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Logics for Modally Real and
Modally Nonreal Events

Xian Zhao Tianqun Pan

Abstract. An event is modally real in one world if it occurs either in the world or in one of
its possible worlds; accordingly, an event is modally nonreal in one world if it does not occur
in the world or in any one of its possible worlds. We call a place where all modally nonreal
events of a world occur or exist as amodally black hole. This paper presents logical systems for
modally real events and modally nonreal events, proves their soundness, and establishes their
completeness.

1 Introduction

Modal realists, extreme or moderate, admit the reality of numerous worlds. For
example, D. Lewis said, “Possible worlds are what they are, and not some other thing.
If asked what sort of thing they are, I cannot give the kind of reply my questioner
probably expects: that is, a proposal to reduce possible worlds to something else. I
can only ask him to admit that he knows what sort of thing our actual world is, and
then explain that possible worlds are more things of that sort, differing not in kind
but only in what goes on at them.” ([5], p. 85) Because any possible world constitutes
things, admitting that possible worlds are just as real as our world means admitting
that things in any possible world are just as real as things in our world. Hence, a thing
or an event is regarded as modal reality if it exists or occurs either in our world or in
one of the possible worlds of our world, and a thing or an event is regarded as modal
nonreality if it does not exist or occur either in our world or in any of the possible
worlds of our world. Thus, we have two notions: modal reality and modal nonreality.

Because a modally nonreal thing does not exist in the world or any of its possible
worlds, where does it inhabit? We suppose there is such a place where all modally
nonreal events of the world inhabit, and we call the place a modally black hole. What
we focus on here is not questions related to the modally black hole, such as whether
the modally black hole exists, but the logical structures of modally real events and
modally nonreal events.
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2 Proof Systems for Modally Real and Modally Nonreal Events

The definitions of modal reality and modal nonreality are as follows: an event
is modally real in our world if it occurs either in our world or in one of its possible
worlds, and an event is modally nonreal in our world if it does not occur either in our
world or in any of its possible worlds. We use p to represent an event, R for a modal
reality operator, and B for a modal nonreality operator. Rp and Bp represent that “p
is modally real” and “p is modally nonreal” respectively. The formal language L is
defined as follows:

φ ::= p | ¬φ | (φ ∧ φ) | Rφ | Bφ

The language in L is interpreted by the standard possible world semantics.

Definition 1 (Frames, Models, and Satisfaction). A Kripke frame F = ⟨W,R⟩ is
a tuple where W is a set of possible worlds and R ⊆ W ×W is an accessibility
relation. A Kripke model M = (F, π) is a tuple where F is a Kripke frame and
π : P → 2w is an interpretation for a set of propositional variables P . A formula φ
is true in modelM in the world w if

M,w |= p iff w ∈ π(p),
M,w ⊨ ¬φ iff it is not the case thatM,w ⊨ φ,
M,w |= φ ∧ ψ iffM,w |= φ andM,w ⊨ ψ,
M,w ⊨ Rφ iffM,w ⊨ φ, or for some w′ with Rww′,M,w′ ⊨ φ, and
M,w ⊨ Bφ iffM,w ⊨ ¬φ, and for any w′ with Rww′,M,w′ ⊨ ¬φ.

Semantically, the relations between the modal reality operator R or the modal
nonreality operator B and the necessity operator or the possibility operator are as
follows:

Rp ≡ (p ∨3p) and Bp ≡ (¬p ∧2¬p)
The relation between R and B is as follows:

Rp↔ ¬Bp
Because the modally real operatorR and the modally nonreal operatorB are interde­
finable (i.e., Rp↔ ¬Bp ), we use B as the primitive operator, and R can be defined
by B.

Definition 2. SystemB0 comprises the following axioms and transformation rules:
Ax0 all tautologies of propositional logic.
Ax1 ⊢B0 Bφ→ ¬φ
Ax2 ⊢B0 B(φ ∧ ψ) → ¬B¬φ ∨Bψ
Ax3 ⊢B0 Bφ ∧Bψ → B(φ ∨ ψ)
MP ⊢B0 φ , ⊢B0 φ→ ψ ⇒ ⊢B0 ψ

RE ⊢B0 φ↔ ψ ⇒ Bφ↔ Bψ

RC ⊢B0 φ ⇒⊢B0 B¬φ
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Note that B0 is the propositional calculus plus the axioms Ax1, Ax2, and Ax3
and the transformation rules RE and RC.

Theorem 1. B0 is sound w.r.t. arbitrary frames.

Proof. We only demonstrate that Ax1, Ax2, Ax3, RE and RC are valid with respect
to arbitrary frames.

Suppose thatM is a model that is based on an arbitrary frame and w is a world
inM .

For Ax1, suppose that M,w ⊭ Bφ → ¬φ. Consequently, M,w ⊨ ¬(Bφ →
¬φ). According to Ax0,M,w ⊨ Bφ∧φ. Hence, (a)M,w ⊨ Bφ and (b)M,w ⊨ φ.
From (a), according to the definition of Bφ in Definition 1, M,w ⊨ ¬φ, which
contradicts (b).

For Ax2, suppose thatM,w ⊭ B(φ ∧ ψ) → ¬B¬φ ∨ Bψ. Therefore,M,w ⊨
B(φ∧ ψ)∧B¬φ∧¬Bψ. Hence, (a)M,w ⊨ B(φ∧ψ)∧B¬φ and (b)M,w ⊨ ¬Bψ.
Hence, from (a),M,w ⊨ ¬(φ∧ψ) andM,w ⊨ φ, and for any world w′ with Rww′,
M,w′ ⊨ ¬ (φ ∧ ψ) andM,w′ ⊨ φ. Then, M,w ⊨ ¬ψ, and for any world w′ with
Rww′,M,w′ ⊨ ¬ψ. Hence, we haveM,w ⊨ Bψ, which contradicts (b).

For Ax3, suppose thatM,w ⊭ Bφ∧Bψ → B(φ∨ψ). Then,M,w ⊨ Bφ∧Bψ∧
¬B(φ∨ψ). Hence,M,w ⊨ Bφ∧Bψ andM,w ⊨ ¬B(φ∨ψ). Consequently, from
M,w ⊨ Bφ ∧ Bψ,M,w ⊨ ¬φ andM,w ⊨ ¬ψ, and for any world w′ with Rww′,
M,w′ ⊨ ¬φ andM,w′ ⊨ ¬ψ. Hence,M,w ⊨ ¬(φ ∧ ψ), and for any world w′ with
Rww′, M,w′ ⊨ ¬(φ ∧ ψ). Thus, we have M,w ⊨ B(φ ∨ ψ), which contradicts
M,w ⊨ ¬B(φ ∨ ψ).

For RE, suppose that ⊨ φ ↔ ψ. Consequently, M,w ⊨ φ ↔ ψ, and for any
w′ such that Rww′, M,w′ ⊨ φ ↔ ψ. (a) Assume that M,w ⊨ Bφ. According
to the definition of B,M,w ⊨ ¬φ, and for any w′ such that Rww′,M,w′ ⊨ ¬φ.
Hence, according toM,w ⊨ φ ↔ ψ andM,w′ ⊨ φ ↔ ψ, we haveM,w ⊨ ¬ψ and
M,w′ ⊨ ¬ψ. Therefore, according to the definition of B,M,w |= Bψ is obtained.
(b) Assume thatM,w ⊨ Bψ. The same reason as that in (a) ensures thatM,w ⊨ Bφ.
Thus, by (a) and (b), we haveM,w ⊨ Bφ↔ Bψ.

For RC, suppose that ⊨ φ. Then, M,w ⊨ φ, and for any w′ such that Rww′,
M,w′ ⊨ φ. Hence, by Definition 1,M,w ⊨ ¬¬φ, and for any w′ such that Rww′,
M,w′ ⊨ ¬¬φ. Thus, by the definition of Bφ,M,w ⊨ B¬φ. □

To obtain a new and useful derived rule, suppose that ⊢B0 φ → ψ. Conse­
quently, by RC, ⊢B0 B¬(φ→ ψ). Because ¬(φ→ ψ) is equivalent to ¬ψ ∧ φ, we,
by RE and MP, obtain ⊢B0 B(¬ψ ∧φ). Applying Ax2 to ⊢B0 B(¬ψ ∧φ) and using
MP, we obtain ⊢B0 ¬ Bψ ∨Bφ. Thus, we follow the derived rule:

RC1 ⊢B0 φ→ ψ, ⇒⊢B0 Bψ → Bφ.

Theorem 2. The following formulae are provable in system B0 :
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1. ⊢B0 B(φ ∨ ψ) → B(φ ∧ ψ)
2. ⊢B0 Bφ→ ¬B¬φ
3. ⊢B0 B(φ ∨ ψ) ↔ Bφ ∧Bψ
4. ⊢B0 Bφ→ B(φ ∧ ψ)

To extend B0, a weak relation Rw over possible worlds must be defined by the
relation R and the identical relation R0. Rwww′ is defined as Rww′ or R0ww′.
Formally, Rwww′ ≡def. Rww

′ ∨R0ww′.

Definition 3 (Weak Frames).

1. A frame ⟨W,R⟩ is weakly transitive if for any w,w′, w′′ ∈ W , if Rwww′ and
Rww′w′′, then Rwww′′.

2. A frame ⟨W,R⟩ is semiweakly Euclidean if for any w,w′, w′′ ∈W , if Rwww′

and Rww′′, then Rww′w′′.
3. A frame ⟨W,R⟩ is weakly Euclidean if for any w,w′, w′′ ∈W , if Rwww′ and
RWww′′, then Rww′w′′.

4. A frame ⟨W,R⟩ is weakly dead if for any w,w′ ∈W , if Rwww′, then R0ww′.

Four notes:
(a) A frame that is transitive (semiweakly Euclidean and weakly Euclidean) must

be weakly transitive (semiweakly Euclidean and weakly Euclidean), and not vice
versa.

(b) A semiweakly Euclidean frame must be weakly Euclidean, and not vice
versa.

(c) In a weakly Euclidean frame for any w,w′ ∈ W , if Rww′, we, by R0ww,
haveRw′w. It means that a weakly Euclidean frame must be symmetric, and not vice
versa.

(d) A weakly symmetric frame is identical to a symmetric frame.
We do not present weakly reflexive frames in Definition 3. In fact, if we define

a weakly reflexive frame in which Rwww holds for any w ∈ W , such a frame is
arbitrary, and vice versa. This means that a frame is weakly reflexive if and only if
it is arbitrary. We can say that B0 is sound with respect to weakly reflexive frames.
This indicates that our language L is weaker and a model based on reflexive frames
is indistinguishable.

Theorem 3.

1. The formula Bφ→ B¬Bφ is valid w.r.t. weakly transitive frames.
2. φ→ BBφ is valid w.r.t. symmetric frames.
3. ¬φ ∧ ¬Bφ→ BBφ is valid w.r.t. semiweakly Euclidean frames.
4. ¬Bφ→ BBφ is valid w.r.t. weakly Euclidean frames.
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Proof. For 1. Let M be an arbitrary model that is based on a weakly transitive
frame and w be a world inM . Suppose thatM,w ⊭ Bφ → B¬Bφ. Consequently,
(a)M,w ⊨ Bφ and (b)M,w ⊨ ¬B¬Bφ. From (b), together with (a), we have for
some w∗ with Rww∗, M,w∗ ⊨ ¬Bφ. Hence, M,w∗ ⊨ ¬Bφ and M,w∗ ⊨ ¬φ.
Therefore, for somew∗∗ withRw∗w∗∗,M,w∗∗ ⊨ φ. BecauseR is weakly transitive,
Rww∗∗ or R0ww∗∗. However, from (a), we haveM,w ⊨ ¬φ, and for any w′ with
Rww′, M,w′ ⊨ ¬φ. This means that we have M , w∗∗ ⊨ ¬φ and M,w ⊨ ¬φ. A
contradiction arises.

For 2. LetM be an arbitrarymodel that is based on a symmetric frame andw be a
world inM , and suppose thatM,w ⊨ φ. Then,M,w ⊭ Bφ, andM,w′ ⊭ Bφ for any
world w′ inM that “sees” w. BecauseM is symmetrical, the fact thatM,w′ ⊭ Bφ
andM,w ⊭ Bφ causes BBφ to be false in w. Hence, we haveM,w ⊨ BBφ.

For 3. Let M be an arbitrary model that is based on a semiweakly Euclidean
frame and w be a world inM , and suppose thatM,w ⊨ ¬φ ∧ ¬Bφ. Consequently,
M,w ⊨ ¬φ, and M,w ⊨ ¬Bφ from which either M,w ⊨ φ or there must be a
world w∗ in M such that Rww∗ and M,w∗ ⊨ φ. Because M,w ⊨ ¬φ, we have
M,w∗ ⊨ φ. To demonstrate thatM,w ⊨ BBφ, because we knowM,w ⊨ ¬Bφ, we
must demonstrate that for any world w′ inM such that Rww′, M,w′ ⊨ ¬Bφ. It is
the case because for any w′ inM such that Rww′, we have Rw′w∗ or R0w′w∗, and
w∗ is a world in which φ is true.

For 4. LetM be an arbitrary model that is based on a weakly Euclidean frame
and w be a world inM , and suppose thatM,w ⊨ ¬Bφ. There exist two cases: (a)
M,w ⊨ φ and (b) for some w∗ with Rww∗,M,w∗ ⊨ φ.

Case (a). Because a Euclidean frame is symmetric, for any w′ with Rww′, we
have that Rw′w, andM,w′ ⊨ ¬Bφ. Thus,M,w ⊨ BBφ.

Case (b). BecauseM is weakly Euclidean, for anyw′ such thatRwww′, Rww′w∗.
ByM,w∗ ⊨ φ,M,w′ ⊨ ¬Bφ. Therefore, we haveM,w ⊨ BBφ. □

Definition 4. We have the extensions of B0:

1. B1 = B0 ⊕Bφ→ B¬Bφ.
2. B2 = B0 ⊕ φ→ BBφ.
3. B3 = B0 ⊕ ¬φ ∧ ¬Bφ→ BBφ.
4. B4 = B0 ⊕ ¬Bφ→ BBφ.

By Theorem 2 and 3, we obtain the following:

Theorem 4 (Soundness).

1. B1 is sound w.r.t. weakly transitive frames.
2. B2 is sound w.r.t. symmetric frames.
3. B3 is sound w.r.t. semiweakly Euclidean frames.
4. B4 is sound w.r.t. weakly Euclidean frames.
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Note that because φ → BBφ and ¬φ ∧ ¬Bφ → BBφ are provable in B4, B4

is stronger than both B2 and B3.
There exists a trivial axiom φ→ B¬φ to the systems. If φ→ B¬φ is added to

B0 or other systems, the resulting system will collapse into the propositional calculus.
This can be demonstrated as follows. Because of Ax1 in Definition 1, we have φ ↔
B¬φ, by which the operator B in all formulae will be replaced. If a weakly dead
end frame is defined as for any w ∈ W , if Rww′, then R0ww′; the trivial axiom
φ→ B¬φ is valid in weakly dead end frames.1

By Rφ↔ φ and φ→ B¬φ,Rφ→ φ. Philosophically, if our world is the only
world, Rφ→ φmeans that the modally real thing must be actual, and not vice versa.
However, if φ is actual, its negation is modally nonreal.

3 Completeness

The modal logics we present in the previous section are nonstandard. Follow­
ing logicians who have dealt with other nonstandard modal logics such as logics of
contingency and noncontingency ([2, 3, 4, 9]) and the ones of essence and accident
([6, 7]), we establish ad hoc canonical models for logics of modal reality and modal
nonreality.

For the purpose of presenting a general result, we use S to stand for B0 or one
of its extensions.

A setΓ of well­formed formulae is maximally consistent with respect to a system
S, if and only if for every formula α, either α ∈ Γ or ¬α ∈ Γ, and there is no finite
collection α1, α2, . . . , αn ∈ Γ such that ⊢S ¬(α1 ∧ α2 ∧ · · · ∧ αn). We simply call
Γ a maximally S­consistent set.

To establish the completeness of the systems, we construct the successor of a
maximally S­consistent set.

Definition 5. Let Γ be a maximally S­consistent set. The successor of Γ, D(Γ), is
defined as D(Γ) = {α | for every α,B¬α ∈ Γ}.

Lemma 1. For a maximally S­consistent set Γ of formulae, the successor D(Γ) is
closed under conjunction.

Proof. Let Γ be a maximally S­consistent set and D(Γ) be the successor of Γ.
Suppose that α ∈ D(Γ) and β ∈ D(Γ). According to the construction of

D(Γ), B¬α ∈ Γ and B¬β ∈ Γ. By Ax3, B¬α ∧ B¬β → B(¬α ∨ ¬β), and
by the maximality of Γ, B(¬α ∨ ¬β) ∈ Γ. By RE, B(¬α ∨ ¬β) ↔ B¬(α ∧ β).
Hence, B¬(α ∧ β) ∈ Γ. Thus, (α ∧ β) ∈ D(Γ), which is required. □

1LetM be an arbitrary model based on a weakly dead end frame andw be a world inM . Assume that
M,w ⊨ φ. Becausew is only a possibly accessible world ofw andM,w ⊨ φ, we obtainM,w ⊨ B¬φ.
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Lemma 2. Let Γ be a maximally S­consistent set of formulae. Assume that for some
β,¬Bβ ∈ Γ. Then, {β} ∪D(Γ) is S­consistent.

Proof. Suppose that ¬Bβ ∈ Γ but {β} ∪D(Γ) is not S­consistent. Consequently,
there must be ψ1, ψ2, . . . , ψn ∈ D(Γ) such that

⊢S ¬(ψ1 ∧ ψ2 ∧ · · · ∧ ψn ∧ β). (a)
By Ax0,
⊢S β → ¬(ψ1 ∧ ψ2 ∧ · · · ∧ ψn). (b)
By RC1, from (b),
⊢S B¬(ψ1 ∧ ψ2 ∧ · · · ∧ ψn) → Bβ. (c)
According to ψ1, ψ2, · · · , ψn ∈ D(Γ) and Lemma 1,
ψ1 ∧ ψ2 ∧ · · · ∧ ψn ∈ D(Γ) (d)
By the construction of D(Γ),
B¬(ψ1 ∧ ψ2 ∧ . . . ∧ ψn) ∈ Γ. (e)
Bβ ∈ Γ (f)
(f) means ¬Bβ /∈ Γ, which contradicts the supposition of ¬Bβ ∈ Γ. □

To prove the completeness ofB0 and its extensions, wemust construct the special
canonical model for them.

Definition 6 (Canonical Model). The canonical modelMC = ⟨WC , RC , πC⟩ for
the logic S is defined as follows:

1. WC is the set of all maximally S­consistent sets of formulae;
2. RC ⊆WCXWC is defined by RCΓΓ1 or R0ΓΓ1 iff D(Γ) ⊆ Γ1; and
3. p ∈ πC(Γ) iff p ∈ Γ.

The canonical model for S is ad hoc. However, according to Definition 6, we
have D(Γ) ⊆ Γ1 by RCΓΓ1; we cannot specify RCΓΓ1 by D(Γ) ⊆ Γ1, which is
different from normal modal logics.

Lemma 3 (Truth Lemma). LetMC =
(
WC , RC , πC

)
be the canonical model for S.

For all formulae φ and all maximally S­consistent sets Γ s,MC ,Γ ⊨S φ ⇔ φ ∈ Γ.

Proof. The theorem can be proven by induction on the structure of wff. Here, we
prove the case of Bφ only:

MC ,Γ ⊨S Bφ ⇔ Bφ ∈ Γ.

We assume that the theorem holds for φ and for all Γ: MC ,Γ ⊨S φ ⇔ φ ∈
Γ. Suppose that Bφ ∈ Γ. By the definition of D(Γ), ¬φ ∈ D(Γ). According to
Definition 6, we have that ifRCΓΓ1 orR0ΓΓ1, ¬φ ∈ Γ1. This means that ifRCΓΓ1,
¬φ ∈ Γ1 and ¬φ ∈ Γ. Hence, according to the assumption in the beginning, we have
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(a) if RCΓΓ1,MC ,Γ1 ⊨ ¬φ and (b)MC ,Γ ⊨S ¬φ. According to the definition of
the truth value of Bφ, (a) and (b) yieldMC ,Γ |= Bφ.

Suppose that Bφ /∈ Γ. Subsequently, because Γ is maximal and S­consistent,
¬Bφ ∈ Γ. According to Lemma 2, {φ} ∪D(Γ) is S­consistent. Thus, there is some
Γ1 such that (a) D(Γ) ⊆ Γ1 and (b) φ ∈ Γ1. According to the definition of RC , (a)
yields RCΓΓ1 or R0ΓΓ1, but according to the assumption, (b) yields MC ,Γ1 ⊨ φ.
Hence, by the definition of the truth value of Bφ,MC ,Γ ⊭S Bφ. □

Theorem 5 (Completeness). Given the system S, for any formula φ, we have

⊢S φ ⇔⊨S φ.

Proof. Soundness (i.e., ⊢S φ ⇒ ⊨S φ ) is illustrated in Theorem 1 and Theorem 4.
For completeness, we suppose that ⊬S φ. Then, ¬φ is maximally S­consistent.

Therefore, by the Lindenbaum theorem, there is some maximally S­consistent set Γ
inWC such that ¬φ ∈ Γ. By Lemma 3,MC ,Γ ⊨S ¬φ. Thus, ⊭S φ. □

Different systems are complete with respect to different frames. Thus, we have
the following:

Theorem 6.

1. B0 is complete w.r.t. arbitrary frames.
2. B1 is complete w.r.t. weakly transitive frames.
3. B2 is complete w.r.t. symmetric frames.
4. B3 is complete w.r.t. semiweakly Euclidean frames.
5. B4 is complete w.r.t. weakly Euclidean frames.

Note that the definitions of weakly transitive frames, semiweakly Euclidean
frames, and weakly Euclidean frames are described in Definition 3.

Proof. For 1. The axioms and transformation rules of B0 require no information
about its canonical model, which means that B0 is complete with respect to arbitrary
frames.

For 2. We must demonstrate that the canonical model ofB1 is weakly transitive.
Assume that RwΓΓ′ and RwΓ′Γ′′; thus, D(Γ) ⊆ Γ′ and D(Γ′) ⊆ Γ′′. Let α be
an arbitrary element in D(Γ). Hence, B¬α ∈ Γ. According to axiom B¬α →
B¬B¬α,B¬ B¬α ∈ Γ. Therefore, B¬α ∈ D(Γ), and because D(Γ) ⊆ Γ′, it
follows that B¬α ∈ Γ′. Again, we have α ∈ D(Γ′), and because D(Γ′) ⊆ Γ′′, it
follows that α ∈ Γ′′. Because α is arbitrary, we have D(Γ) ⊆ Γ′′, and this means
RΓΓ′′ or R0ΓΓ′′.

For 3. We must demonstrate that the canonical of B2 is symmetric. Assume
that RΓΓ′. Hence, D(Γ) ⊆ Γ′. Let α be an arbitrary element in D(Γ′). Hence,
B¬α ∈ Γ′. Because D(Γ) ⊆ Γ′,¬B¬α /∈ D(Γ). According to the definition of
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D(Γ), it implies that BB¬α /∈ Γ. Then, by axiom ¬α → BB¬α, we have ¬α /∈ Γ,
which means α ∈ Γ. Because α is arbitrary, we have D (Γ′) ⊆ Γ, and this means
RΓ′Γ or R0ΓΓ′′. Thus, RΓ′Γ.

For 4. Assume that RwΓΓ′ and RΓΓ′′. Then, D(Γ) ⊆ Γ′ and D(Γ) ⊆ Γ′′.
Let α be an arbitrary formula that is not in Γ′′ but B¬α ∈ Γ′. By Theorem 2 (4),
B¬α → B(¬ α ∧ ¬β), and RE, we obtain B¬α → B¬(α ∨ β). By B¬α ∈ Γ′,
B¬(α∨β) ∈ Γ′. BecauseΓ is not identical toΓ′′, there must exist some β, β /∈ Γ′′ but
β ∈ Γ. Hence, α∨β /∈ Γ′′. BecauseRΓΓ′′,B¬(α∨β) /∈ Γ by which ¬B¬(α∨β) ∈
Γ. Because of β ∈ Γ, (α∨β) ∈ Γ. Therefore, (α∨β)∧¬B¬(α∨β) ∈ Γ. According
to ¬φ ∧ ¬Bφ → BBφ, BB¬(α ∨ β) ∈ Γ. ¬B¬ (α ∨ β) ∈ Γ′. However, we have
B¬(α ∨ β) ∈ Γ′. A contradiction arises.

For 5. Assume that RwΓΓ′ and RwΓΓ′′. Then, D(Γ) ⊆ Γ′ and D(Γ) ⊆
Γ′′. Let α be an arbitrary formula that is not in Γ′′ but B¬α ∈ Γ′. Then, by
RΓΓ′′, B¬α /∈ Γ. According to axiom ¬B¬α → BB¬α, we have BB¬α ∈ Γ.
Therefore, B¬¬B¬α ∈ Γ, which means that ¬B¬α ∈ D(Γ). Because D(Γ) ⊆ Γ′,
we have ¬B¬α ∈ Γ′, which contradicts B¬α ∈ Γ′. Because α is arbitrary, we have
D(Γ′) ⊆ Γ′′, and this means that RwΓ′Γ′′. □

4 Conclusions and Remarks

This paper presents formal systems for modally real events and modally nonreal
events with respect to different structures or frames of possible worlds, demonstrates
their soundness, and establishes their completeness. Four additional remarks are pre­
sented as follows:

First, formally, compared with normal modal logics, the expressivity of the log­
ics presented in this paper is relatively weak. The logics cannot distinguish reflexive
models. Nevertheless, the logics provide us with all formulae that we want.

Second, we regard an event to be modally real or modally nonreal with respect
to a world in a model. Some events that are modally real (or nonreal) with respect to
a world in a model could be modally nonreal (or real) with respect to other world(s)
in the model. We, in the Introduction section, designate a place where all modally
nonreal events of a world occur as a modally black hole. The modally black hole of a
world, here, is not a possible world but a place where all modal nonreal events of the
world are “stored”. It can be seen that given a model, each world has only a modally
black hole, and the number of modally black holes in a model is equivalent to the
number of the worlds of the model.

Third, although our world consists of infinite events, there exist also infinite
events that do not occur in our world. Hence, if possible worlds of our world are
not infinite, there exist infinite events that do not exist in our world or in its possible
worlds; alternatively, even if possible worlds of our world are infinite, any contradic­
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tion does not exist in any worlds. Consequently, our world has its modally black hole.
Fourth, as we know, the term “black hole” in physics refers to a special space­

time region that has sufficiently compact mass and allows nothing to escape from the
inside. We cannot observe any event in a physically black hole. How about an event
in the modally black hole of our world? If the conceivable is possible and exists in
possible worlds ([1, 8]), any event in the modally black hole of our world is inconceiv­
able, even unimagined. For instance, we can describe a contradiction, but we cannot
conceive a contradictory event. Nevertheless, events in the modally black hole have
their own logical structure, as revealed by the aforementioned logics.
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模态实在与模态非实在事件的逻辑

赵贤 潘天群

摘 要

一个事件在一个世界中是模态实在的，如果它发生在这个世界或该世界的一

个可能世界中；如果一个事件没有发生在一个世界或其任何一个可能世界中，则

它在这个世界中是模态非实在的。我们称一个世界中所有模态非实在事件发生或

存在的地方为模态黑洞。本文提出了模态实在事件和模态非实在事件的逻辑系统，

并证明了系统的可靠性和完全性。

赵贤 河北大学哲学系

hbuzhaoxian@163.com
潘天群 南京大学哲学系

tqpan@126.com


	Introduction
	Proof Systems for Modally Real and Modally Nonreal Events
	Completeness
	Conclusions and Remarks

