
Studies in Logic, Vol. 15, No. 6 (2022): 66–92
PII: 1674­3202(2022)­06­0066­27

Algorithmic Correspondence Theory for Sabotage
Modal Logic*

Zhiguang Zhao

Abstract. Sabotage modal logic (SML) is a kind of dynamic logic. It extends static modal
logic with a dynamic modality which is interpreted as “after deleting an arrow in the frame,
the formula is true”. In the present paper, we are aiming at solving an open problem stated in
Aucher, van Benthem and Grossi (2018), namely giving a Sahlqvist­type correspondence the­
orem (Sahlqvist 1975) for sabotage modal logic. In this paper, we define sabotage Sahlqvist
formulas and give an algorithm ALBASML to compute the first­order correspondents of sabo­
tage Sahlqvist formulas. We give some remarks and future directions at the end of the paper.

1 Introduction

Sabotagemodal logic (SML, [6]) belongs to the class of logics collectively called
dynamic logics. It extends static modal logic with a dynamic modality ♦ such that
♦φ is interpreted as “after deleting an arrow in the frame, φ is true”. There are sev­
eral existing works on sabotage modal logic. In [5], a bisimulation characterization
theorem as well as a tableau system were given for sabotage modal logic, [13] proved
the undecidability of the satisfiability problem and gave the complexity of the model­
checking problem, and [14] gave the complexity of solving sabotage game. Several
similar formalisms are also investigated, such as graph modifiers logic ([4]), swap
logic ([1]) and arrow update logic ([11]), modal logic of definable link deletion ([12]),
modal logic of stepwise removal ([17]). These logics are collectively called relation
changing modal logics.([2, 3]) In the present paper, we are aiming at solving an open
problem stated in [5], namely giving a Sahlqvist­type correspondence theorem ([16])
for sabotage modal logic. We define the Sahlqvist formulas in the sabotage modal
language and give the sabotage counterpart of the algorithm ALBASML (Ackermann
Lemma Based Algorithm), which is sound over Kripke frames and is successful on
sabotage Sahlqvist formulas, to show that every Sahlqvist formula in the sabotage
modal language has a first­order correspondent.

Received 2021­12­03 Revision Received 2022­03­08
Zhiguang Zhao School of Mathematics and Statistics, Taishan University

zhaozhiguang23@gmail.com
*The research of the author is supported by Taishan University Starting Grant “Studies on Algebraic

Sahlqvist Theory”, the Taishan Young Scholars Program of the Government of Shandong Province,
China (tsqn201909151) and the Support Plan on Science and Technology for Youth Innovation of Uni­
versities in Shandong Province (2021KJ086).

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 67

The structure of the paper is as follows: in Section 2, we give a brief sketch on
the preliminaries of sabotage modal logic, including its syntax, semantics as well as
the standard translation. In Section 3–8 we define sabotage Sahlqvist formulas and
the algorithm ALBASML, show its soundness over Kripke frames and its success on
sabotage Sahlqvist inequalities. In Section 9 we give some further directions.

2 Preliminaries on Sabotage Modal Logic

In this section, we collect some preliminaries on sabotage modal logic. For fur­
ther details, see [5].

Given a set Prop of propositional variables, the set of sabotage modal formulas
is recursively defined as follows:

φ ::= ⊥ | ⊤ | p | ¬φ | (φ ∧ φ) | ♢φ | ♦φ

where p ∈ Prop, ♢ is the alethic connective of ordinary modal logic and ♦ is the
sabotage connective of sabotage modal logic. We will follow the standard rules for
omission of the parentheses. ∨,→,↔,□,■ can be defined in the standard way. We
call a formula static if it does not contain ♦ or ■. An occurence of p is said to be
positive (resp. negative) in φ if p is under the scope of an even (resp. odd) number
of negations in the original sabotage modal language. A formula φ is positive (resp.
negative) if all occurences of propositional variables inφ are positive (resp. negative).

For the semantics of sabotage modal logic, we use Kripke frames F = (W,R)

and Kripke modelsM = (F, V) where V : Prop → P(W). The satisfaction relation
is defined as follows:

(W,R, V), w ⊮ ⊥ : always;
(W,R, V), w ⊩ ⊤ : always;
(W,R, V), w ⊩ p iff w ∈ V (p);
(W,R, V), w ⊩ ¬φ iff (W,R, V), w ⊮ φ;
(W,R, V), w ⊩ φ ∧ ψ iff (W,R, V), w ⊩ φ and (W,R, V), w ⊩ ψ;
(W,R, V), w ⊩ ♢φ iff there exists a v ∈W ,

such that (w, v) ∈ R and (W,R, V), v ⊩ φ;
(W,R, V), w ⊩ ♦φ iff there exists (w0, w1) ∈ R,

such that (W,R \ {(w0, w1)}, V), w ⊩ φ.

Intuitively, ♦φ is true at w iff there is an edge (w0, w1) of R such that after
deleting this edge from R, the formula φ is still true at w. It is easy to see that the
semantic clause for ■ is defined as follows:

(W,R, V), w ⊩ ■φ iff for all edges (w0, w1) ∈ R, (W,R \ {(w0, w1)}, V), w ⊩ φ.

68 Studies in Logic, Vol. 15, No. 6 (2022)

The standard translation of sabotage modal language into first­order logic is
given as follows (notice that we need to record the edges already deleted from R

so that we know what edges could still be deleted):

Definition 1 ([5, Def. 1]). Let E be a set of pairs (y, z) of variables standing for
edges and let x be a designated variable. The translation STE

x is recursively defined
as follows:

• STE
x (p) := Px;

• STE
x (⊥) := x ̸= x;

• STE
x (¬φ) := ¬STE

x (φ);
• STE

x (φ ∧ ψ) := STE
x (φ) ∧ STE

x (ψ);
• STE

x (♢φ) := ∃y(Rxy ∧ (
∧

(v,w)∈E
¬(x = v ∧ y = w)) ∧ STE

y (φ));

• STE
x (♦φ) := ∃y∃z(Ryz ∧ (

∧
(v,w)∈E

¬(y = v ∧ z = w)) ∧ STE∪{(y,z)}
x (φ)).

It is proved in [5, Thm. 1] that this translation is correct:

Theorem 1. For any pointed model (M, w) and sabotage modal formula φ,

(M, w) ⊩ φ iff M ⊨ ST∅
x (φ)[w].

3 Algorithmic Correspondence for Sabotage Modal Logic: A Sketch

We will develop the correspondence algorithm ALBASML for sabotage modal
logic, in the style of [8, 9]. The basic idea is to use an algorithm ALBASML to trans­
form the modal formula φ(p⃗) into an equivalent set of pure quasi­(universally quanti­
fied) inequalities which does not contain occurrences of propositional variables, and
therefore can be translated into the first­order correspondence language via the stan­
dard translation of the expanded language of sabotage modal logic (which will be
defined on Section 4).

The key ingredients of the algorithmic correspondence proof can be listed as
follows:

• An expanded sabotage modal language as the syntax of the algorithm, as well
as their interpretations in the relational semantics;

• An algorithm ALBA which transforms a given sabotage modal formula φ(p⃗)
into equivalent pure quasi­(universally quantified) inequalities Pure(φ(p⃗));

• A soundness proof of the algorithm;
• A syntactically identified class of formulas onwhich the algorithm is successful;
• A first­order correspondence language and first­order translation which trans­
form pure quasi­(universally quantified) inequalities into their equivalent first­
order correspondents.

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 69

In the remainder of the paper, we will define an expanded sabotage modal lan­
guage which the algorithm will manipulate (Section 4.1), define the first­order cor­
respondence language of the expanded sabotage modal language and the standard
translation (Section 4.2). We report on the definition of Sahlqvist inequalities (Sec­
tion 5), define a modified version of the algorithm ALBASML (Section 6), and show
its soundness (Section 7) and success on Sahlqvist inequalities (Section 8).

4 The Expanded Language in the Algorithm

4.1 The expanded sabotage modal language L+
■

In the present subsection, we give the definition of the expanded sabotage modal
language L+

■ and its standard translations, which will be used in the execution of the
algorithm:

φ ::= p | ⊥ | ⊤ | i | ¬φ | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | □φ | ♢φ | ■φ | ♦φ |

□Sφ | ♢Sφ | (□S)−1φ | (♢S)−1φ | Aφ | Eφ | ∀iφ | ∃iφ

S ::= ∅ | S ∪ {(ik0, ik1)}

where i is called nominal as in hybrid logic ([7, Ch. 14]), ik0, ik1 are fresh nominals not
in S. We use the notation φ(p⃗) to indicate that the propositional variables occurring
in φ are all in p⃗. We call a formula pure if it does not contain propositional variables.

When interpreting the formulas in the expanded language, we assume that we
start from a given pointed model ((W,R0, V), w), and use S to record the edges
deleted fromR0. □S , ♢S correspond to the relationR0\{(V (ik0), V (ik1)) | (ik0, ik1)
∈ S} (denoted asR0\S), (□S)−1, (♢S)−1 correspond to the relationR−1

0 \{(V (ik1),
V (ik0)) | (ik0, ik1) ∈ S} (denoted as (R0\S)−1), which intuitively means first delete
the edges in S and then take the inverse relation. Unlabelled □ and ♢ correspond to
the relation R after certain deletions of edges. Therefore, we can say that □S , ♢S ,
(□S)−1, (♢S)−1 are “absolute connectives” whose interpretations just depend on R0

and S, while □ and ♢ are “contextual connectives” whose interpretations depend on
the concrete R after certain steps of deletions. For ■ and ♦, their interpretations
depend on the context. A and E are global box and diamond modalities respectively,
(W,R, V), w ⊩ ∀iφ indicates that for all valuation variant V i

v such that V i
v is the same

as V except that V i
v(i) = {v}, (W,R, V i

v), w ⊩ φ, and (W,R, V), w ⊩ ∃iφ is the
corresponding existential statement.

For the semantics of the expanded sabotage modal language, the valuation is
defined as V : Prop ∪ Nom → P(W) similar to hybrid logic, and for the modal and
dynamic connectives, the additional semantic clauses can be given as follows (notice
that here R is the “actual” accessibility relation in the model M = (W,R, V) after

70 Studies in Logic, Vol. 15, No. 6 (2022)

some (maybe none) edges have been deleted, while R0 is the “starting accessibility”
relationwhen no edge has been deleted yet, andR0\S is the notation forR0\{(V (ik0),
V (ik1)) | (ik0, ik1) ∈ S}):

M, w ⊩ □φ iff for all v s.t. (w, v) ∈ R, (W,R, V), v ⊩ φ

M, w ⊩ ♢φ iff there exists a v s.t. (w, v) ∈ R and (W,R, V), v ⊩ φ

M, w ⊩ ■φ iff for all edges (w0, w1) ∈ R,
(W,R \ {(w0, w1)}, V), w ⊩ φ

M, w ⊩ ♦φ iff there exists (w0, w1) ∈ R s.t.
(W,R \ {(w0, w1)}, V), w ⊩ φ

M, w ⊩ □Sφ iff for all v s.t. (w, v) ∈ (R0 \ S), (W,R, V), v ⊩ φ

M, w ⊩ ♢Sφ iff there exists a v s.t.
(w, v) ∈ (R0 \ S) and (W,R, V), v ⊩ φ

M, w ⊩ (□S)−1φ iff for all v s.t. (v, w) ∈ (R0 \ S), (W,R, V), v ⊩ φ

M, w ⊩ (♢S)−1φ iff there exists a v s.t.
(v, w) ∈ (R0 \ S) and (W,R, V), v ⊩ φ

M, w ⊩ Aφ iff for all v ∈W , (W,R, V), v ⊩ φ

M, w ⊩ Eφ iff there exists a v ∈W s.t. (W,R, V), v ⊩ φ

M, w ⊩ ∀iφ iff for all v ∈W , (W,R, V i
v), w ⊩ φ

M, w ⊩ ∃iφ iff there exists a v ∈W s.t. (W,R, V i
v), w ⊩ φ.

Here we do not require that each pair of nominals in S denote different edges in
R0. For the convenience of the algorithm, we introduce the following definitions:

Definition 2.

• An inequality is of the form φ ≤S
S′ ψ, where φ and ψ are formulas, S and S′

record the context of φ and ψ respectively, i.e. which edges have already been
deleted. Its interpretation is given as follows:

(W,R0, V) ⊩ φ ≤S
S′ ψ

iff for all w ∈W, if (W,R0\S, V), w ⊩ φ, then (W,R0\S′, V), w ⊩ ψ.

We use φ ≤ ψ to denote φ ≤∅
∅ ψ.

• A quasi­inequality is of the form φ1 ≤S1

S′
1
ψ1 & · · · & φn ≤Sn

S′
n
ψn ⇒ φ ≤S

S′

ψ. Its interpretation is given as follows:

(W,R0, V) ⊩ φ1 ≤S1

S′
1
ψ1 & · · · & φn ≤Sn

S′
n
ψn ⇒ φ ≤S

S′ ψ

iff (W,R0, V) ⊩ φ ≤S
S′ ψ holds,

whenever (W,R0, V) ⊩ φi ≤Si

S′
i
ψi for all 1 ≤ i ≤ n.

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 71

• A Mega­inequality is defined inductively as follows:

Mega ::= Ineq | Mega&Mega | ∀i∀j(i ≤S
S ♢Sj ⇒ Mega)

where Ineq is an inequality, & is the meta­conjunction and ⇒ is the meta­
implication. Its interpretation is given as follows:

– (W,R0, V) ⊩ Ineq iff the inequality holds as defined in the definition
above;

– (W,R0, V) ⊩ Mega1&Mega2 iff (W,R0, V) ⊩ Mega1 and (W,R0, V)

⊩ Mega2;
– (W,R0, V) ⊩ ∀i∀j(i ≤S

S ♢Sj ⇒ Mega) iff for all w, v, if (w, v) ∈
(R0\S) then (W,R0, V

i,j
w,v) ⊩ Mega, where V i,j

w,v is the same as V except
that V i,j

w,v(i) = {w}, V i,j
w,v(j) = {v}.

• A universally quantified inequality is defined as ∀i1 · · · ∀in(φ ≤S
S′ ψ), and its

interpretation is given as follows:

(W,R0, V) ⊩ ∀i1 · · · ∀in(φ ≤S
S′ ψ)

iff for all w1, . . . , wn ∈W , (W,R0, V
i1,...,in
w1,...,wn) ⊩ φ ≤S

S′ ψ,
where V i1,...,in

w1,...,wn is the same as V except that V i1,...,in
w1,...,wn(ii) = {wi},

i = 1, . . . , n.
• A quasi­universally quantified inequality is defined asUQIneq1& · · ·&UQIn­

eqn ⇒ UQIneq where UQIneq,UQIneqi are universally quantified inequali­
ties. Its interpretation is given as follows:

(W,R0, V) ⊩ UQIneq1& · · ·&UQIneqn ⇒ UQIneq

iff (W,R0, V) ⊩ UQIneq holds,
whenever (W,R0, V) ⊩ UQIneqi for all 1 ≤ i ≤ n.

It is easy to see that (W,R0, V) ⊩ φ ≤∅
∅ ψ iff (W,R0, V) ⊩ φ → ψ. We will

find it easy to work with inequalities φ ≤ ψ in place of implicative formulas φ→ ψ

in Section 5.
For inequalities, we have the following properties, which will be useful in the

soundness proofs:

Proposition 2.

• (W,R0, V) ⊩ i ≤S
S ♢Sj iff (V (i), V (j)) ∈ (R0 \ S);

• (W,R0, V) ⊩ i ≤S
S′ α iff (W, (R0 \ S′), V), V (i) ⊩ α, where α is a formula

in the expanded sabotage modal language;
• (W,R0, V) ⊩ A(i → ♢Sj) iff (V (i), V (j)) ∈ (R0 \ S).

72 Studies in Logic, Vol. 15, No. 6 (2022)

4.2 The first­order correspondence language and the standard translation

In the first­order correspondence language, we have a binary relation symbol R
corresponding to the binary relation, a set of constant symbols i corresponding to each
nominal i, a set of unary predicate symbols P corresponding to each propositional
variable p.

The standard translation of the expanded sabotage modal language is defined
as follows:

Definition 3. LetE be a finite set of pairs (y, z) of variables standing for edges and
let x be a designated variable. The translation STE

x is recursively defined as follows:

• STE
x (⊥) := x ̸= x;

• STE
x (⊤) := x = x;

• STE
x (i) := x = i;

• STE
x (p) := Px;

• STE
x (¬φ) := ¬STE

x (φ);
• STE

x (φ ∧ ψ) := STE
x (φ) ∧ STE

x (ψ);
• STE

x (φ ∨ ψ) := STE
x (φ) ∨ STE

x (ψ);
• STE

x (φ→ ψ) := STE
x (φ) → STE

x (ψ);
• STE

x (□φ) := ∀y(Rxy ∧ (
∧

(v,w)∈E
¬(x = v ∧ y = w)) → STE

y (φ));

• STE
x (♢φ) := ∃y(Rxy ∧ (

∧
(v,w)∈E

¬(x = v ∧ y = w)) ∧ STE
y (φ));

• STE
x (■φ) := ∀y∀z(Ryz ∧ (

∧
(v,w)∈E

¬(y = v ∧ z = w)) → ST
E∪{(y,z)}
x (φ));

• STE
x (♦φ) := ∃y∃z(Ryz ∧ (

∧
(v,w)∈E

¬(y = v ∧ z = w)) ∧ STE∪{(y,z)}
x (φ));

• STE
x (□Sφ) := ∀y(Rxy ∧ (

∧
(ik0,ik1)∈S

¬(x = ik0 ∧ y = ik1)) → STE
y (φ));

• STE
x (♢Sφ) := ∃y(Rxy ∧ (

∧
(ik0,ik1)∈S

¬(x = ik0 ∧ y = ik1)) ∧ STE
y (φ));

• STE
x ((□S)−1φ) := ∀y(Ryx∧ (

∧
(ik0,ik1)∈S

¬(y = ik0∧x = ik1)) → STE
y (φ));

• STE
x ((♢S)−1φ) := ∃y(Ryx ∧ (

∧
(ik0,ik1)∈S

¬(y = ik0 ∧ x = ik1)) ∧ STE
y (φ)).

• STE
x (Aφ) := ∀ySTE

y (φ);
• STE

x (Eφ) := ∃ySTE
y (φ);

• STE
x (∀iφ) := ∀iSTE

x (φ);
• STE

x (∃iφ) := ∃iSTE
x (φ).

It is easy to see that this translation is correct:

Proposition 3. For any pointed model (M, w) and sabotage modal formula φ,

(M, w) ⊩ φ iff M ⊨ ST∅
x (φ)[w].

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 73

For inequalities, quasi­inequalities, mega­inequalities, universally quantified in­
equalities and quasi­universally quantified inequalities, the standard translation is
given in a global way:

Definition 4.

• ST (φ ≤S
S′ ψ) := ∀x(STS

x (φ) → STS′
x (ψ));

• ST (φ1 ≤S1

S′
1
ψ1& · · ·&φn ≤Sn

S′
n
ψn ⇒ φ ≤S

S′ ψ) :=

ST (φ1 ≤S1

S′
1
ψ1) ∧ · · · ∧ ST (φn ≤Sn

S′
n
ψn) → ST (φ ≤S

S′ ψ);
• ST (Mega1 & Mega2) := ST (Mega1) ∧ ST (Mega2);
• ST (∀i∀j(i ≤S

S ♢Sj ⇒ Mega)) :=
∀i∀j(Rij ∧ (

∧
(v,w)∈S

¬(i = v ∧ j = w)) → ST (Mega));

• ST (∀i1 · · · ∀inIneq) := ∀i1 · · · ∀inST (Ineq);
• ST (UQIneq1& · · ·&UQIneqn ⇒ UQIneq) :=

ST (UQIneq1) ∧ · · · ∧ ST (UQIneqn) → ST (UQIneq).

Proposition 4. For any modelM and inequality Ineq, quasi­inequality Quasi, mega­
inequality Mega, universally quantified inequality UQIneq, quasi­universally quan­
tified inequality QUQIneq,

M ⊩ Ineq iff M ⊨ ST (Ineq);

M ⊩ Quasi iff M ⊨ ST (Quasi);

M ⊩ Mega iff M ⊨ ST (Mega);

M ⊩ UQIneq iff M ⊨ ST (UQIneq);

M ⊩ QUQIneq iff M ⊨ ST (QUQIneq).

5 Sahlqvist Inequalities

In the present section, since we will use the algorithmALBASML which is based
on the classsification of nodes in the signed generation trees of sabotage modal for­
mulas, we will use the unified correspondence style definition ([10, 15]) to define
Sahlqvist inequalities. We will collect all the necessary preliminaries on Sahlqvist
formulas/inequalities.

Definition 5 (Order­type of propositional variables, [9, p. 346]). For an n­tuple
(p1, . . . , pn) of propositional variables, an order­type ε of (p1, . . . , pn) is an element
in {1, ∂}n. In the order­type ε, we say that pi has order­type 1 if εi = 1, and denote
ε(pi) = 1 or ε(i) = 1; we say that pi has order­type ∂ if εi = ∂, and denote ε(pi) = ∂

or ε(i) = ∂.

74 Studies in Logic, Vol. 15, No. 6 (2022)

Definition 6 (Signed generation tree, [10, Def. 4]). The positive (resp. negative)
generation tree of any given formula φ is defined by first labelling the root of the
generation tree of φwith+ (resp.−) and then labelling the children nodes as follows:

• Assign the same sign to the children nodes of any node labelled with ∨,∧,□,
♢, ■,♦,□S ,♢S , (□S)−1, (♢S)−1,A,E, ∀i, ∃i;

• Assign the opposite sign to the child node of any node labelled with ¬;
• Assign the opposite sign to the first child node and the same sign to the second
child node of any node labelled with→.

Nodes in signed generation trees are positive (resp. negative) if they are signed +

(resp. −).

Example 1. The positive generation tree of+♦(p∧¬■q) → □q is given in Figure 1.

+ →

−♦

−∧

−p −¬

+■

+q

+□

+q

Figure 1: Positive generation tree for ♦(p ∧ ¬■q) → □q

Signed generation trees will be used in the inequalitiesφ ≤ ψ, where the positive
generation tree +φ and the negative generation tree −ψ will be considered. We will
also say that an inequality φ ≤ ψ is uniform in a variable pi if all occurrences of
pi in +φ and −ψ have the same sign, and that φ ≤ ψ is ε­uniform in an array p⃗ if
φ ≤ ψ is uniform in pi, occurring with the sign indicated by ε (i.e., pi has the sign +
if ε(pi) = 1, and has the sign − if ε(pi) = ∂), for each propositional variable pi in p⃗.

For any given formula φ(p1, . . . , pn), any order­type ε over n, and any 1 ≤
i ≤ n, an ε­critical node in a signed generation tree ∗φ (where ∗ ∈ {+,−}) is a
leaf node +pi when εi = 1 or −pi when εi = ∂. An ε­critical branch in a signed
generation tree is a branch from an ε­critical node. The ε­critical occurrences are
intended to be those which the algorithm ALBASML will solve for. We say that +φ
(resp. −φ) agrees with ε, and write ε(+φ) (resp. ε(−φ)), if every leaf node in the
signed generation tree of +φ (resp. −φ) is ε­critical.

We will also use the notation +ψ ≺ ∗φ (resp. −ψ ≺ ∗φ) to indicate that an
occurence of a subformulaψ inherits the positive (resp. negative) sign from the signed

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 75

Outer Inner
+ ∨ ∧ ♢ ♦ ¬
− ∧ ∨ □ ■ ¬ →

+ ∧ □ ■ ¬
− ∨ ♢ ♦ ¬

Table 1: Outer and Inner nodes.

generation tree ∗φ, where ∗ ∈ {+,−}. We will write ε(γ) ≺ ∗φ (resp. ε∂(γ) ≺
∗φ) to indicate that the signed generation subtree γ, with the sign inherited from ∗φ,
agrees with ε (resp. with ε∂). We say that a propositional variable p is positive (resp.
negative) in φ if +p ≺ +φ (resp. −p ≺ +φ).

Definition 7 ([10, Def. 5]). Nodes in signed generation trees are called outer nodes
and inner nodes, according to Table 1.

A branch in a signed generation tree is called a excellent branch if it is the con­
catenation of two paths P1 and P2, one of which might be of length 0, such that P1 is
a path from the leaf consisting (apart from variable nodes) of inner nodes only, and
P2 consists (apart from variable nodes) of outer nodes only.

Definition 8 (Sahlqvist inequalities, [10, Def. 6]). For any order­type ε, the signed
generation tree ∗φ of a formula φ(p1, . . . , pn) is ε­Sahlqvist if for all 1 ≤ i ≤ n,
every ε­critical branch with leaf pi is excellent. An inequality φ ≤ ψ is ε­Sahlqvist
if the signed generation trees +φ and −ψ are ε­Sahlqvist. An inequality φ ≤ ψ is
Sahlqvist if it is ε­Sahlqvist for some ε.

Example 2. Here we give an example of a Sahlqvist inequality for the order­type
ε = (1, 1), where the outer nodes are marked withO, and the inner nodes are marked
with I , and ε­critical branches are ended with leaf nodes marked with C.

+♦, O

+∧, O

+♢, O

+□, I

+p1, C

+□, I

+∧, I

+■, I

+p1, C

+□, I

+p2, C

≤ −∨, O

−♢, I

−□

−♢

−p1

−♢, I

−□

−♢

−p2

Figure 2: (1,1)­Sahlqvist inequality ♦(♢□p1 ∧□(■p1 ∧□p2)) ≤ ♢□♢p1 ∨♢□♢p2

76 Studies in Logic, Vol. 15, No. 6 (2022)

6 The Algorithm ALBASML for the Sabotage Modal Language

In the present section, we define the correspondence algorithm ALBASML for
sabotage modal logic, in the style of [8, 9]. The algorithm goes in four steps.

1. Preprocessing and first approximation:
In the generation tree of +φ and −ψ1,

(a) Apply the distribution rules:

i. Push down +♢,+♦,−¬,+∧,− → by distributing them over nodes
labelled with +∨ which are outer nodes, and

ii. Push down−□,−■,+¬,−∨,− → by distributing them over nodes
labelled with −∧ which are outer nodes.

(b) Apply the splitting rules:

α ≤ β ∧ γ
α ≤ β α ≤ γ

(∧­Spl.­1) α ∨ β ≤ γ

α ≤ γ β ≤ γ
(∨­Spl.­1)

(c) Apply the monotone and antitone variable­elimination rules:

α(p) ≤ β(p)

α(⊥) ≤ β(⊥)
(Mon.)

β(p) ≤ α(p)

β(⊤) ≤ α(⊤)
(Ant.)

for β(p) positive in p and α(p) negative in p.

We denote by Preprocess(φ ≤ ψ) the finite set {φi ≤ ψi}i∈I of inequalities
obtained after the exhaustive application of the previous rules. Then we apply
the following rule to every inequality in Preprocess(φ ≤ ψ):

φi ≤ ψi

i0 ≤ φi ψi ≤ ¬i1
(First­Appr.)

Here, i0 and i1 are special fresh nominals. Now we get a set of inequalities
{i0 ≤ φi, ψi ≤ ¬i1}i∈I .

2. The reduction stage:
In this stage, for each {i0 ≤ φi, ψi ≤ ¬i1}, we first add superscripts and
subscripts ∅ to the two ≤s, and then apply the following rules to prepare for
eliminating all the proposition variables in {i0 ≤∅

∅ φi, ψi ≤∅
∅ ¬i1}:

(a) Substage 1: decomposing the outer part
In the current substage, the following rules are applied to decompose the
outer part of the Sahlqvist signed formula:

1The discussion below relies on the definition of signed generation tree in Section 5. In what follows,
we identify a formula with its signed generation tree.

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 77

i. Splitting rules:

α ≤S
S′ β ∧ γ

α ≤S
S′ β α ≤S

S′ γ
(∧­Spl.­2)

α ∨ β ≤S
S′ γ

α ≤S
S′ γ β ≤S

S′ γ
(∨­Spl.­2)

ii. Approximation rules:

i ≤S
S′ ♢α

j ≤S′
S′ α i ≤S

S′ ♢S′j
(♢­Appr.) □α ≤S

S′ ¬i
α ≤S

S ¬j □S¬j ≤S
S′ ¬i

(□­Appr.)

i ≤S
S′ ♦α

im0 ≤S′
S′ ♢S′ im1 i ≤S

S′∪{(im0,im1)} α
(♦­Appr.)

■α ≤S
S′ ¬i

im0 ≤S
S ♢S im1 α ≤S∪{(im0,im1)}

S′ ¬i
(■­Appr.)

α→ β ≤S
S′ ¬i

j ≤S
S α β ≤S

S ¬k j → ¬k ≤S
S′ ¬i

(→ ­Appr.)

The nominals introduced by the approximation rules must not occur
in the system before applying the rule.

iii. Residuation rules:

i ≤S
S′ ¬α

α ≤S′
S ¬i

(Nom­¬­Res.)
¬α ≤S

S′ ¬i
i ≤S′

S α
(CoNom­¬­Res.)

(b) Substage 2: decomposing the inner part
In the current substage, the following rules are applied to decompose the
inner part of the Sahlqvist signed formula:

i. Splitting rules:

α ≤S
S′ β ∧ γ

α ≤S
S′ β α ≤S

S′ γ
(∧­Spl.­2)

α ∨ β ≤S
S′ γ

α ≤S
S′ γ β ≤S

S′ γ
(∨­Spl.­2)

ii. Residuation rules:

α ≤S
S′ ¬β

β ≤S′
S ¬α

(¬­Res.­1)
¬α ≤S

S′ β

¬β ≤S′
S α

(¬­Res.­2)

♢α ≤S
S′ β

α ≤S
S′ (□S)−1β

(♢­Res.)
α ≤S

S′ □β
(♢S′

)−1α ≤S
S′ β

(□­Res.)

78 Studies in Logic, Vol. 15, No. 6 (2022)

α ≤S
S′ ■β

∀im0∀im1(im0 ≤S′
S′ ♢S′ im1 ⇒ α ≤S

S′∪{(im0,im1)} β)
(■­Res.)

♦α ≤S
S′ β

∀im0∀im1(im0 ≤S
S ♢S im1 ⇒ α ≤S∪{(im0,im1)}

S′ β)
(♦­Res.)

The nominals introduced by the residuation rules must not occur in
the system before applying the rule.

iii. Second splitting rules (Second­Spl.):

∀im0∀im1(im0 ≤S
S ♢S im1 ⇒ Mega1&Mega2)

∀im0∀im1(im0 ≤S
S ♢S im1 ⇒ Mega1) ∀im0∀im1(im0 ≤S

S ♢S im1 ⇒ Mega2)

Here Mega1 and Mega2 denote mega­inequalities.

(c) Substage 3: preparing for the Ackermann rules
In this substage, we prepare for eliminating the propositional variables by
the Ackermann rules, with the help of the following packing rules:

Packing rules:
• Pack.­1:

∀imk0∀imk1(imk0 ≤Sk
Sk

♢Sk imk1 ⇒ · · · ∀im00∀im01(im00 ≤S0
S0

♢S0 im01 ⇒ α ≤S
S′ p) · · ·)

∃imk0∃imk1 · · · ∃im00∃im01(A(imk0 → ♢Sk imk1) ∧ · · · ∧ A(im00 → ♢S0 im01) ∧ α) ≤∅
∅ p

where α is pure and does not contain contextual connectives □,♢,■,♦.
• Pack.­2:

∀imk0∀imk1(imk0 ≤Sk
Sk

♢Sk imk1 ⇒ · · · ∀im00∀im01(im00 ≤S0
S0

♢S0 im01 ⇒ p ≤S
S′ β) · · ·)

p ≤∅
∅ ∀imk0∀imk1 · · · ∀im00∀im01(A(imk0 → ♢Sk imk1) ∧ · · · ∧ A(im00 → ♢S0 im01) → β)

where β is pure and does not contain contextual connectives □,♢,■,♦.
• Pack.­3:

∀imk0∀imk1(imk0 ≤Sk
Sk

♢Sk imk1 ⇒ · · · ∀im00∀im01(im00 ≤S0
S0

♢S0 im01 ⇒ α ≤S
S′ γ) · · ·)

∀imk0∀imk1 · · · ∀im00∀im01(⊤ ≤∅
S′ A(imk0 → ♢Sk imk1) ∧ · · · ∧ A(im00 → ♢S0 im01) ∧ α → γ)

where α is pure and does not contain contextual connectives □,♢,■,♦.
• Pack.­4:

∀imk0∀imk1(imk0 ≤Sk
Sk

♢Sk imk1 ⇒ · · · ∀im00∀im01(im00 ≤S0
S0

♢S0 im01 ⇒ γ ≤S
S′ α) · · ·)

∀imk0∀imk1 · · · ∀im00∀im01(⊤ ≤∅
S

A(imk0 → ♢Sk imk1) ∧ · · · ∧ A(im00 → ♢S0 im01) ∧ γ → α)

where α is pure and does not contain contextual connectives □,♢,■,♦.
(d) Substage 4: the Ackermann stage

In this substage, we compute the minimal/maximal valuation for proposi­
tional variables and use the Ackermann rules to eliminate all the proposi­

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 79

tional variables. These two rules are the core of ALBA, since their appli­
cation eliminates proposition variables. In fact, all the preceding steps are
aimed at reaching a shape in which the rules can be applied. Notice that
an important feature of these rules is that they are executed on the whole
set of (universally quantified) inequalities, and not on a single inequality.

The right­handed Ackermann rule:

The system



α1 ≤∅
∅ p

...
αn ≤∅

∅ p

∀i⃗1(β1 ≤T1

T ′
1
γ1)

...
∀i⃗m(βm ≤Tm

T ′
m
γm)

is replaced by:


∀i⃗1(β1((α1 ∨ · · · ∨ αn)/p) ≤T1

T ′
1
γ1((α1 ∨ · · · ∨ αn)/p))

...
∀i⃗m(βm((α1 ∨ · · · ∨ αn)/p) ≤Tm

T ′
m
γm((α1 ∨ · · · ∨ αn)/p))

where: (i). p, i⃗1, . . . , i⃗m do not occur in α1, . . . , αn;
(ii). Each βi is positive in p, and each γi negative in p, for 1 ≤ i ≤ m;
(iii). Eachαi is pure and contains no contextual modalities□,♢,■,♦.

The left­handed Ackermann rule:

The system



p ≤∅
∅ α1

...
p ≤∅

∅ αn

∀i⃗1(β1 ≤T1

T ′
1
γ1)

...
∀i⃗m(βm ≤Tm

T ′
m
γm)

is replaced by:


∀i⃗1(β1((α1 ∧ · · · ∧ αn)/p) ≤T1

T ′
1
γ1((α1 ∧ · · · ∧ αn)/p))

...
∀i⃗m(βm((α1 ∧ · · · ∧ αn)/p) ≤Tm

T ′
m
γm((α1 ∧ · · · ∧ αn)/p))

where: (i). p, i⃗1, . . . , i⃗m do not occur in α1, . . . , αn;
(ii). Each βi is negative in p, and each γi positive in p, for 1 ≤ i ≤ m.
(iii). Eachαi is pure and contains no contextual modalities□,♢,■,♦.

3. Output: If in the previous stage, for some {i0 ≤ φi, ψi ≤ ¬i1}, the algo­
rithm gets stuck, i.e. some proposition variables cannot be eliminated by the

80 Studies in Logic, Vol. 15, No. 6 (2022)

application of the reduction rules, then the algorithm halts and output “fail­
ure”. Otherwise, each initial tuple {i0 ≤ φi, ψi ≤ ¬i1} of inequalities after
the first approximation has been reduced to a set of pure (universally quan­
tified) inequalities Reduce(φi ≤ ψi), and then the output is a set of quasi­
(universally quantified) inequalities {&Reduce(φi ≤ ψi) ⇒ i0 ≤ ¬i1 : φi ≤
ψi ∈ Preprocess(φ ≤ ψ)}, where & is the big meta­conjunction in quasi­
inequalities. Then the algorithm use the standard translation to transform the
quasi­(universally quantified) inequalities into first­order formulas.

7 Soundness of ALBASML

In the present section, we will prove the soundness of the algorithm ALBASML

with respect to Kripke frames. The basic proof structure is similar to [9, 18].

Theorem 5 (Soundness). If ALBASML runs successfully on φ ≤ ψ and outputs
FO(φ ≤ ψ), then for any Kripke frame F = (W,R0),

F ⊩ φ ≤ ψ iff F |= FO(φ ≤ ψ).

Proof. The proof goes similarly to [9, Thm. 8.1]. Letφi ≤ ψi, 1 ≤ i ≤ n denote the
inequalities produced by preprocessing φ ≤ ψ after Stage 1, and {i0 ≤ φi, ψi ≤ ¬i1}
denote the inequalities after the first­approximation rule, Reduce(φi ≤ ψi) denote
the set of pure (universally quantified) inequalities after Stage 2, and FO(φ ≤ ψ)

denote the standard translation of the quasi­(universally quantified) inequalities into
first­order formulas, then we have the following chain of equivalences:

It suffices to show the equivalence from (1) to (5) given below:

F ⊩ φ ≤ ψ (1)
F ⊩ φi ≤ ψi, for all 1 ≤ i ≤ n (2)
F ⊩ (i0 ≤∅

∅ φi & ψi ≤∅
∅ ¬i1) ⇒ i0 ≤ ¬i1 for all 1 ≤ i ≤ n (3)

F ⊩ Reduce(φi ≤ ψi) ⇒ i0 ≤ ¬i1 for all 1 ≤ i ≤ n (4)
F ⊩ FO(φ ≤ ψ) (5)

• The equivalence between (1) and (2) follows from Proposition 6;
• the equivalence between (2) and (3) follows from Proposition 7;
• the equivalence between (3) and (4) follows from Propositions 8, 9, 10, 11;
• the equivalence between (4) and (5) follows from Proposition 4. □

In the remainder of this subsection, we prove the soundness of the rules in Stage
1, 2 and 3.

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 81

Proposition 6 (Soundness of the rules in Stage 1). For the distribution rules, the
splitting rules and the monotone and antitone variable­elimination rules, they are
sound in both directions in F, i.e., it is sound from the premise to the conclusion and
the other way round.

Proof. For the soundness of the distribution rules, it follows from the fact that the
following equivalences are valid in F:

• ♢(α ∨ β) ↔ ♢α ∨ ♢β;
• ♦(α ∨ β) ↔ ♦α ∨ ♦β;
• ¬(α ∨ β) ↔ ¬α ∧ ¬β;
• (α ∨ β) ∧ γ ↔ (α ∧ γ) ∨ (β ∧ γ);
• α ∧ (β ∨ γ) ↔ (α ∧ β) ∨ (α ∧ γ);
• ((α ∨ β) → γ) ↔ ((α→ γ) ∧ (β → γ));
• □(α ∧ β) ↔ □α ∧□β;
• ■(α ∧ β) ↔ ■α ∧■β;
• ¬(α ∧ β) ↔ ¬α ∨ ¬β;
• (α ∧ β) ∨ γ ↔ (α ∨ γ) ∧ (β ∨ γ);
• α ∨ (β ∧ γ) ↔ (α ∨ β) ∧ (α ∨ γ);
• (α→ β ∧ γ) ↔ (α→ β) ∧ (α→ γ).

For the soundness of the splitting rules, it follows from the following fact:

F ⊩ α ≤ β ∧ γ iff (F ⊩ α ≤ β and F ⊩ α ≤ γ);

F ⊩ α ∨ β ≤ γ iff (F ⊩ α ≤ γ and F ⊩ β ≤ γ).

For the soundness of the monotone and antitone variable elimination rules, we
show the soundness for the first rule. Suppose α(p) is negative in p and β is positive
in p.

If F ⊩ α(p) ≤ β(p), then for all valuations V , (F, V) ⊩ α(p) ≤ β(p), thus for
the valuation V p

∅ such that V p
∅ is the same as V except that V p

∅(p) = ∅, (F, V p
∅) ⊩

α(p) ≤ β(p), therefore (F, V p
∅) ⊩ α(⊥) ≤ β(⊥), thus (F, V) ⊩ α(⊥) ≤ β(⊥), so

F ⊩ α(⊥) ≤ β(⊥).
For the other direction, suppose F ⊨ α(⊥) ≤ β(⊥), then by the fact that α(p)

is negative in p and β(p) is positive in p, we have that F ⊨ α(p) ≤ α(⊥) and F ⊨
β(⊥) ≤ β(p), therefore F ⊨ α(p) ≤ β(p).

The soundness of the other rule is similar. □

Proposition 7. (2) and (3) are equivalent, i.e. the first­approximation rule is sound
in F.

82 Studies in Logic, Vol. 15, No. 6 (2022)

Proof. (2)⇒ (3): SupposeF ⊩ φi ≤ ψi. Then for any valuationV onF, if (F, V) ⊩
i0 ≤∅

∅ φi and (F, V) ⊩ ψi ≤∅
∅ ¬i1, then (F, V), V (i0) ⊩ φi and (F, V), V (i1) ⊮ ψi,

so by F ⊩ φi ≤ ψi we have (F, V), V (i0) ⊩ ψi, so i0 ̸= i1, so (F, V) ⊩ i0 ≤ ¬i1.
(3) ⇒ (2): Suppose F ⊩ (i0 ≤∅

∅ φi & ψi ≤∅
∅ ¬i1) ⇒ i0 ≤ ¬i1. Then if

F ⊮ φi ≤ ψi, then there is a valuation V on F and a w ∈W such that (F, V), w ⊩ φi

and (F, V), w ⊮ ψi. Then by taking V i0,i1
w,w to be the valuation which is the same as

V except that V i0,i1
w,w (i0) = V i0,i1

w,w (i1) = {w}, then since i0, i1 do not occur in φi and
ψi, we have that (F, V i0,i1

w,w), w ⊩ φi and (F, V i0,i1
w,w), w ⊮ ψi, therefore (F, V i0,i1

w,w) ⊩
i0 ≤∅

∅ φi and (F, V i0,i1
w,w) ⊩ ψi ≤∅

∅ ¬i1, by F ⊩ (i0 ≤∅
∅ φi & ψi ≤∅

∅ ¬i1) ⇒
i0 ≤ ¬i1, we have that (F, V i0,i1

w,w) ⊩ i0 ≤ ¬i1, so (F, V i0,i1
w,w), w ⊩ i0 implies that

(F, V i0,i1
w,w), w ⊩ ¬i1, a contradiction. So F ⊩ φi ≤ ψi. □

The next step is to show the soundness of Stage 2, for which it suffices to show
the soundness of each rule in each substage.

Proposition 8. The splitting rules, the approximation rules for ♢,□,♦,■,→, the
residuation rules for ¬ in Substage 1 are sound in F.

Proof. By Lemma 1, 2, 3, 4 and 5 below. □

Lemma 1. The splitting rules in Substage 1 and Substage 2 are sound in F.

Proof. For the soundness of the splitting rules, it follows from the fact that for any
Kripke frame F = (W,R0), any valuation V on F,

• (F, V) ⊩ α ≤S
S′ β ∧ γ iff ((F, V) ⊩ α ≤S

S′ β and (F, V) ⊩ α ≤S
S′ γ),

• (F, V) ⊩ α ∨ β ≤S
S′ γ iff ((F, V) ⊩ α ≤S

S′ γ and (F, V) ⊩ β ≤S
S′ γ). □

Lemma 2. The approximation rules for ♢,□ in Substage 1 are sound in F.

Proof. We prove for ♢, the case for □ is similar. For the soundness of the approx­
imation rule for ♢, it suffices to show that for any Kripke frame F = (W,R0), any
valuation V on F,

1. if (F, V) ⊩ i ≤S
S′ ♢α, then there is a valuation V j such that V j is the same as

V except V j(j), and (F, V j) ⊩ i ≤S
S′ ♢S′j and (F, V j) ⊩ j ≤S′

S′ α;
2. if (F, V) ⊩ i ≤S

S′ ♢S′j and (F, V) ⊩ j ≤S′
S′ α, then (F, V) ⊩ i ≤S

S′ ♢α.
For item 1, if (F, V) ⊩ i ≤S

S′ ♢α, then (W, (R0 \S′), V), V (i) ⊩ ♢α, therefore there
exists a w ∈W such that (V (i), w) ∈ (R0 \S′) and (W, (R0 \S′), V), w ⊩ α. Now
take V j such that V j is the same as V except that V j(j) = {w}, then (V j(i), V j(j)) ∈
(R0 \ S′), so (F, V j) ⊩ i ≤S

S′ ♢S′j and (F, V j) ⊩ j ≤S′
S′ α.

For item 2, suppose (F, V) ⊩ i ≤S
S′ ♢S′j and (F, V) ⊩ j ≤S′

S′ α. Then
(V (i), V (j)) ∈ (R0\S′) and (W, (R0\S′), V), V (j) ⊩ α, so (W, (R0\S′), V), V (i) ⊩
♢α, therefore (F, V) ⊩ i ≤S

S′ ♢α. □

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 83

Lemma 3. The approximation rules for ♦,■ in Substage 1 are sound in F.

Proof. We prove for ♦, the case for ■ is similar. For the soundness of the approx­
imation rule for ♦, it suffices to show that for any Kripke frame F = (W,R0), any
valuation V on F,

1. if (F, V) ⊩ i ≤S
S′ ♦α, then there is a valuation V im0,im1 such that V im0,im1 is

the same as V except V im0,im1(im0) and V im0,im1(im1), and (F, V im0,im1) ⊩
im0 ≤S′

S′ ♢S′ im1 and (F, V im0,im1) ⊩ i ≤S
S′∪{(im0,im1)} α;

2. if (F, V) ⊩ im0 ≤S′
S′ ♢S′ im1 and (F, V) ⊩ i ≤S

S′∪{(im0,im1)} α, then (F, V) ⊩
i ≤S

S′ ♦α.
For item 1, if (F, V) ⊩ i ≤S

S′ ♦α, then (W, (R0 \S′), V), V (i) ⊩ ♦α, therefore there
are (w, v) ∈ (R0 \ S′) such that (W, ((R0 \ S′) \ {(w, v)}), V), V (i) ⊩ α. Now
take V im0,im1 such that V im0,im1 is the same as V except V im0,im1(im0) = {w} and
V im0,im1(im1) = {v}, then by (w, v) ∈ (R0 \ S′), we have that (W,R0, V

im0,im1) ⊩
im0 ≤S′

S′ ♢S′ im1, and from (W, ((R0 \ S′) \ {(w, v)}), V), V (i) ⊩ α we have that
(W, ((R0 \ S′) \ {(V im0,im1(im0), V

im0,im1(im1))}), V im0,im1), V im0,im1(i) ⊩ α, so
(F, V im0,im1) ⊩ i ≤S

S′∪{(im0,im1)} α.
For item 2, if (F, V) ⊩ im0 ≤S′

S′ ♢S′ im1 and (F, V) ⊩ i ≤S
S′∪{(im0,im1)} α, then

(V (im0), V (im1)) ∈ (R0 \S′), and (W, (R0 \ (S′ ∪{(im0, im1)})), V), V (i) ⊩ α, so
(W, (R0 \ S′), V), V (i) ⊩ ♦α, therefore (F, V) ⊩ i ≤S

S′ ♦α. □

Lemma 4. The approximation rule for → in Substage 1 is sound in F.

Proof. For the soundness of the approximation rule for →, it suffices to show that
for any Kripke frame F = (W,R0), any valuation V on F,

1. if (F, V) ⊩ α → β ≤S
S′ ¬i, then there is a valuation V j,k such that V j,k is the

same as V except V j,k(j) and V j,k(k), and (F, V j,k) ⊩ j ≤S
S α, (F, V j,k) ⊩

β ≤S
S ¬k and (F, V j,k) ⊩ j → ¬k ≤S

S′ ¬i;
2. if (F, V) ⊩ j ≤S

S α, (F, V) ⊩ β ≤S
S ¬k and (F, V) ⊩ j → ¬k ≤S

S′ ¬i, then
(F, V) ⊩ α→ β ≤S

S′ ¬i.
For item 1, if (F, V) ⊩ α → β ≤S

S′ ¬i, then (W, (R0 \ S), V), V (i) ⊩ α and
(W, (R0\S), V), V (i) ⊩ ¬β. Now take V j,k such that V j,k is the same as V ex­
cept that V j,k(j) = V j,k(k) = V (i), we have that (W, (R0\S), V j,k), V j,k(j) ⊩
α and (W, (R0 \ S), V j,k), V j,k(k) ⊩ ¬β, so (F, V j,k) ⊩ j ≤S

S α, (F, V j,k) ⊩
β ≤S

S ¬k. Since V j,k(j) = V j,k(k) = V j,k(i) = V (i), it is easy to see that
V j,k(j → ¬k) = V j,k(¬i), so (F, V j,k) ⊩ j → ¬k ≤S

S′ ¬i.
For item 2, if (F, V) ⊩ j ≤S

S α, (F, V) ⊩ β ≤S
S ¬k and (F, V) ⊩ j →

¬k ≤S
S′ ¬i, then V (j → ¬k) ⊆ V (¬i), so V (i) ⊆ V (j ∧ k), since i, j,k

are nominals, there interpretations are singletons, so V (i) = V (j) = V (k).
Now from (F, V) ⊩ j ≤S

S α we have that (W, (R0 \ S), V), V (j) ⊩ α, and

84 Studies in Logic, Vol. 15, No. 6 (2022)

from (F, V) ⊩ β ≤S
S ¬k we have that (W, (R0 \ S), V), V (k) ⊩ ¬β, so

(W, (R0 \ S), V), V (i) ⊩ α and (W, (R0 \ S), V), V (i) ⊩ ¬β, so (F, V) ⊩
α→ β ≤S

S′ ¬i. □

Lemma 5. The residuation rules for ¬ in Substage 1 and 2 are sound in F.

Proof. It is easy to see that the residuation rules for¬ in Substage 1 are special cases
of the residuation rules for ¬ in Substage 2 (modulo double negation elimination).
Now we only prove it for the residuation rule in Substage 2 where negation symbols
occur on the right­hand side of the inequalities, the other rule is similar.

For the soundness of the residuation rule for ¬, it suffices to show that for any
Kripke frame F = (W,R0), any valuation V on F, (F, V) ⊩ α ≤S

S′ ¬β iff (F, V) ⊩
β ≤S′

S ¬α. Indeed, it follows from the following equivalence:

(F, V) ⊩ α ≤S
S′ ¬β

iff for all w ∈W , if (W, (R0 \ S), V), w ⊩ α, then (W, (R0 \ S′), V), w ⊮ β

iff for all w ∈W , if (W, (R0 \ S′), V), w ⊩ β, then (W, (R0 \ S), V), w ⊮ α

iff (F, V) ⊩ β ≤S′
S ¬α. □

Proposition 9. The splitting rules, the residuation rules for ¬,♢,□,♦,■, the second
splitting rule in Substage 2 are sound in F.

Proof. By Lemma 1, 5, 6, 7 and 8. □

Lemma 6. The residuation rules for ♢,□ in Substage 2 are sound in F.

Proof. We prove it for ♢, and the rule for □ is similar.
To show the soundness of the residuation rule for ♢ in Substage 2, it suffices

to show that for any Kripke frame F = (W,R0), any valuation V on F, (F, V) ⊩
♢α ≤S

S′ β iff (F, V) ⊩ α ≤S
S′ (□S)−1β.

⇒: if (F, V) ⊩ ♢α ≤S
S′ β, then for all w ∈ W , if (W, (R0 \ S), V), w ⊩

♢α, then (W, (R0 \ S′), V), w ⊩ β. Our aim is to show that for all v ∈ W , if
(W, (R0 \ S), V), v ⊩ α, then (W, (R0 \ S′), V), v ⊩ (□S)−1β.

Consider any v ∈ W such that (W, (R0 \ S), V), v ⊩ α. Then for any u ∈ W

such that (u, v) ∈ (R0\S), (W, (R0\S), V), u ⊩ ♢α. Since (F, V) ⊩ ♢α ≤S
S′ β, we

have that (W, (R0 \S′), V), u ⊩ β, so for any u ∈W such that (v, u) ∈ (R0 \S)−1,
(W, (R0 \ S′), V), u ⊩ β, so (W, (R0 \ S′), V), v ⊩ (□S)−1β.

⇐: if (F, V) ⊩ α ≤S
S′ (□S)−1β, then for all w ∈ W , if (W, (R0 \ S), V), w ⊩

α, then (W, (R0 \ S′), V), w ⊩ (□S)−1β. Our aim is to show that for all v ∈ W , if
(W, (R0 \ S), V), v ⊩ ♢α, then (W, (R0 \ S′), V), v ⊩ β.

Now assume that (W, (R0 \ S), V), v ⊩ ♢α. Then there is a u ∈ W such that
(v, u) ∈ (R0 \ S) and (W, (R0 \ S), V), u ⊩ α. By (F, V) ⊩ α ≤S

S′ (□S)−1β,
we have that (W, (R0 \ S′), V), u ⊩ (□S)−1β. Therefore, for v ∈ W , we have
(u, v) ∈ (R0 \ S)−1, thus (W, (R0 \ S′), V), v ⊩ β. □

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 85

Lemma 7. The residuation rules for ♦,■ in Substage 2 are sound in F.

Proof. We prove it for ■, and the rule for ♦ is similar.
For the residuation rule for ■, it suffices to show that for any Kripke frame F =

(W,R0), any valuation V on F, (F, V) ⊩ α ≤S
S′ ■β iff (F, V) ⊩ ∀im0∀im1(im0 ≤S′

S′

♢S′ im1 ⇒ α ≤S
S′∪{(im0,im1)} β). Indeed:

(F, V) ⊩ ∀im0∀im1(im0 ≤S′
S′ ♢S′ im1 ⇒ α ≤S

S′∪{(im0,im1)} β)

iff for all w, v ∈W , if (w, v) ∈ (R0 \ S′),
then (W,R0, V

im0,im1
w,v) ⊩ α ≤S

S′∪{(im0,im1)} β,
where V im0,im1

w,v is the same as V except that: V im0,im1
w,v (im0) = {w},
V im0,im1
w,v (im1) = {v}.

iff for all u, v, w ∈W , if (w, v) ∈ (R0 \ S′)

and (W, (R0 \ S), V im0,im1
w,v), u ⊩ α,

then (W, (R0 \ (S′ ∪ {(im0, im1)})), V im0,im1
w,v), u ⊩ β

iff for all u ∈W , if (W, (R0 \ S), V im0,im1
w,v), u ⊩ α,

then for all v, w ∈W , if (w, v) ∈ (R0 \ S′), then:
(W, (R0 \ (S′ ∪ {(im0, im1)})), V im0,im1

w,v), u ⊩ β

iff for all u ∈W , if (W, (R0 \ S), V im0,im1
w,v), u ⊩ α, then:

(W, (R0 \ S′), V im0,im1
w,v), u ⊩ ■β

iff for all u ∈W , if (W, (R0 \ S), V), u ⊩ α, then:
(W, (R0 \ S′), V), u ⊩ ■β
(since im0 and im1 do not occur in α and β)

iff (F, V) ⊩ α ≤S
S′ ■β. □

Lemma 8. The second splitting rule in Substage 2 is sound in F.

Proof. It follows immediately from the meta­equivalence that ∀x∀y(α→ β∧γ) ↔
∀x∀y(α→ β) ∧ ∀x∀y(α→ γ). □

Proposition 10. The packing rules in Substage 3 are sound in F.

Proof. We only prove the soundness of the first packing rule, the others are similar.
It is easy to see that in the mega­inequality of the premise and in the conclusion,

contextual connectives□,♢,■,♦ do not occur, so we can ignore the superscripts and
subscripts in the inequalities occuring in the rule.

We first define the following mega­inequalities and formulas:

Mega0 := ∀im00∀im01(im00 ≤
S0
S0

♢S0 im01 ⇒ α ≤S
S′ p)

Megan := ∀imn0∀imn1(imn0 ≤Sn
Sn

♢Sn imn1 ⇒ Megan−1)

φ0 := ∃im00∃im01(A(im00 → ♢S0 im01) ∧ α)

86 Studies in Logic, Vol. 15, No. 6 (2022)

φn := ∃imn0∃imn1(A(imn0 → ♢Sn imn1) ∧ φn−1)

Then we can prove by induction on k that for any Kripke frame F = (W,R0)

and any valuation V on it,

(F, V) ⊩ Megan
iff (F, V) ⊩ ∀imn0∀imn1(imn0 ≤Sn

Sn
♢Sn imn1

⇒ · · · ∀im00∀im01(im00 ≤
S0
S0

♢S0 im01 ⇒ α ≤S
S′ p) · · ·)

iff (F, V) ⊩ ∃imn0∃imn1 · · · ∃im00∃im01

(A(imn0 → ♢Sn imn1) ∧ · · · ∧A(im00 → ♢S0 im01) ∧ α) ≤∅
∅ p,

iff (F, V) ⊩ φn ≤∅
∅ p.

(i) When k = 0, for any Kripke frame F = (W,R0) and any valuation V on it,

(F, V) ⊩ Mega0
iff (F, V) ⊩ ∀im00∀im01(im00 ≤

S0
S0

♢S0 im01 ⇒ α ≤S
S′ p)

iff for all wm00, wm01 ∈W ,
if (wm00, wm01) ∈ (R0 \ S0), then (F, V

im00,im01
wm00,wm01

) ⊩ α ≤S
S′ p

iff for all wm00, wm01 ∈W ,
if (wm00, wm01) ∈ (R0 \ S0), then (F, V

im00,im01
wm00,wm01

) ⊩ α ≤∅
∅ p

iff for all wm00, wm01, v ∈W ,
if (wm00, wm01) ∈ (R0 \ S0), (F, V

im00,im01
wm00,wm01

), v ⊩ α

then (F, V im00,im01
wm00,wm01

), v ⊩ p

iff for all wm00, wm01, v ∈W ,
if (wm00, wm01) ∈ (R0 \ S0), (F, V

im00,im01
wm00,wm01

), v ⊩ α

then (F, V), v ⊩ p

iff for all wm00, wm01, v ∈W ,
if (F, V im00,im01

wm00,wm01
) ⊩ A(im00 → ♢S0 im01), (F, V

im00,im01
wm00,wm01

), v ⊩ α

then (F, V), v ⊩ p

iff for all wm00, wm01, v ∈W ,
if (F, V im00,im01

wm00,wm01
), v ⊩ A(im00 → ♢S0 im01) ∧ α

then (F, V), v ⊩ p

iff for all v ∈W , if there exists wm00, wm01 ∈W s.t.
(F, V im00,im01

wm00,wm01
), v ⊩ A(im00 → ♢S0 im01) ∧ α, then (F, V), v ⊩ p

iff for all v ∈W ,
if (F, V), v ⊩ ∃im00∃im01(A(im00 → ♢S0 im01) ∧ α)
then (F, V), v ⊩ p

iff (F, V) ⊩ ∃im00∃im01(A(im00 → ♢S0 im01) ∧ α) ≤∅
∅ p.

(ii) When k = n, by induction hypothesis, we have proved the equivalence
between Megan−1 and φn−1 ≤∅

∅ p. Then for k = n, for any Kripke frame F =

(W,R0) and any valuation V on it,

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 87

(F, V) ⊩ Megan
iff (F, V) ⊩ ∀imn0∀imn1(imn0 ≤Sn

Sn
♢Sn imn1 ⇒ Megan−1)

iff (F, V) ⊩ ∀imn0∀imn1(imn0 ≤Sn
Sn

♢Sn imn1 ⇒ φn−1 ≤∅
∅ p)

iff (F, V) ⊩ ∃imn0∃imn1(A(imn0 → ♢Sn imn1) ∧ φn−1) ≤∅
∅ p

iff (F, V) ⊩ φn ≤∅
∅ p. □

Proposition 11. The Ackermann rules in Substage 4 are sound in F.

Proof. Weonly prove it for the right­handedAckermann rule, the other rule is similar.
Without loss of generality we assume that n = m = 1. It suffices to show the

following right­handed Ackermann lemma:

Lemma 9. Assume α is pure and contains no contextual modalities □,♢,■,♦ and
does not contain nominals in i⃗, β is positive in p and γ is negative in p, then for any
Kripke frame F = (W,R0) and any valuation V on it,

(F, V) ⊩ ∀⃗i(β(α/p) ≤T
T ′ γ(α/p)) iff there exists a valuation V p such that

(F, V p) ⊩ α ≤∅
∅ p and (F, V p) ⊩ ∀⃗i(β ≤T

T ′ γ), where V p is the same as V except
V p(p).

Notice that α and p do not contain contextual modalities, so their valuation do
not change when the context is different.

⇒: Take V p such that V p is the same as V except that V p(p) = V (α). Since
α does not contain p, it is easy to see that V p(α) = V (α) = V p(p). Therefore
(F, V p) ⊩ α ≤∅

∅ p. Since the valuation of α and p do not change when the context is
different, so for any w ∈W ,

(W, (R0 \ T), V p), w ⊩ β iff (W, (R0 \ T), V), w ⊩ β(α/p), and
(W, (R0 \ T ′), V p), w ⊩ γ iff (W, (R0 \ T ′), V), w ⊩ γ(α/p), so
from (F, V) ⊩ ∀⃗i(β(α/p) ≤T

T ′ γ(α/p)) one can get (F, V p) ⊩ ∀⃗i(β ≤T
T ′ γ).

⇐: This direction follows from the monotonicity of β in p and the antitonicity of
γ in p, and that the valuation of α and p do not change when the context is different.

□

8 Success of ALBASML on Sahlqvist Inequalities

In the present section, we show that ALBASML succeeds on all Sahlqvist in­
equalities, in the style of [18]:

Theorem 12. ALBASML succeeds on all Sahlqvist inequalities.

Definition 9 (Definite ε­Sahlqvist inequality). Given an order type ε, ∗ ∈ {−,+},
the signed generation tree ∗φ of the term φ(p1, . . . , pn) is definite ε­Sahlqvist if there
is no+∨,−∧ occurring in the outer part on an ε­critical branch. An inequality φ ≤ ψ

is definite ε­Sahlqvist if the trees +φ and −ψ are both definite ε­Sahlqvist.

88 Studies in Logic, Vol. 15, No. 6 (2022)

Lemma 10. Let {φi ≤ ψi}i∈I = Preprocess(φ ≤ ψ) obtained by exhaustive appli­
cation of the rules in Stage 1 on an input ε­Sahlqvist inequality φ ≤ ψ. Then each
φi ≤ ψi is a definite ε­Sahlqvist inequality.

Proof. It is easy to see that by applying the distribution rules, all occurrences of
+∨ and −∧ in the outer part of an ε­critical branch have been pushed up towards the
root of the signed generation trees +φ and −ψ. Then by exhaustively applying the
splitting rules, all such+∨ and−∧ are eliminated. Since by applying the distribution
rules, the splitting rules and the monotone/antitone variable elimination rules do not
change the ε­Sahlqvistness of a signed generation tree, in Preprocess(φ ≤ ψ), each
signed generation tree +φi and −ψi are ε­Sahlqvist, and since they do not have +∨
and −∧ in the outer part in the ε­critical branches, they are definite. □

Definition 10 (Inner ε­Sahlqvist signed generation tree). Given an order type ε,
∗ ∈ {−,+}, the signed generation tree ∗φ of the term φ(p1, . . . , pn) is inner ε­
Sahlqvist if its outer part P2 on an ε­critical branch is always empty, i.e. its ε­critical
branches have inner nodes only.

Lemma 11. Given inequalities i0 ≤∅
∅ φi and ψi ≤∅

∅ ¬i1obtained from Stage 1 where
+φi and −ψi are definite ε­Sahlqvist, by applying the rules in Substage 1 of Stage 2
exhaustively, the inequalities that we get are in one of the following forms:

1. pure inequalities which does not have occurrences of propositional variables;
2. inequalities of the form i ≤S

S′ α where +α is inner ε­Sahlqvist;
3. inequalities of the form β ≤S

S′ ¬i where −β is inner ε­Sahlqvist.

Proof. Indeed, the rules in the Substage 1 of Stage 2 deal with outer nodes in the
signed generation trees +φi and −ψi except +∨,−∧. For each rule, without loss of
generality assume we start with an inequality of the form i ≤S

S′ α, then by applying
the rules in Substage 1 of Stage 2, the inequalities we get are either a pure inequality
without propositional variables, or an inequality where the left­hand side (resp. right­
hand side) is i (resp. ¬i), and the other side is a formula α′ which is a subformula of
α, such that α′ has one root connective less than α. Indeed, if α′ is on the left­hand
side (resp. right­hand side) then −α′ (+α′) is definite ε­Sahlqvist.

By applying the rules in the Substage 1 of Stage 2 exhaustively, we can eliminate
all the outer connectives in the critical branches, so for non­pure inequalities, they
become of form 2 or form 3. □

Lemma 12. Assume we have an inequality i ≤S
S′ α or β ≤S

S′ ¬i where +α and
−β are inner ε­Sahlqvist, by applying the rules in Substage 2 of Stage 2, we have
(mega­)inequalities (k can be 0 where a mega­inequality becomes an inequality) of
the following form:

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 89

1. ∀im00∀im01(im00 ≤S0
S0

♢S0 im01 ⇒ · · · ∀imk0∀imk1(imk0 ≤Sk
Sk

♢Sk imk1 ⇒
α ≤S

S′ p) · · ·), where ε(p) = 1, α is pure and does not contain contextual
connectives □,♢,■,♦;

2. ∀im00∀im01(im00 ≤S0
S0

♢S0 im01 ⇒ · · · ∀imk0∀imk1(imk0 ≤Sk
Sk

♢Sk imk1 ⇒
p ≤S

S′ β) · · ·), where ε(p) = ∂, β is pure and does not contain contextual
connectives □,♢,■,♦;

3. ∀im00∀im01(im00 ≤S0
S0

♢S0 im01 ⇒ · · · ∀imk0∀imk1(imk0 ≤Sk
Sk

♢Sk imk1 ⇒
α ≤S

S′ γ) · · ·), where α is pure and does not contain contextual connectives
□,♢,■,♦, and +γ is ε∂­uniform;

4. ∀im00∀im01(im00 ≤S0
S0

♢S0 im01 ⇒ · · · ∀imk0∀imk1(imk0 ≤Sk
Sk

♢Sk imk1 ⇒
γ ≤S

S′ β) · · ·), where β is pure and does not contain contextual connectives
□,♢,■,♦, and −γ is ε∂­uniform.

Proof. First of all, from the rules of the Substage 2 of Stage 2, it is easy to see that
from the given inequality, what we will obtain would be a set of mega­inequalities,
and by the second splitting rule those mega­inequalities are built up from inequal­
ities by ∀i∀j(i ≤S

S ♢Sj ⇒ Mega), so we will have mega­inequalities of the form
∀im00∀im01(im00 ≤S0

S0
♢S0 im01 ⇒ · · · ∀imk0∀imk1(imk0 ≤Sk

Sk
♢Sk imk1 ⇒ γ ≤S

S′

δ) · · ·). Now it suffices to check the shape of γ and δ. (From now on we call γ ≤S
S′ δ

the head of the mega­inequality.)
Notice that for each input inequality, it is of the form i ≤S

S′ α or β ≤S
S′ ¬i, where

+α and −β are inner ε­Sahlqvist. By applying the splitting rules and the residuation
rules in this substage, it is easy to see that the head of the (mega­)inequality will have
one side of the inequality pure and have no contextual connectives □,♢,■,♦, and
the other side still inner ε­Sahlqvist. By applying these rules exhaustively, one will
either have p as the non­pure side (with this p on a critical branch), or have an inner
ε­Sahlqvist signed generation tree with no critical branch, i.e., ε∂­uniform. □

Lemma 13. Assume we have (mega­)inequalities of the form as described in Lemma
12. Then we can get inequalities of the following form:

1. α ≤∅
∅ p where ε(p) = 1, α is pure and do not contain contextual connectives

□,♢,■,♦;
2. p ≤∅

∅ α where ε(p) = ∂, α is pure and do not contain contextual connectives
□,♢,■,♦;

3. ∀i1 · · · ∀in(⊤ ≤∅
S γ) where +γ is ε∂­uniform.

Proof. From the shape of the mega­inequalities, we can see that for all the mega­
inequalities we can apply the corresponding packing rules so that we can get the in­
equalities as described in the lemma. □

90 Studies in Logic, Vol. 15, No. 6 (2022)

Lemma 14. Assume we have inequalities of the form as described in Lemma 13,
the Ackermann lemmas are applicable and therefore all propositional variables can
be eliminated.

Proof. Immediate observation from the requirements of the Ackermann lemmas. □

Proof of Theorem 12 Assume we have an ε­Sahlqvist inequality φ ≤ ψ as input.
By Lemma 10, we get a set of definite ε­Sahlqvist inequalities. Then by Lemma
11, we get inequalities as described in Lemma 11. By Lemma 12, we get the mega­
inequalities as described. Therefore by Lemma 13, we can apply the packing rules
to get inequalities and universally quantified inequalities as described in the lemma.
Finally by Lemma 14, the (universally quantified) inequalities are in the right shape to
apply the Ackermann rules, and thus we can eliminate all the propositional variables
and the algorithm succeeds on the input. □

9 Discussions and Further Directions

Future interesting questions include the following:

• Extending the Sahlqvist sabotage formulas to inductive sabotage formulas as
well as to the language of sabotage modal logic with fixpoint operators;

• AKracht­type theorem characterizing the first­order correspondents of Sahlqvist
sabotage formulas;

• A Goldblatt­Thomason­type theorem characterizing the sabotage modally de­
finable classes of Kripke frames;

• Extend results on sabotage modal logic to the class of relation changing modal
logics.([3])

References

[1] C. Areces, R. Fervari and G. Hoffmann, 2014, “Swap logic”, Logic Journal of IGPL,
22(2): 309–332.

[2] C. Areces, R. Fervari and G. Hoffmann, 2015, “Relation­changing modal operators”,
Logic Journal of the IGPL, 23(4): 601–627.

[3] C. Areces, R. Fervari, G. Hoffmann and M. Martel, 2016, “Relation­changing logics
as fragments of hybrid logics”, in D. Cantone and G. Delzanno (eds.), Proceedings of
the Seventh International Symposium on Games, Automata, Logics and Formal Veri­
fication, Vol. 226, pp. 16–29, Open Publishing Association.

[4] G. Aucher, P. Balbiani, L. F. del Cerro and A. Herzig, 2009, “Global and local graph
modifiers”, Electronic Notes in Theoretical Computer Science, 231: 293–307.

[5] G. Aucher, J. Van Benthem and D. Grossi, 2018, “Modal logic of sabotage revisited”,
Journal of Logic and Computation, 28(2): 269–303.

Zhiguang Zhao / Algorithmic Correspondence Theory for Sabotage Modal Logic 91

[6] J. van Benthem, 2005, “An essay on sabotage and obstruction”, in D. Hutter and W.
Stephan (eds.), Mechanizing Mathematical Reasoning: Essays in Honor of Jörg H.
Siekmann on the Occasion of His 60th Birthday, pp. 268–276, Berlin: Springer.

[7] P. Blackburn, J. F. van Benthem and F. Wolter, 2006, Handbook of Modal Logic, Am­
sterdam: Elsevier.

[8] W. Conradie, V. Goranko and D. Vakarelov, 2006, “Algorithmic correspondence and
completeness in modal logic. I. The core algorithm SQEMA”, Logical Methods in
Computer Science, 2(1): 1–26.

[9] W. Conradie and A. Palmigiano, 2012, “Algorithmic correspondence and canonicity
for distributive modal logic”, Annals of Pure and Applied Logic, 163(3): 338–376.

[10] W. Conradie, A. Palmigiano and Z. Zhao, 2019, “Sahlqvist via translation”, Logical
Methods in Computer Science, 15(1): 1–35.

[11] B. Kooi and B. Renne, 2011, “Arrow update logic”, The Review of Symbolic Logic,
4(4): 536–559.

[12] D. Li, 2020, “Losing connection: the modal logic of definable link deletion”, Journal
of Logic and Computation, 30(3): 715–743.

[13] C. Löding and P. Rohde, 2003, “Model checking and satisfiability for sabotage modal
logic”, International Conference on Foundations of Software Technology and Theo­
retical Computer Science, pp. 302–313, Berlin: Springer.

[14] C. Löding and P. Rohde, 2003, “Solving the sabotage game is pspace­hard”, Interna­
tional Symposium on Mathematical Foundations of Computer Science, pp. 531–540,
Berlin: Springer.

[15] A. Palmigiano, S. Sourabh and Z. Zhao, 2017, “Sahlqvist theory for impossibleworlds”,
Journal of Logic and Computation, 27(3): 775–816.

[16] H. Sahlqvist, 1975, “Completeness and correspondence in the first and second order
semantics for modal logic”, Studies in Logic and the Foundations of Mathematics,
Vol. 82, pp. 110–143, Berlin: Springer.

[17] J. Van Benthem, K. Mierzewski and F. Z. Blando, “The modal logic of stepwise re­
moval”, The Review of Symbolic Logic, 15(1): 36–63.

[18] Z. Zhao, 2021, “Algorithmic correspondence for hybrid logic with binder”, Logic Jour­
nal of the IGPL, https://doi.org/10.1093/jigpal/jzab029.

https://doi.org/10.1093/jigpal/jzab029

92 Studies in Logic, Vol. 15, No. 6 (2022)

破坏模态逻辑的算法对应理论

赵之光

摘 要

破坏模态逻辑是一种动态逻辑。它在静态模态逻辑的基础上加入了一个动

态算子，解释成“在删掉一条边后，公式为真”。在本文中，我们试图解决一个

开放问题，即给出破坏模态逻辑的 Sahlqvist对应定理。我们定义破坏模态逻辑的
Sahlqvist公式，并给出一个算法 ALBASML来计算破坏模态逻辑的 Sahlqvist公式
的一阶对应。

赵之光 泰山学院数学与统计学院

zhaozhiguang23@gmail.com

	Introduction
	Preliminaries on Sabotage Modal Logic
	Algorithmic Correspondence for Sabotage Modal Logic: A Sketch
	The Expanded Language in the Algorithm
	The expanded sabotage modal language L+
	The first-order correspondence language and the standard translation

	Sahlqvist Inequalities
	The Algorithm ALBASML for the Sabotage Modal Language
	Soundness of ALBASML
	Success of ALBASML on Sahlqvist Inequalities
	Discussions and Further Directions

