m ∈ N . Let’s consider the case that

k = m+1. Let [d′] ∈ [d]↑0∪[d]↑1∪· · ·∪[d]↑ℓ−Deg(ψ). Let ψ′′
1 = 3≥n1δ1, · · · , ψ′′

q =

3≥nqδq (q ∈ N ) be the topmost subformulas having the form 3≥nδ (n ≥ 2) occur-
ring in ψ′. Let ki be the number of subformulas 3≥nδ (n ≥ 2) occurring in δi for
each 1 ≤ i ≤ q. By induction hypothesis that (6∗) holds for k ≤ m and the fact that
each ki ≤ k ≤ m for 1 ≤ i ≤ q, we have that

(M ′′, [d′′]) |= pψ
′′
i iff (M ′′, [d′′]) |= ψ′′

i

for each [d′′] ∈ [d]↑0 ∪ [d]↑1 ∪ · · · ∪ [d]↑ℓ−Deg(ψ′′
i ) and each 1 ≤ i ≤ q. Thus

(M ′′, [d′′]) |= ψ′♯ iff (M ′′, [d′′]) |= ψ′ (7∗)

for each [d′′] ∈ [d]↑0 ∪ [d]↑1 ∪ · · · ∪ [d]↑ℓ−max{Deg(ψ′′
i ):1≤i≤q}.

Assume that (M ′′, [d′]) |= pψ. Then from Claim (1) that (M ′′, [d]) |= Σφ† , we
have that

(M ′′, [d′]) |=
∧

1≤i≤n
(3(ψ′♯ ∧ pψi ∧

∧
j ̸=i

¬pψj )). (8∗)

From (8∗), we get that there are n different successors [d′1], · · · , [d′n] of [d′] such that

(M ′′, [d′i]) |= ψ′♯

for each 1 ≤ i ≤ n. Since [d′] ∈ [d]↑0 ∪ [d]↑1 ∪ · · · ∪ [d]↑ℓ−Deg(ψ), [d′i] ∈ [d]↑0 ∪
[d]↑1 ∪ · · · ∪ [d]↑ℓ−(Deg(ψ)−1) for each 1 ≤ i ≤ n. Since Deg(ψ′) = Deg(ψ)− 1 and
max{Deg(ψ′′

i ) : 1 ≤ i ≤ q} ≤ Deg(ψ′),

[d′i] ∈ [d]↑0 ∪ [d]↑1 ∪ · · · ∪ [d]↑ℓ−max{Deg(ψ′′
i ):1≤i≤q}

for each 1 ≤ i ≤ n. So by (7∗),

(M ′′, [d′i]) |= ψ′
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for each 1 ≤ i ≤ n. It means that (M ′′, [d′]) |= 3≥nψ′.

Now assume that (M ′′, [d′]) |= ψ. Then [d′] has n different successors [d′1], · · · ,
[d′n] such that (M ′′, [d′i]) |= ψ′ (n ≥ 2) for each 1 ≤ i ≤ n. Being similar to the case
that k = 0, there are n different MLI-formulas ψ1, · · · , ψn with sig(ψi) ⊆ Σ such
that

(M ′′, [d′i]) |= ψj iff j = i (9∗)

for 1 ≤ i, j ≤ n and n ≥ 2. By Claim (1) that (M ′′, [d]) |= Σφ† , we have that

(M ′′, [d′]) |= (
∧

1≤i≤n
(3(ψ′♯ ∧ ψi ∧

∧
j ̸=i

¬ψj))) → pψ (10∗)

Since [d′] ∈ [d]↑0∪[d]↑1∪· · ·∪[d]↑ℓ−Deg(ψ), [d′i] ∈ [d]↑0∪[d]↑1∪· · ·∪[d]↑ℓ−(Deg(ψ)−1)

for each 1 ≤ i ≤ n. Since Deg(ψ′) = Deg(ψ) − 1 and max{Deg(ψ′′
i ) : 1 ≤ i ≤

q} ≤ Deg(ψ′),

[d′i] ∈ [d]↑0 ∪ [d]↑1 ∪ · · · ∪ [d]↑ℓ−max{Deg(ψ′′
i ):1≤i≤q}

for each 1 ≤ i ≤ n. Then by (7∗),

(M ′′, [d′i]) |= ψ′♯ (11∗)

for each 1 ≤ i ≤ n. From (9∗), (10∗) and (11∗), we get that (M ′′, [d′]) |= pψ.

Therefore, (6∗) is proved.
Last, from (6∗), Claim (1) and φ♯ ∈ Σφ† , Claim (3) that (M ′′, [d]) |= φ is

proved.
Since φ is locally preserved under inverse ∆-i-p-morphisms over tree models

such that sig(φ) ⊆ ∆ and sig(α) ⊆ ∆ for each MLI-formula α ∈ Σφ† , from
Claim (3) and the fact that there is a Σ-i-p-morphism fromM ′ toM ′′, we have that
(M ′, d) |= φ, which is contrary to what we have prove that (M ′, d) 6|= φ. Therefore,
for each treemodelM = (W,R, V )with d ∈W , if (M,d) |= Σφ† , then (M,d) |= φ,
i.e., Claim 2 is proved. □

6 MLGI to ML

Now we consider the problem of locally m-conservative rewritability of MLGI
to ML over tree models.

Theorem 22, the main result of this subsection, can be proved by Theorem 21.

Theorem 22. Let φ be an MLGI-formula, ∆∗ be a set of ML-formulas and ∆ be a
set of propositional variables such that sig(φ) ⊆ ∆ and sig(α) ⊆ ∆ for each ML-
formula α ∈ ∆∗. Then the MLGI-formula φ is locally m-conservatively rewritable
into∆∗ over tree models iff φ is locally preserved under inverse∆-p-morphisms over
tree models.
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Proof (⇒) This part can be proved by a similar one to the proof of Theorem 20.
(⇐) Let φ be an MLGI-formula, ∆∗ be a set of ML-formulas and ∆ be a set of
propositional variables such that sig(φ) ⊆ ∆ and sig(α) ⊆ ∆ for each ML-formula
α ∈ ∆∗. Assume that an MLGI-formula φ is locally preserved under inverse ∆-p-
morphisms over tree models. Since each i-p-morphism is also a p-morphism, φ is
locally preserved under inverse i-p-morphisms over tree models. By Theorem 21 and
the fact that each ML-formula is also an MLI-formula, φ is locally m-conservatively
rewritable into∆∗ over tree models. □

Lemma 3 says, a p-morphism between two tree models f itself is also an i-p-
morphism.

Lemma 3 LetM1 andM2 be tree models. Then each p-morphism fromM1 toM2

is also an i-p-morphism fromM1 toM2.

Proof Assume that M1 and M2 are tree models with d∗1, d∗2 being their roots re-
spectively. Let f be a p-morphism from M1 to M2. We prove that f is also an
i-p-morphism fromM1 andM2. Assume the contrary, i.e., f is not an i-p-morphism
from M1 to M2. It means that f(x)R2f(y) with x, y ∈ W1 but there is no point
z ∈ W1 such that zR1y and f(z) = f(x). Since M1 and M2 are tree models and
f(d∗1) = d∗2 by the definition of p-morphisms, d∗1 6= y. Then there is an R1-path
d∗1R1x1R1x2 · · ·R1xnR1y from d∗1 to y inM1. Thus, according to the definition of
p-morphisms, there is an R2-path d∗2R2f(x1)R2f(x2)R2 · · ·R2f(xn)R2f(y) from
d∗2 to f(y) inM2. Since there is no point z ∈ W1 such that zR1y and f(z) = f(x),
we have that f(xn) 6= f(x). Then the point f(y) in M2 has two different prede-
cessors f(x) and f(xn). It is contrary to our assumption that M2 is a tree model.
Therefore, f itself is also an i-p-morphism fromM1 andM2. □

From Theorem 22 and Lemma 3, the following theorem is got immediately,
whose proof is omitted for its clearness.

Theorem 23. Let φ be an MLGI-formula, ∆∗ be a set of ML-formulas and ∆ be a
set of propositional variables such that sig(φ) ⊆ ∆ and sig(α) ⊆ ∆ for each ML-
formula α ∈ ∆∗. The following conditions are equivalent for the MLGI-formula φ:

(i) φ is locally m-conservatively rewritable into∆∗ over tree models;
(ii) φ is locally preserved under inverse∆-p-morphisms over tree models;
(iii) φ is locally preserved under inverse∆-i-p-morphisms over tree models.
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与模态逻辑树模型上的重述相关的若干结果

杜珊珊

摘 要

本文考察模态逻辑树模型上的局部等价以及 m-保守的重述。所谓重述指的
是将一种语言下的公式翻译到另一种语言中去。这种翻译可以是等价的（局部等

价性），也可以是不等价的（m-保守的）。本文所研究的模态语言包括ML、MLI、
MLG和MLGI，所涉及的模型是模态逻辑的树模型。
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