
Studies in Logic, Vol. 13, No. 3 (2020): 01–18
PII: 1674-3202(2020)-03-00001-18

A Logic that Captures βP on Ordered Structures*

Kexu Wang Xishun Zhao

Abstract. We extend the inflationary fixed-point logic, IFP, with a new kind of second-order
quantifiers which have (poly-)logarithmic bounds. We prove that on ordered structures the new
logic ∃log

ω

IFP captures the limited nondeterminism class βP. In order to study its expressive
power, we also design a new version of Ehrenfeucht-Fraïssé game for this logic and show that
our capturing result will not hold in the general case, i.e., on all the finite structures.

1 Introduction

In descriptive complexity theory, it is the most interesting task to find a logical
characterization of a complexity class. But why do we need logics to characterize (or
capture) complexity classes?

Logics speak directly about graphs and structures, whereasmost other
formalisms operate on encodings of structures by strings or terms. Hence
a logical characterization of a complexity class is representation-inde-
pendent. —Martin Grohe ([8])

We know in graph theory or database theory, more essentially we care about graph
properties (or Boolean queries), i.e., the properties which do not depend on encoding.
A graph property is always closed under isomorphism. This coincides with that the
model class of a logic sentence is closed under isomorphism. Descriptive complexity
theory intends to consider every logic sentence as a machine and vice versa. Thus
every model of a sentence could be associated with an input of a corresponding ma-
chine and the logic (actually a class of sentences) would be related to a complexity

Received 2019-12-05
Kexu Wang Institute of Logic and Cognition, Sun Yat-sen University

Department of Philosophy, Sun Yat-sen University
wangkexuphy@163.com

Xishun Zhao Institute of Logic and Cognition, Sun Yat-sen University
Department of Philosophy, Sun Yat-sen University
hsszxs@mail.sysu.edu.cn

*We would like to thank Dr. Shiguang Feng, who greatly helped the progress of our research.
This research was partially supported by the project of “National Key Research Institutes for the

Humanities and Social Sciences” under grant number 19JJD720002.
This article was reported with a title “Logarithmic-Bounded Second-Order Quantifiers and Limited

Nondeterminism” in National Conference on Modern Logic 2019, on November 9 in Beijing.

2 Studies in Logic, Vol. 13, No. 3 (2020)

class (actually a class of Turing machines). The precise definition will be given in
2.2.

In this paper, let’s turn to some limited (or bounded) nondeterminism classes,
which are included in NP while including P. The idea of limited nondeterminism was
first defined by Kintala et al. in [13]. Then in [3] Cai et al. discussed a more general
case, i.e., the “Guess-then-Check” model.

Definition 1.1 ([3])
Let s : N 7→ N and C be a complexity class. A language L is in the class

GC(s, C) if there is a language L′ ∈ C together with an integer c > 0 such that for
any string u, u ∈ L if and only if ∃v ∈ {0, 1}∗, |v| ≤ c · s(|u|), and u#v ∈ L′.

Naturally NP =
∪
i∈NGC(n

i,P). For any sublinear function f , let’s define

βf = GC(f,P)

Specially for k ∈ N we denote βk = GC(logk,P) instead of βlogk . Let

βP =
∪
k∈N

βk

Correspondingly we introduce ∃f , the second-order quantifier bounded by f .
(We call this the f-bounded quantifier.) The semantics is straightforward. For any
formula ϕ, any relation variable X and any structure A ,

A ⊨ ∃fXϕ⇐⇒ there is a subset S ⊆ Aarity(X) with |S| ≤ f(|A|),

such that A ⊨ ϕ[X
S
]

We care more about the second-order quantifiers with a logarithmic bound, writ-
ten as ∃logk . We call these log-quantifiers. The new logic ∃logω IFP is obtained by
extending the inflationary fixed-point logic IFP with all the log-quantifiers. The main
theorem will show that ∃logω IFP captures βP on ordered structures. An ordered struc-
ture is a structure whose domain has a built-in linear order. One can notice that the
log-quantifiers will act as the part “∃v ∈ {0, 1}∗, |v| ≤ c · s(|u|)” in definition 1.1.
The log-quantifiers “guess” and then the IFP formula will “check”.

Our characterization is a natural extension of the famous Fagin’s theorem and
Immerman-Vardi’s theorem. R. Fagin ([5]) showed that NP is captured by the exis-
tential second-order logic Σ1

1, which consists of formulas in the form

∃X1 . . . ∃Xmϕ

where ϕ is first order andX1 . . . Xm are relation variables. As a corollary of Fagin’s
theorem, every layer of the polynomial time hierarchy, PH, is captured by a layer of the

Kexu Wang, Xishun Zhao / A Logic that Captures βP on Ordered Structures 3

second-order logic. ([4]) The fundamental result of capturing P is Immerman-Vardi’s
theorem. ([11, 16]) It shows that IFP captures P on ordered structures.

The restriction on ordered structures is vital. Actually so far we do not know
what logic can capture P without a built-in order. Logics are free from encoding, but
whenwe intend to simulate a Turingmachinewith a logic sentence, it cannot be helped
using a linear order to encode graphs or structures. This is related to a more funda-
mental and sophisticated problem, canonization (or canonical labeling) of graphs (or
structures). A canonization is an algorithm which returns the unique labeling of a
graph no matter how we label the vertices of the graph initially. The P-computable
canonizations do exist on some certain classes of graphs, for instance, trees ([14]), pla-
nar graphs ([14]), graphs of bounded treewidth ([2]), graphs of bounded degree ([1]).
Researchers are also interested in using logics to define a canonization. There are
IFP-definable canonizations on cycles ([4]), grids ([4]) or 3-connected planar graphs
([6]). That means on these classes IFP can provide a canonical linear order and cap-
tures P. An important approach is to extend IFP to capture P on some more general
classes. For example, IFP with counting, denoted by IFP+#, on trees ([12]), planar
graphs ([6]), graphs of bounded treewidth ([9]), graphs of bounded rank width ([10]).

Neither IFP nor IFP+# can capture P in the most general case, i.e., on all the
finite structures. They were originally proved via the game method. Alongside this
notion we will design a new Ehrenfeucht-Fraïssé game and prove ∃logω IFP fails to
capture βP in the most general case, too.

2 Preliminaries

We assume that the readers are familiar with the basic concepts of computational
complexity theory and mathematical logic. A signature τ is a finite class of relation
symbols. For convenience we do not talk about constant symbols and function sym-
bols. L [τ] is the formulas of logic L formed with symbols in τ . A τ -structure
(or structure over τ) B explains the symbols in τ on a domain B. In this paper we
only consider finite structures, i.e., whose domain is a finite set. STRUC[τ] is the
class of all τ -structures. A graph is a structure over signature {E} whose domain
V is a set of vertices. STRUC[τ]< is the class of all ordered τ -structures (there is
a built-in linear order of whose domain). STRING is the class of all strings. Let
τstr = {<,P0, P1, P#, P⟨, P⟩}. A string u is a structure over τstr, i.e.,

u = (U,<, P u0 , P
u
1 , P

u
, P

u
⟨ , P

u
⟩)

where

• U = {0, 1, . . . , |u| − 1}
• < is the natural linear order of U
• P u0 i⇐⇒ the i-th bit of u is 0

4 Studies in Logic, Vol. 13, No. 3 (2020)

• P u1 i⇐⇒ the i-th bit of u is 1
• P u# i⇐⇒ the i-th bit of u is #
• P u⟨ i⇐⇒ the i-th bit of u is 〈
• P u⟩ i⇐⇒ the i-th bit of u is 〉

“#” is used to separate two concatenated strings, for instance, “u#v”. “〈” and “〉” are
used for encoding in definition 2.1. None of the three auxiliary symbols are theo-
retically necessary and all strings can be represented binarily, i.e., just with 0 and 1.
However their attendance makes our proofs much easier.

A Boolean query Q on τ is a class of structures over the same signature τ , and
closed under isomorphism, i.e., for any A , B ∈ STRUC[τ], if A ' B, then,

A ∈ Q ⇐⇒ B ∈ Q

For example, languages (classes of strings) are Boolean queries on τstr.
In the following context, we often use the logarithmic function log(n), whose

value is expected to be an integer, so we let log(n) = dlog2(n)e. Let [n] = {0, 1, . . . ,
n − 1}. Note that log(n + 1) is the minimal length of n’s binary expression. In this
paper, for any formula ϕ(x,X), “ϕ[xa ,

X
R]” means the value a (resp. R) is substituted

into x (resp. X) if x (resp. X) is free. We abuse the notation | · |. If u is a string, |u|
is its length. If A is a set, |A| is its cardinal. If x⃗ is a k-tuple, then |x⃗| = k.

2.1 Encoding structures

In order to represent the structures in a Turing machine, we need to encode struc-
tures as strings. W.l.o.g., we take the following way of encoding:

Definition 2.1 (Enumerating encoding) For any signature τ = {R1, . . . , Rm}, where
arity(Ri) = ri (1 ≤ i ≤ m), anyA ∈STRUC[τ]<with domainA = {a0, . . . , a|A|−1}

1. enc(A) = 〈enc(A)enc(RA
1) . . . enc(RA

m)〉
2. enc(A) = 〈enc(a0) . . . enc(a|A|−1)〉
3. For any i ∈ {1, . . . ,m}, suppose a⃗1, . . . , a⃗|RA

i | are all ri-tuples in RA
i ,

enc(RA
i) = 〈enc(⃗a1), . . . , enc(⃗a|RA

i |)〉

4. Suppose t⃗ = (t1, . . . , ts) is a tuple with t1, . . . , ts ∈ A,

enc(⃗t) = 〈enc(t1) . . . enc(ts)〉

5. Suppose a is the j-th element in A, 0 ≤ j < |A|,

enc(a) = 〈“the log |A|-long binary expression of j”〉

Kexu Wang, Xishun Zhao / A Logic that Captures βP on Ordered Structures 5

Note that
|enc(A)| = log |A| ·O(

∑
1≤i≤m

(|RA
i | · ri))

and for i ∈ {1, . . . ,m},

|enc(RA
i)| = log |A| ·O(|RA

i | · ri)

The length |enc(A)| is related to every cardinal |RA
i |. The machine needs the

auxiliary symbols to parse enc(A) because it cannot know ahead of time how long
enc(RA

i) is. The extra length of auxiliary symbols can be ignored in a big-Oh nota-
tion.

2.2 Logic characterization of complexity

Definition 2.2 ([7])
A logic L captures a complexity class C on a class K of structures, if the fol-

lowing conditions are satisfied,

1. L [τ] is decidable, for any signature τ .
2. There is an effective procedure to associatewith eachL -sentenceϕ a C-bounded

Turing machine M, such that, for any A ∈ K, M can decide whether

A ⊨ ϕ

3. For any Boolean query Q in C, there is an L -sentence ϕ such that for any
A ∈ K,

A ⊨ ϕ iff A ∈ Q

(We assume that K is closed under isomorphism.)
If K is the class of all structures, we simply say L captures C.

There are two most classical theorems in descriptive complexity theory.

Theorem 2.3 (Fagin’s Theorem, [5]) Σ1
1 captures NP.

Theorem2.4 (Immerman-Vardi Theorem, [11, 16]) IFP captures P on ordered struc-
tures.

IFP is gotten by extending the first-order logic FO with the inflationary fixed-point
operator. IFP inherits the formation rules of FO besides

• If ψ is a formula, then so is [IFPy⃗ Y ψ(y⃗, Y)]⃗t, where Y is a relation variable
and |y⃗ | = |⃗t | = arity(Y)

6 Studies in Logic, Vol. 13, No. 3 (2020)

[IFPy⃗ Y ψ(y⃗, Y)] is the fixed point of the function fY ∨ψ defined by the fomula Y y⃗ ∨
ψ(y⃗, Y). This semantics will not be used in this paper, so readers can turn to [4] and
[15] for details.

In logic we needn’t even study structures over all different signatures. We par-
ticularly care about STRING and graphs, which the structures over other signatures
can be interpreted to.

Definition 2.5 LetL be a logic. Let τ , σ be two signatures. σ = {R1, R2, . . . , Rm},
where arity(Ri) = ri (1 ≤ i ≤ m). An k-ary L -interpretation from τ to σ is a sieres
of L [τ]-formulas

I = (ϕuni(x⃗), ϕR1(x⃗1, . . . , x⃗r1), . . . ϕRm(x⃗1, . . . , x⃗rm))

where the variables x⃗, x⃗1, ... are k-tuples. For any A on τ ,

I(A) = (ϕA
uni(_), ϕ

A
R1

(_, . . . , _), ..., ϕA
Rm

(_, . . . , _))

is a σ-structure, if we consider the k-tuples satisfying ϕA
uni(x⃗) as individual elements.

(Note that: ϕA (_) := {a⃗ | A ⊨ ϕ[x⃗a⃗]})
Suppose S1 ⊆ STRUC[τ] and S2 ⊆ STRUC[σ] are two Boolean queries. If I

also makes sure for any A ∈ STRUC[τ],

A ∈ S1 ⇐⇒ I(A) ∈ S2

we say I is an L -reduction from S1 to S2.

It is not hard to prove for any A , B ∈ STRUC[τ]

A ' B =⇒ I(A) ' I(B)

Lemma 2.6 For any signature τ , there is an FO-reduction I from STRUC[τ]< to
STRING and for any A , B in STRUC[τ]<,

A ' B ⇐⇒ I(A) = I(B)

Lemma 2.7 Let ϕ be a formula of IFP[σ],

I = 〈ϕuni, ϕR1 , ..., ϕRm〉

is an k-ary reduction from STRUC[τ] to STRUC[σ]. ϕI is obtained by

• replacing every variable x occuring in ϕ by a new k-tuple x⃗ (which consists of
all new variables, let’s denote it by xI),

• replacing every relation Ri in ϕ by ϕRi ,
• changing the subformula ∀x . . . in ϕ to ∀xI(ϕuni(xI) → . . .),

Kexu Wang, Xishun Zhao / A Logic that Captures βP on Ordered Structures 7

• changing the subformula ∃x . . . in ϕ to ∃xI(ϕuni(xI) ∧ . . .),
• for [IFPy⃗ Y ψ(y⃗, Y)] is in ϕ, where y⃗ = y1y2 . . . yl and arity(Y) = l, then
replacing [IFPy⃗ Y ψ(y⃗, Y)] by

[IFPyI1yI2 ...yIl Y I

∧
1≤i≤l

ϕuni(y
I
i) ∧ ψI(yI1yI2 . . . yIl , Y I)]

where Y I is an l · k-ary new relation variable.

Then for A ∈ STRUC[τ],

A ⊨ ϕI ⇐⇒ I(A) ⊨ ϕ

These two lemmas tell us STRING and ordered structures are deeply related.
L captures C on STRING if and only if L captures C on ordered structures. In the
following context, we will first prove our theorem on STRING, and naturally it holds
on ordered structures.

3 Capturing Results

Here is an alternative definition of βP prepared for our later proofs:

Definition 3.1 A language L is in the class βk if there is a language L′ ∈ P to-
gether with an integer c > 0 such that for any string u, u ∈ L if and only if
∃v ∈ {0, 1}≤c·logk(|u|), u#v ∈ L′. (where {0, 1}≤c·logk(|u|) is all the 0-1 strings of
length at most c · logk(|u|).)

βP =
∪
k∈N βk.

Since β1 = GC(log,P), in fact the “guess” part can be computed in time 2c·log,
which is a polynomial. Thus we have

P = β1 ⊆ β2 ⊆ . . . ⊆ βP ⊆ NP

3.1 Logarithmic-bounded quantifiers

The log-quantifier ∃logk is the second-order quantifier with a bound logk. As we
mentioned,

A ⊨ ∃log
k

Xϕ⇐⇒ there is a subset S ⊆ Aarity(X) with |S| ≤ logk(|A|),

such that A ⊨ ϕ[X
S
]

It doesn’t matter how large arity(X) is. As long as arity(X) is a nonzero natural
number, ∃logk can be applied. Naturally

∀log
k

X := ¬∃log
k

X¬

8 Studies in Logic, Vol. 13, No. 3 (2020)

Let logω = {logk | k > 0}. Then ∃logω = {∃logk | k > 0}

Definition 3.2 An formula of ∃logω IFP is in the form,

∃log
k1
X1∃log

k2
X2 . . . ∃log

km
Xmψ

wherem ≥ 0; k1, k2, . . . km > 0; ψ is an IFP-formula.

Those formulas without any occurrences of log-quantifiers are log-quantifier-
free.

Here are three parameters we will use. The maximal variable arity of a for-
mula, mva(ϕ) = max{arity(X) | X is a relation variable, free or bounded by a
log-quantifier, in ϕ}. The height of a formula, height(ϕ) = max{k | ∃logk or ∀logk

occurs in ϕ}. The log-quantifier rank of a formula,

• lqr(ϕ) = 0, if ϕ is atomic
• lqr(ϕ) = lqr(ψ), if ϕ = ¬ψ
• lqr(ϕ) = max(lqr(ψ1), lqr(ψ2)), if ϕ = ψ1 → ψ2

• lqr(ϕ) = lqr(ψ), if ϕ = ∃xψ
• lqr(ϕ) = lqr(ψ) + 1, if ϕ = ∃logkXψ for k > 0.

For k > 0, ∃logk IFP is the sublogic of ∃logω IFP, the heights of whose formulas are no
larger than k.

3.2 Main theorem

Theorem 3.3 ∃logω IFP captures βP on STRING.

Proof Idea Actually we will prove for k ≥ 1, ∃logk IFP captures βk+1 on STRING.
Note that an ∃logk IFP[τstr]-sentence corresponds to a βk+1-bounded Turing machine,
not a βk-bounded one. It is because for any u ∈ STRING and any relation vari-
ble X , when we encode the value of X , as we did in definition 2.1, |enc(X)| =

|O(logk+1 |U |)|. According to definition 2.2, our proof consists of three parts. The
main idea is simple: we use “∃logkX” to simulate “∃v ∈ {0, 1}≤c·logk(|u|)” in defini-
tion 3.1 and vice versa; then we apply Immerman-Vardi’s theorem.

But here is a problem: for any v in “∃v ∈ {0, 1}≤c·logk(|u|)” in definition 3.1,
can we have an IFP-reduction I such that there existsX in “∃logkX” and I(X) = v?

Lemma 3.4 Let k ∈ N− {0}
There is an encoding J such that for any string u with domain U , JU is a sur-

jection from {S | S ⊆ U2 and |S| ≤ logk(|U |)} to {0, 1}≤logk(|U |)·(log(|U |)−1).
And let τr = τstr ∪ {R1, R2, . . . Rr}, where R1, . . . Rr are binary relation sym-

bols. There is an IFP-reduction I from STRUC[τr] to STRING such that for any u ∈

Kexu Wang, Xishun Zhao / A Logic that Captures βP on Ordered Structures 9

STRING and binary relations Ru1 , . . . Rur ∈ {S | S ⊆ U2 and |S| ≤ logk(|U |)},

I((u,Ru1 , . . . R
u
r)) = u#JU (Ru1)J

U (Ru2) . . . J
U (Rur)

Proof (of lemma 3.4)
For any S ∈ {S | S ⊆ U2 and |S| ≤ logk(|U |)}, JU (S) is gotten by doing as

follows

1. getting enc(S);
2. removing the first element of each tuple of S from enc(S);
3. removing the log(|U |)-th bit of each consecutive binary substrings in the en-

coding;
4. removing the symbols “〈” and “〉”.

For example suppose log(|U |) = 3, and S = {(1, 3), (1, 0), (2, 0)}, then

enc(S) = 〈〈〈100〉〈110〉〉〈〈100〉〈000〉〉〈〈010〉〈000〉〉〉

Then we do
〈〈〈100〉〈110〉〉〈〈100〉〈000〉〉〈〈010〉〈000〉〉〉

⇓
〈〈���〈100〉〈110〉〉〈���〈100〉〈000〉〉〈���〈010〉〈000〉〉〉

⇓
〈〈〈11�0〉〉〈〈00�0〉〉〈〈00�0〉〉〉

⇓
110000

So JU (S) = 110000 in this example.
It is easy to verify that JU is a surjection.
Now we construct the IFP-reduction I . With the help of the linear order <u,

we can construct IFP-formula BIT(y, x), which means “the x-th bit of the binary
expression of y is 1”. (But here we do not provide the details of BIT. The readers can
turn to [15, p. 96].)

Let x⃗ = x1x2x3x4x5yz1 . . . zlog(r). It’s an (log(r) + 6)-ary tuple of variables.
Now we define:

ϕ< is the lexicographic order of (log(r) + 6)-ary tuples
ϕP0(x⃗) :=(x1 = x2 = 0 ∧ P0(x4)) ∨ (x1 = x2 = 1 ∧ x4 = 0)

ϕP1(x⃗) :=(x1 = x2 = 0 ∧ P1(x4)) ∨ (x1 = x2 = 1 ∧ x4 = 1)

ϕP#(x⃗) :=(x1 = x2 = 0 ∧ P#(x4)) ∨ (x1 = 0 ∧ x2 = 1)

ϕP⟨(x⃗) :=(x1 = x2 = 0 ∧ P⟨(x4))

ϕP⟩(x⃗) :=(x1 = x2 = 0 ∧ P⟩(x4))

10 Studies in Logic, Vol. 13, No. 3 (2020)

ϕuni(x⃗) := (x1 = x2 = 0

∧ y = z1 = . . . = zlog(r) = x3 = x5 = 0)

∨ (x1 = 0 ∧ x2 = 1

∧ y = z1 = . . . = zlog(r) = x3 = x4 = x5 = 0)

∨ (x1 = x2 = 1

∧ (
∨

1≤i≤r
(Rix5y

∧ “z1z2 . . . zlog(r) is the binary expression of i”
∧ x3 < log(|U |)− 1

∧ x4 = 1 ↔ BIT(y, x3)
∧ x4 = 0 ↔ ¬BIT(y, x3))))

So I = (ϕuni, ϕ<, ϕP0 , ϕP1 , ϕP# , ϕP⟨ , ϕP⟩) is an IFP-reduction that we want. □

Proof (of theorem 3.3)
By definition 2.2, our proof consists of three parts. Let k > 0.
Firstly. ∃logω IFP[τ] is decidable, for any signature τ .
Secondly. For any ∃logk IFP[τstr]-sentence ϕ = ∃logk1X1 . . . ∃log

km
Xmψ, where

ψ is log-quantifier-free and all its relation variables are amongX1 . . . Xm and k1, . . .
km ≤ k. We construct a βk+1-bounded Turing machine Mϕ as follows: for any u ∈
STRING,

u ⊨ ϕ⇐⇒there are S1 ⊆ Uarity(X1), . . . , Sm ⊆ Uarity(Xm)

and |S1| ≤ logk1 |u|, . . . , |Sm| ≤ logkm |u|

such that u ⊨ ψ[X1

S1
, . . . ,

Xm

Sm
]

By theorem 2.4, there is a P-bounded Turing machine Mψ that can verify whether

A ⊨ ψ[X1

R1
, . . . ,

Xm

Rm
]

for A on τstr ∪ {X1, . . . , Xm} and A ’s explanation R1, . . . , Rm of X1, . . . , Xm.
In order to guess and store the values ofX1, . . . , Xm, by definition 2.1, Mϕ will

need
O(logk1+1 |u| · arity(X1) + . . .+ logkm+1 |u| · arity(Xm))

nondeterministic bits, or simply, O(logk+1 |u|) nondeterministic bits in total.
thenMϕ returns TRUE if there areS1, . . . , Smwith |S1| ≤ logk1 |u|, . . . , |Sm| ≤

logkm |u|, such that Mψ accepts 〈u, S1, . . . , Sm〉. Otherwise Mϕ returns FALSE.
So Mϕ is a βk+1-bounded machine that we want.

Kexu Wang, Xishun Zhao / A Logic that Captures βP on Ordered Structures 11

Thirdly. Suppose L is a language in βk+1. By definition 3.1, there is a function
f(n) = O(logk+1(n)) and a P-bounded Turing machine M, such that for any u ∈
STRING,

u ∈ L⇐⇒ ∃v ∈ {0, 1}≤f(|u|) M accepts u#v

There exists r ∈ N − {0} such that for any n ∈ N − {0}, f(n) ≤ r · logk(n) ·
(log(n) − 1). Let R1, . . . Rr be r new binary relation symbol. We can construct a
P-bounded Turing machine M′ such that for any strings u, v, z with v ∈ {0, 1}≤f(|u|)
and z ∈ {0, 1}≤r·logk(|u|)·(log(|u|)−1)

M′ accepts u#z ⇐⇒M accepts u#v
and v is the leftmost f(|u|) bits of z.

(M′ need not compute the function f , so it does not matter whether f is computable
or not.) By theorem 2.4, there is an IFP[τstr]-sentence ϕM′ such that for any v ∈
STRING,

v ⊨ ϕM′ ⇐⇒ M′ accepts v

By lemma 3.4, there is a (log(r)+6)-ary IFP reduction fromSTRUC[τstr∪{R1, . . . Rr}]
to STRING, I = 〈ϕuni, ϕ<, ϕP0 , ϕP1 , ϕP# , ϕP⟨ , ϕP⟩〉. With the help of lemma 2.7, let

ψ := ψIM′

ψ is an IFP-sentence on τstr ∪ {R1, . . . Rr}. Let

ϕ = ∃log
k

R1, . . .∃log
k

Rrψ

which is an ∃logk IFP[τstr]-sentence. And for any u ∈ STRING,
u ∈ L⇐⇒ u ⊨ ϕ □

In the above proof, we can see only binary relation symbolsR1, . . . Rr are bound-
ed by the log-quantifiers. So we obtain

Corollary 3.5 On ordered structures, every formula of ∃logk IFP is equivalent to a
formula of ∃logk IFP whose bounded relation variables are binary.

4 The Expressive Power

IFP fails on a very important P-decidable Boolean query, EVEN. ([4]) For any
graph G, G ∈ EVEN if and only if domain |V | is even. There is no sentence ϕ of
IFP[{E}] such that

G ∈ EVEN ⇐⇒ G ⊨ ϕ
(EVEN is not definable in IFP.) So IFP fails to capture P (on all finite structures).
Unfortunately, our strengthened version ∃logω IFP fails, too.

12 Studies in Logic, Vol. 13, No. 3 (2020)

Theorem 4.1 EVEN is not definable in ∃logω IFP.

IFP’s failure was proven via the failure of the infinitary logic L ω
∞ω. The logic

L s
∞ω is similar to FO, but every formula in L s

∞ω can have infinite length or infinite
quantifier depth and contains at most s variables (free or bounded). Then

L ω
∞ω =

∪
s∈N

L s
∞ω

For the details readers can turn to [4, ch. 3]. For every single IFP-formula, we can
always construct an equivalent L s

∞ω-formula for some s. So IFP is a sublogic of
L ω

∞ω. Now we define a new logic L (Beware! It is not L !) as follows: for any
formula ϕ

• ϕ ∈ L if ϕ ∈ L ω
∞ω

• ∃logkXϕ ∈ L if ϕ ∈ L, where k > 0 and X is some relation variable.
• ∀logkXϕ ∈ L if ϕ ∈ L, where k > 0 and X is some relation variable.
• ψ ∧ χ ∈ L if ψ ∈ L and χ ∈ L
• ψ ∨ χ ∈ L if ψ ∈ L and χ ∈ L

Obviously ∃logω IFP is a sublogic of L
In order to prove theorem 4.1, we turn to the game method

Definition 4.2 L is any logic. G is a game played by two players, the spoiler and
the duplicator, on two structures. we say G is an Ehrenfeucht-Fraïssé game for L , if
for any τ , any A and B ∈ STRUCT[τ], the following are equivalent,

1. A ≡L B

2. the duplicator wins G(A ,B)

where “A ≡L B” means for any L [τ]-sentence ϕ, A ⊨ ϕ if and only if B ⊨ ϕ.

For convenience, we use the notation “ā”, a lowercase letter with a bar to rep-
resent a ordered set of elements and “R̄”, a capital letter with a bar to represent a
ordered set of relations. Please note that ā is not tuple a⃗. In the following context
we will denote āa = ā ∪ {a}, R̄R = R̄ ∪ {R}. If a⃗ consists of elements in ā, we
simply say a⃗ is from ā. We say ā 7→ b̄ ∈ Part(A , P̄ ,B, Q̄), i.e., ā 7→ b̄ is a partial
isomorphism from 〈A , R̄〉 to 〈B, S̄〉, where R̄ = {R1, . . . Rl} and S̄ = {S1, . . . Sl},
that is, there is a bijection f from ā to b̄,

1. f(ai) = bi, ai ∈ ā, bi ∈ b̄,
2. for any relation P ∈ τ , and any tuple t⃗ from ā,

t⃗ ∈ PA ⇐⇒ f (⃗t) ∈ PB

3. for 1 ≤ i ≤ l, and any tuple t⃗ from ā,

t⃗ ∈ Ri ⇐⇒ f (⃗t) ∈ Si

Kexu Wang, Xishun Zhao / A Logic that Captures βP on Ordered Structures 13

In the expansions, actually R̄, S̄ act as new relations.
The Ehrenfeucht-Fraïssé game for L s

∞ω is the pebble game with s pairs of peb-
bles, denoted by PGs. In a play of PGs(A ,B), there are s (or less) vertices in each of
A and B covered by pebbles. In each move, each player can do nothing, move one
pebble or add a new pebble (but on each structures there can be at most s pebbles).
If the duplicator can make sure the two covered substructures are always isomorphic,
then she wins PGs(A ,B). For the details readers can turn to [4, ch. 3].

Now let Lm,r,k,s be the sublogic of L such that for any ϕ in it,

• lqr(ϕ) ≤ m,
• mva(ϕ) ≤ r,
• height(ϕ) ≤ k,
• at most s element variables occur in ϕ.

Let’s design a game Gm,r,k,s for Lm,r,k,s. As Lm,r,k,s is extended from L s
∞ω with

log-quantifiers in the “outer layers”, Gm,r,k,s consists of at most m relation moves
and a game PGs. The players plays a relation move as follows. The spoiler chooses
r′ ≤ r and k′ ≤ k. Then she chooses eitherA orB. (W.l.o.g. we assume the spoiler
chooses A . Otherwise A and B are exchanged.) Then she chooses R ⊆ Ar

′ with
|R| ≤ logk

′
(|A|). At last the duplicator chooses S ⊆ Br′ with |S| ≤ logk

′
(|B|).

In a play of Gm,r,k,s(A ,B), the spoiler first chooses an arbitrary m′ ≤ m and
they playm′ relation moves and then the two structures are expanded as 〈A , R1, . . . ,

Rm′〉 and 〈B, S1, . . . Sm′〉. Then they play PGs(〈A , R1, . . . Rm′〉, 〈B, S1, . . . Sm′〉).
Once this pebble game begins, no more relation moves are allowed. If the duplicator
wins PGs(〈A , R1, . . . Rm′〉, 〈B, S1, . . . Sm′〉), she wins the play.

If she can always win every play, we say she wins (or she has a winning strategy
in) Gm,r,k,s(A ,B).

Proposition 4.3 For m ≥ 0, r, k, s > 0, Gm,r,k,s is an Ehrenfeucht-Fraïssé game
for Lm,r,k,s.

Proof Let A and B be two structures over a given signature τ .
We construct the isotype of A . Let R̄ be a set of new relations such that for any

R ∈ R̄, arity(R) ≤ r (and |R| ≤ logk(|A|)).

ϕ0,r,k,s
A ,R̄

(X̄) =
∧

{ϕ(X̄) | ϕ is an sentence of L s
∞ω[τ ∪ X̄] such that A ⊨ ϕ[X̄

R̄
]}

then inductively

ϕm+1,r,k,s
A ,R̄

(X̄) =
∧
i≤r

∧
j≤k

[(
∧

R⊆Ai,|R|≤logj(|A|)

∃log
j

Xϕm,r,k,s
A ,R̄R

(X̄X))

∧ (∀log
j

X
∨

R⊆Ai,|R|≤logj(|A|)

ϕm,r,k,s
A ,R̄R

(X̄X))]

14 Studies in Logic, Vol. 13, No. 3 (2020)

When R̄ = ∅, we simply write ϕm,r,k,sA , which is a sentence of Lm,r,k,s.
Suppose A ≡Lm,r,k,s

B, then B ⊨ ϕm,r,k,sA . The isotype indicates a winning
strategy for the duplicator. After m moves if the two structures are expanded as
〈A , R̄〉 and 〈B, S̄〉,

B ⊨ ϕ0,r,k,s
A ,R̄

[
X̄

S̄
]

This means 〈A , R̄〉 and 〈B, S̄〉 satisfy the same L s
∞ω-formulas. Therefore the du-

plicator can win PGs(〈A , R̄〉, 〈B, S̄〉). Then she wins Gm,r,k,s(A ,B).
Suppose A 6≡Lm,r,k,s

B. There is a sentence ϕ of Lm,r,k,s which A and B

disagree on. W.l.o.g. we assume that A ⊨ ϕ and B ⊭ ϕ and

ϕ = Q
logk1
1 X1 . . . Q

logkm
m Xmψ

where ψ is an L s
∞ω-sentence and k1, . . . km ≤ k and Q1, . . . Qm ∈ {∃, ∀}. Then

• A ⊨ Qlogk1
1 X1 . . . Q

logkm
m Xmψ

• B ⊨ Q̂logk1
1 X1 . . . Q̂

logkm
m Xm¬ψ

(if Qi = ∃, then Q̂i = ∀; if Qi = ∀, then Q̂i = ∃, 1 ≤ i ≤ m.) This provides a
winning strategy for the spoiler. In the i-th relation move if Qi = ∃ then the spoiler
should choose A and the relation Ri ⊆ Aarity(Xi); otherwise she should choose B

and the relation Si ⊆ Barity(Xi). After m relation moves, the structures have been
expanded as 〈A , R1, . . . Rm〉 and 〈B, S1, . . . Sm〉.

• 〈A , R1, . . . Rm〉 ⊨ ψ[X1
R1
, . . . Xm

Rm
]

• 〈B, S1, . . . Sm〉 ⊨ ¬ψ[X1
S1
, . . . Xm

Sm
]

The duplicator cannot win PGs(〈A , R̄〉, 〈B, S̄〉). So she cannot win Gm,r,k,s(A ,B).
□

For any A ∈ STRUC[τ], R ⊆ Aarity(R) and a ∈ A, we say R mentions a (or a
is mentioned by R), if a is a component of some tuple t⃗ ∈ R. Let ment(R) = {a ∈
A | a is mentioned by R}. Observe that if R is bounded by log-quantifier ∃logk , then

|ment(R)| ≤ arity(R) · logk(|A|)

and we denote ment(R̄) =
∪
R∈R̄ ment(R)

Theorem 4.4 EVEN is not definable in L.

Proof If EVEN is defined by a sentence ϕ of L[{E}], ϕ should also work on empty
graphs, namely on the graphs that have no edges. Now we assume E = ∅ in order
to get a contradiction. There arem ≥ 0 and r, k, s > 0 such that ϕ ∈ Lm,r,k,s[{E}].

Kexu Wang, Xishun Zhao / A Logic that Captures βP on Ordered Structures 15

Let A and B be two empty graphs such that |A| is a sufficiently large even number
satisfying

(m+ 1) · r · s · logk(|A|) < |A|

and |B| = |A| + 1 and log(|A|) = log(|B|). So A ⊨ ϕ and B ⊭ ϕ. The duplicator
can play Gm,r,k,s(A ,B) as follows:

Before this play begins, vacuously ∅ 7→ ∅ ∈ Part(A ,B). Let f : ∅ 7→ ∅.
Suppose after i moves (0 ≤ i < m), the players have 〈A , R̄〉 and 〈B, S̄〉 and f has
been extended as ment(R̄) 7→ ment(S̄). In the (i + 1)-th move, w.l.o.g. the spoiler
chooses R ⊆ Ari+1 and |R| ≤ logki+1(|A|), where ri+1 ≤ r and ki+1 ≤ k. For
a ∈ ment(R)−ment(R̄), the duplicator can casually choose b /∈ ment(S̄) and extend
f with f(a) = b. Since

|ment(S̄)| ≤ m · r · logk(|B|)

which is much smaller than |B|, there are enough “unmentioned” b’s to choose to
make f a partial isomorphism. Let

S = f(R) = {(f(t1), f(t2), . . . f(tri+1)) | (t1, t2, . . . tri+1) ∈ R}

So the duplicator chooses S. the structures are expanded as 〈A , R̄R〉 and 〈B, S̄S〉
Aftermmoves,A andB are expanded as 〈A , R1, . . . Rm〉 and 〈B, S1, . . . Sm〉

which we still denote by 〈A , R̄〉 and 〈B, S̄〉 for short. Consider the substructures

〈ment(R̄), R̄〉 ' 〈ment(S̄), S̄〉

The other elements which aren’t in the substructures are all isolated nodes. One can
easily check that the duplicator wins PGs(A , R̄,B, S̄).

So the duplicator wins Gm,r,k,s(A ,B). By proposition 4.3, A ≡Lm,r,k,s
B.

That is a contradiction.
So EVEN is not definable in L. □

Since ∃logω IFP is a sublogic of L, EVEN is not definable in ∃logω IFP, either.
Hence ∃logω IFP does not capture βP (on all finite structures).

5 Furthur Discussion

Readers might have noticed that the results can be extended onto other complex-
ity classes. For example the existential and universal log-quantifiers can alternate
several times in the formula so as to capture a corresponding limited alternation class.
Furthermore, not only log-quantifiers, we can also consider other second-order quan-
tifier with a bound of cardinality. Let f be a sublinear function on N. One can easily
prove on ordered structures a logic“∃f IFP”can capture β(f ·log), i.e., the complexity

16 Studies in Logic, Vol. 13, No. 3 (2020)

classGC(f(n) · log(n),P), where the parameter “log(n)” seems unavoidable. How-
ever none of the above can capture the corresponding complexity classes without a
linear order. The proofs could be analogous to our theorem 4.4.

We are not sure

• on what natural class of graphs, ∃logω IFP can capture βP while IFP cannot
capture P.

• whether there is a problem in P which ∃logω IFP can define while IFP cannot.

These questions could be interesting.

References

[1] L. Babai and E. M. Luks, 1983, “Canonical labeling of graphs”, 15th Annual ACM
Symposium on Theory of Computing, pp. 171–183, New York: ACM Press.

[2] H. L. Bodlaender, 1990, “Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees”, Journal of Algorithms, 11(4): 631–643.

[3] L. Cai and J. Chen, 1997, “On the amount of nondeterminism and the power of veri-
fying”, SIAM Journal on Computing, 26(3): 733–750.

[4] H. D. Ebbinghaus and J. Flum, 2005, Finite Model Theory, Berlin: Springer.
[5] R. Fagin, 1974, “Generalized first-order spectra and polynomial-time recognizable

sets”, Complexity of Computation, vol. 7, pp. 43–73, Providence, RI: American Math-
ematical Society.

[6] M. Grohe, 1998, “Fixed-point logics on planar graphs”, 13th Annual IEEE Symposium
on Logic in Computer Science, pp. 6–15, Washington: IEEE Computer Society.

[7] M. Grohe, 2008, “The quest for a logic capturing ptime”, 23rd Annual IEEE Sympo-
sium on Logic in Computer Science, pp. 267–271, Washington: IEEE Computer Soci-
ety.

[8] M. Grohe, 2011, “From polynomial time queries to graph structure theory”, Commu-
nications of the ACM , 54(6): 104–112.

[9] M. Grohe and J. Mariño, 1999, “Definability and descriptive complexity on databases
of bounded tree-width”, International Conference on Database Theory, pp. 70–82,
Berlin: Springer.

[10] M. Grohe and D. Neuen, 2019, “Canonisation and definability for graphs of bounded
rankwidth”, 34th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 1–
13, Washington: IEEE Computer Society.

[11] N. Immerman, 1982, “Relational queries computable in polynomial time”, 14th Annual
ACM Symposium on Theory of Computing, pp. 147–152, New York: ACM Press.

[12] N. Immerman and E. Lander, 1990, “Describing graphs: A first-order approach to
graph canonization”, pp. 59–81, New York: Springer.

[13] C. Kintala and P. Fischer, 1984, “Refining nondeterminism in relativized complexity
classes”, SIAM Journal on Computing, 13(4): 329–337.

Kexu Wang, Xishun Zhao / A Logic that Captures βP on Ordered Structures 17

[14] J. Köbler, 2006, “On graph isomorphism for restricted graph classes”, Conference on
Computability in Europe, pp. 241–256, Berlin: Springer.

[15] L. Libkin, 2013, Elements of finite model theory, Berlin: Springer.
[16] M. Y. Vardi, 1982, “The complexity of relational query languages”, 14th Annual ACM

Symposium on Theory of Computing, pp. 137–146, New York: ACM Press.

18 Studies in Logic, Vol. 13, No. 3 (2020)

在有序结构上刻画 βP的逻辑

王克诩 赵希顺

摘 要

我们在膨胀不动点逻辑 IFP的基础上，加入一种带有（多重）对数上界的新
二阶量词，并且证明了，在有序结构上我们的新逻辑 ∃logω IFP刻画受限非确定性
复杂类 βP。为了研究该逻辑的表达力，我们也设计了一种新的 Ehrenfeucht-Fraïssé
博弈，并说明在最一般的情况下，也就是在全体有穷模型之上，该逻辑对 βP的刻
画并不成立。

王克诩 中山大学逻辑与认知研究所

中山大学哲学系

wangkexuphy@163.com

赵希顺 中山大学逻辑与认知研究所

中山大学哲学系

hsszxs@mail.sysu.edu.cn

	Introduction
	Preliminaries
	Encoding structures
	Logic characterization of complexity

	Capturing Results
	Logarithmic-bounded quantifiers
	Main theorem

	The Expressive Power
	Furthur Discussion

