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A Qualitative Logical Analysis
of Probabilistic Causal Models*

Kaibo Xie

Abstract. Uncertainty occurs frequently in the process of causal reasoning. Although the
traditional structural equation model is very successful in the reasoning of deterministic causal
structure, yet it is not designed to characterize probabilistic reasoning. Recently there have been
proposals aiming to account for probabilistic causal reasoning by adding quantitative probabilis­
tic expressions in the causal language. Contrast with the quantitative approach, this paper will
present a qualitative model of probabilistic causal reasoning, which represents uncertainty of
variables in terms of doxastic relations. The formal language based on this framework is able
to express a qualitative notion of independence among causal variables, which can be used to
analyse the co­relation between causality and probability.

1 Introduction

1.1 Toward a logical analysis of probabilistic causal reasoning

In recent years, a lot of effort has been put in the development of formal models
for causal reasoning with counterfactuals. The most well­known model is the struc­
tural equation causal model developed in [8]. The logical inquiry of causality based
on the structural equation approach also gained a lot of popularity since [3, 6, 9].

A structural equation causal model includes a signature S and a set of structural
equations F . The signature S = (U ,V,Σ)where U is the set of exogenous variables,
V is the set of endogenous variables, and Σ is the range of those variables. The set
F = {fX : X ∈ V} contains a structural function fX for each endogenous variable
X ∈ V , and fX maps any assignment to U ∪ V \ {X} to a possible value ofX in Σ.
Thus, each structural fX describes how the value ofX is determined by the setting of
other variables.1 As we can see from its definition, the classical structural equation
causal model is deterministic and unable to deal with uncertainty and probability.

Received 2022­09­29 Revision Received 2022­11­14
KaiboXie Department of Philosophy, Tsinghua University

xkb@mail.tsinghua.edu.cn
*This research is supported by Tsinghua University Initiative Scientific Research Program (No. 20­

223080021).
1In many studies of structural equation models, F is assumed to be recursive, which means there

is no sequence X1, . . . , Xn such that for each 0 < k < n the value of Xk+1 is dependent on Xk

according to F , and the value of X1 is also dependent on Xn. In other words, being recursive means
being non­cyclic.
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On the other hand, there has been extensive study about the probabilistic fea­
tures of causal Bayesian network. However, as argued by Pearl in [10], a pure causal
Bayesian network is insufficient to provide a complete account of causal reasoning
for counterfactuals (the causal Bayesian network is at a lower level than structural
equation models in the so called “causal hierarchy”).

Causal reasoning with counterfactuals in a non­deterministic or probabilistic sit­
uation is very natural in the real life. For instance, it is natural to infer from “It is very
probable that the the heat is off” and “Had the heat been off, then it is very probable
that the water pipes would been frozen this winter” to “It is very probable that the
water pipes would been frozen this winter”. Therefore it calls for a logical analysis
of probabilistic causal reasoning with counterfactuals.

1.2 Toward a qualitative analysis of probabilistic causal reasoning

In [7], Ibeling and Icard synthesize the previous study of deterministic causal
models and probabilistic logic, and present a logical framework for probabilistic causal
reasoning. They propose a semantics based on structural equation models extended
with an additional part P , which is a probabilistic distribution over the valuation of
exogenous variables.

The probability of propositions in such a model is defined in the following way:
the probability of ϕ in a model (F , P ) is defined as the probability of the setting of
exogenous variables supports ϕ under F .2 This can be seen as a “Laplacian” inter­
pretation of probability: though the causal rules in the world is deterministic, there
are still some unknown exogenous factors, which lead to the ignorance of their actual
causal effects. Thus the uncertainty of a proposition (including any uncertainty of
counterfactuals) can be reduced into the uncertainty of exogenous variables.

The logical framework proposed in [7] is quantitative. Its language needs to
express the value of the probability assigned to a proposition. In addition, it has to
include all the polynomial terms of the form t + t, t × t, −t in the object language.
For instance, P(ϕ)+P(ψ)+1 is a polynomial term in the object language expressing
the sum of the probability of ϕ and the probability of ψ plus 1.

In this paper, on the contrary, I want to propose a qualitative logical framework
instead of a quantitative framework, whose language does not involve any specific
value of probability. In the procedure of causal reasoning, an agent does not neces­
sarily involve any precise value of probability. For instance in the water pipe example
above, to make the reasoning go through, it is sufficient to qualitatively know that the
probability of certain propositions is almost 1, without knowing any quantity.

2Formally P (ϕ) := P ({−→u ∈ Σ | F ,−→u |= ϕ}).
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2 Qualitative Representation of Probabilistic Space

Similar to the quantitative account of probabilistic causal reasoning, my quali­
tative model consists of two parts: one part is the qualitative representation of causal
effect, the other is the qualitative representation of the probabilistic distribution over
variables. I also adopt the Laplacian treatment of uncertainty as [7] which reduces the
uncertainty of causal effects into the uncertainty of the value of variables. Therefore
the causal effect is still deterministic and can be represented by structural equations
in the classical way as in [6, 10]. So we only need to looking for a qualitative repre­
sentation of probabilistic distribution.

In [2], Baltag and Smets adopts the Popper­Renyi theory of conditional proba­
bilities originated from [11, 12] (later developed by [4, 5]), and proposed a qualitative
representation of conditional probabilistic space.

Definition 1 (Discrete Conditional Probabilistic Space). A pair (S, µ) with S is a
finite set of states and µ : ℘(S)× ℘(S) → [0, 1] satisfying:3

• µ(A|A) = 1

• µ(A ∪B|C) = µ(A|C) + µ(B|C), if A ∩B = ∅, C ̸= ∅
• µ(A ∩B|C) = µ(A|B ∩ C) · µ(B|C)

µ is known as the discrete Popper function. Since S is assumed to be finite, the
function µ is completely characterized by the behavior on pairs of states (s, t)µ (reads
the priority degree of s with respect to t) defined by:

(s, t)µ := µ({s}|{s, t})

According to [2], µ(A|B) = 1 can be interpreted as A is almost certain given
B, and µ(A|B) = 0 can be interpreted as A is almost impossible given B.

Given a probabilistic distribution characterised by a discrete probabilistic space,
it is natural to assume an agent has a conditional beliefBPQ (reads “believeQ condi­
tional on P ”) whenever the possibility ofQ is almost certain given P . In other words,
BPQ iff µ(Q|P ) = 1, as proposed in [2].

Inspired by [5], [2] presents a qualitative description of a discrete conditional
probabilistic space which only concern those probabilities that are equal to 1 or 0
(which is enough for the evaluation of beliefs). The qualitative model is based on a
notion called priority relation which is defined as:

s ≤µ t iff µ(t|{s, t}) ̸= 0 (*)

3℘(S) is the power set of S.
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Just as the priority degree completely characterizes a discrete Popper function µ
on a finite space, the priority degree qualitatively characterizes the space in the sense
that, for any pair of propositions, it tells whether the conditional probability is 1 or 0,
as shown by the following theorem: ([1])

Theorem 1. Let (S, µ) be a discrete conditional probabilistic space and ≤µ be the
priority relation derived fromµ according to (*). For anyX,Y ∈ ℘(S), µ(X|Y ) = 1

iff all states in X is minimal with respect to ≤µ in Y .

Although the qualitative description only encodes a small part of the information
carried by the quantitative model of probabilistic distribution, yet it is still powerful
in the analysis of many important notions. For instance, it characterizes (conditional)
belief in the following way: An agent believes P conditional on Q if and only if
min≤ P ⊂ Q, where min≤ P is the set of states that is minimal among the P ­states
with respect to ≤µ. Unconditional belief can be defined as belief conditional on tau­
tology. Baltag and Smets show that such a notion of belief based on discrete condi­
tional probabilistic space can be characterized by conditional doxastic logic (CDL)
in [1].

3 TheQualitative Logical Framework for Probabilistic Causal Reasoning

3.1 Embedding the plausibility relation into a causal model

In order to provide a qualitative account of probabilistic causal reasoning, I will
embed the qualitative representation of probability proposed in [2] into a causal struc­
ture described by structural equation functions of variables.

Given a set of causal variables U∪V , the probabilistic distribution over variables
can be represented by a probabilistic distribution over assignments. An assignment
A to U ∪V is a function from U ∪V toΣ, and for eachX ∈ U ∪V ,A(X) refers to the
value assigned byA. The probabilistic distribution over the value of variables can be
defined in terms of a probabilistic space (S, µ) whose states are all possible assign­
ments to U ∪V , and the probability ofX = x conditional on Y = y can be defined as
the value of µ({A ∈ S|A(X) = x} | {A ∈ S|A(Y ) = y}) in a conditional proba­
bilistic space. Particularly, in a causal scenario, S are those assignments that comply
with the causal rules. For convenience, I denote the set of all possible assignments
that complies with a set of structural functions F byWF , which is formally defined
as {A ∈ ΣU∪V | ∀X ∈ V,A(X) = fX((A)−X)}.4

Then, by applying the approach in [2], such a conditional probabilistic space
(WF , µ) can be qualitatively represented by a plausibility model ⟨WF ,≤µ⟩ where
the priority relation qualitatively represents µ by the bi­condition: µ(X|Y ) = 1 iff
all states in X is minimal with respect to ≤µ in Y .

4I denote the sub­assignment of A to U ∪ V \ {X} by (A)−X , if A is an assignment to U ∪ V .
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Therefore I propose the following model as a combination of the structural equa­
tion causal model and plausibility model.

Definition 2. A causal plausibility model is a tupleM = ⟨S,F ,≤,A⟩

• S = (U ,V,Σ) is the signature where U is the set of exogenous variables, V is
the set of endogenous variables, Σ is the range of those variables.

• F is the set of structural functions, which is assumed to be recursive.
• ≤ is a total order overWF (namely all possible assignments that complies with
F).

• A is an assignment to U ∪ V that complies with F , namely A ∈WF

3.2 Syntax and semantics based on the new model

The formal language to talk about a causal plausibility model based on the sig­
nature S is defined as below.

Definition 3 (Language for Qualitative Probabilistic Causal Reasoning). Let S =

(U ,V,Σ), formulas φ of the language L(S) are given by5

φ ::= X=x | ¬φ | φ ∧ φ | Bψϕ | [
−→
V = −→v ]φ

whereX ∈ U∪V , x ∈ Σ and
−→
V = −→v is a sequence of the formV1 = v1, . . . , Vn = vn

where
−→
V ∈ V .6

The language L(S) is a combination of the language of conditional doxastic
logic and the logic for causal reasoning. It not only contains the doxastic operator
B (which stands for belief) but also has the intervention operator [

−→
X = −→x ] which

stands for the antecedent of a counterfactual.
I will define the semantics of counterfactual based on the extended model under

the classical interventionist interpretation: a counterfactual [
−→
X = −→x ]ϕ holds on a

model M whenever ϕ holds on the model M−→
X=−→x which results from setting the

value of
−→
X to −→x .

Therefore, I will first define the notion of intervention on the causal plausibility
model, as below.

Definition 4 (Intervention). LetM = ⟨S,F ,≤,A⟩ be a causal plausibility model;
let

−→
X=−→x be a (possibly partial) assignment on the endogenous variables. The causal

plausibility modelM−→
X=−→x = ⟨S,F−→

X=−→x ,≤−→
X=−→x AF−→

X=−→x
⟩, resulting from an inter­

5Bϕ is seen as the abbreviation of B⊤ϕ.
6For convenience, I will write both V1 = v1, . . . , Vn = vn and V1 = v1 ∧ · · · ∧ Vn = vn as−→

V = −→v .
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vention setting the values of
−→
X to−→x (where

−→
X are endogenous variables), is defined

as follows:

• the functions in F−→
X=−→x = {f ′V | V ∈ V} are such that: for each V not in

−→
X ,

the function f ′V is exactly as fV , and for each V=Xi ∈
−→
X , the function f ′Xi

is
a constant function returning the value xi ∈ −→x regardless of the values of all
other variables.

• AF−→
X=−→x

is the unique solution to F−→
X=−→x whose assignment to exogenous vari­

ables is identical with A.7 Formally, AF−→
X=−→x

(Y ) is the unique assignment that
satisfies the following equations:

AF−→
X=−→x

(Y ) =

{
A(Y ) if Y ∈ U
f ′Y ((AF−→

X=−→x
)−Y ) if Y ∈ V.

• ≤−→
X=−→x⊂WF−→

X=−→x ×WF−→
X=−→x is the unique assignment satisfyingAF−→

X=−→x
≤−→
X=−→x

A′F−→
X=−→x

whenever A ≤ AF . 8

This definition of causal model results from an intervention is exactly in line
with the traditional definition of intervention developed in [6] and [3].

Based on the definition of intervention on causal plausibility models, the seman­
tics of L(S) is given as below:

Definition 5. Semantics of L(S)

• ⟨S,F ,≤,A⟩ |= X = x iff A(X) = x

• ⟨S,F ,≤,A⟩ |= Bψϕ iff min≤ ||ψ|| ⊂ ||ϕ||, where ||ϕ|| := {A′ ∈ WF |
⟨S,F ,≤,A′⟩ |= ϕ}

• ⟨S,F ,≤,A⟩ |= [
−→
X = −→x ]ϕ iff ⟨S,F−→

X=−→x ,≤−→
X=−→x AF−→

X=−→x
⟩ |= ϕ

• the Boolean connectives are defined in the usual way.

Given the semantics above, a logic for qualitative probabilistic causal reasoning
can be derived from the syntax and semantics above. I denote all the valid formulas
of L(S) by LCP (S). In this paper, I will not discuss the axiomatization of LCP (S).
The idea of building the axiom system seems to be a combination of all the axioms
in conditional doxastic logic as in [2] and the logic of counterfactuals in [6]. How­
ever, such a logic system is not just a simple sum of the axioms of CDL and the logic
of counterfactuals. For instance,

−→
X=−→x ∧ ϕ → B

−→
X=−→x ϕ (if {

−→
X} = U ∪ V) and

B[
−→
X=−→x ]ϕ→ [

−→
X=−→x ]Bϕ are both valid according to my semantics while it cannot

7Since F is recursive, F−→
X=−→x is also recursive. Thus F−→

X=−→x has unique solution with respect to
each setting of exogenous variables.

8≤−→
X=−→x is well­defined because F is recursive, so that there is a bijective mapping from WF and

WF−→
X=−→x .
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be derived simply using the axioms of CDL and the logic of counterfactuals. There­
fore the axiomatization for LCP (S) is still an open question worth investigation in
the future.

4 Further Discussion

4.1 Qualitative independence

In probability theory, the quantitative representation of (conditional) probability
gives rise to a quantitative notion of (conditional) independence. Let µ be a proba­
bilistic distribution and X,Y be two variables, the independence between X and Y
can be defined in terms of the equation between unconditional probability and condi­
tional probability, that is: X is independent of Y with respect to µ whenever for any
value x, y, µ(X=x)=µ(X=x | Y=y), as far as µ(Y=y) ≠ 0.

Similarly, based on my causal plausibility model, the qualitative independence
can be defined in terms of the equivalence between unconditional belief and condi­
tional belief, that is: X is qualitatively independent of Y with respect toM whenever
for any value x, y,M |= B(X=x) ⇔M |= BY=y(X=x), as far asM |= ¬BY=y⊥.

We can also generalize this idea to conditional independence. X is probabilis­
tically independent of Y conditional on Z with respect to µ, can be defined by: For
any x, y, z, µ(X=x | Y=y, Z=z) = µ(X=x | Z=z) as far as µ(Y=y, Z=z) ̸= 0.
Therefore, X is qualitatively independent of Y conditional on Z with respect to
M can be defined by: M |= BY=y,Z=z(X=x) ↔ BY=y(X=x) as far as M |=
¬BY=y,Z=z⊥.

Therefore, the syntax and semantics given in this paper enable us to derive a
qualitative notion of independence in the same way as the quantitative notion of in­
dependence is derived from the probability.

4.2 Strengthen the connection between causality and probability in the model

The matching between causal structure and probability is an important aspect in
the studies of causality. For instance the Markovian relativity and the “d­separation”
criteria developed in [13] are core concepts in the study of causal Bayesian networks.

So far as I define the causal plausibility model in Section 3, there is only a weak
connection between causality and probability: that is, only states that comply with
the causal rules are considered as possible. It guarantees some obvious connection
between causality and probability, for instance if

−→
X are all those variables other than

Y , then fY (
−→
X=−→x )=y implies B

−→
X=−→x Y=y (which means the probability of Y=y

conditional on
−→
X=−→x is 1). However such a connection is still weak that is unable to

derive certain features that are intuitively right in the process of causal reasoning, as
in the following example.
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Example 1. John needs to catch up a flight at the airport tomorrowmorning. If John
gets up late or there is a traffic jam on the road to the airport next morning, then it is
very probable that John will miss the flight. If John does not set any alarm clock in
advance, then John probably gets up late.

The causal structure of this example can be graphically represented as below:

UT A

UA

T G

UG

F UE

• fT : T = 1 iff UT = 1

• fA: A = 1 iff UA = 1

• fG: G = 1 iff A = 0 and UG =

1

• fF : F = 1 iff T = 1 ∨ G = 1

and UE = 1

In this scenario, the following statements are intuitively right:

• (i) Given that John gets up early or not, the probability/belief of John missing
the flight is independent of whether John sets up any alarm clock in advance.

• (ii) The probability/belief of there is a traffic jam on the road is independent of
whether John sets up any alarm clock in advance.

As the qualitative independence can be expressed by L(S), if the causal reason­
ing of an agent about this scenario is properly modelled by a causal plausibility model
M , then this properties should be reflected by the formulas of this language. For in­
stance, according to the analysis in section 4.1, property (i) can be expressed by the
truth of the following formula:∧

f,g,a∈Σ(B
G=g,A=aF=f ↔ BG=gF=f)

From the perspective of causal Bayesian nets, feature (i) and (ii) is guaranteed
by the d­separation criteria: if assume the probabilistic distribution to be Markovian
relative to the causal graph, then A and F must be independent conditional on G as
they are d­separated by {G}. For the same reason, T and A are independent as they
are d­separated by ∅. Unfortunately, Definition 4 is unable to guarantee such kind
of properties in a qualitative sense: for instance, it could be the case that for some
≤ over WF , those most plausible G=0 ∧ A=1­worlds are all F=1 worlds while
some most plausibleG=0­worlds are F=0­worlds, so thatM |= BG=0,A=1F=1 but
M |= ¬BG=0F=1. This means an agent changes her mind about F by learning from
A even if the information about G is given. This is not inconsistent, of course, if we
take ≤ as some qualitative representation of the subjective belief about the external
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world. However if we want the agent to be more rational, then the possibility of such
kind of belief revision should be ruled out.

In order to make ≤ more objective, ≤ should not be too arbitrary. Therefore
some proper restrictions should be imposed on ≤ with respect to F . For instance, a
natural restriction is that all exogenous variables should be independent.

Definition 6. The plausibility ordering in ⟨S,F ,≤,A⟩ keeps the independence of
exogenous variableswhen the following property holds: For anyA1,A2 ∈WF and
−→
U ∈ U ,

−→
U− = U \{

−→
U }, ifA1 ≤ A2 A1(

−→
U −) = A2(

−→
U −), then for anyA′

1 andA′
2,

A′
1(
−→
U ) = A1(

−→
U ), A′

2(
−→
U ) = A2(

−→
U ) and A′

1(
−→
U −) = A′

2(
−→
U −) implies A′

1 ≤ A′
2.

If we assume the causal plausibility models modelling Example 1 must keep the
independence of exogenous variables, then it exactly has the desired dependence and
independence. In order to illustrate how this assumption works, let us take indepen­
dence between F=1 and A=1 conditional on G=0 as an example:

M |= BG=0∧A=1F=1 iff min≤ ||G=0 ∧A=1|| ⊂ ||F=1||9
iff min≤ ||G=0 ∧A=1|| ⊂ ||G=0 ∧A=1 ∧ F=1||
iff min≤ ||UA=1|| ⊂ ||UA=1 ∧ UT=1 ∧ UE=1||
iff min≤ ||UA=1∨UG=0|| ⊂ ||(UA=1∨UG=0)∧UT=1∧UE=1|| (by the assumption
thatM keeps the independence of exogenous variable)
iff min≤ ||G=0|| ⊂ ||G=0 ∧ F=1|| iff min≤ ||G=0|| ⊂ ||F=1||
iff BG=0F=1

This result fits our intuition: given John does not get up late, then whether the
alarm is set will be irrelevant to whether John misses the flight.

Therefore, based on the same syntax and semantics as in section 3.2, the logic
with respect to causal plausibility models that keep the independence of exogenous
variables is also useful in the qualitative analysis of dependence and independence.

5 Conclusion

In this paper, I proposed a qualitative model of probabilistic causal reasoning
called causal plausibility model. Based on the method of [2], the plausibility relation
in this model can be seen as a qualitative representation of the probabilistic distri­
bution over causal variables. I also proposed a syntax and semantics to describe the
model from a logical perspective. In addition, the formal language is able to express a
qualitative notion of dependence among causal variables in terms of epistemic oper­
ators. I also showed that by imposing certain restrictions on the plausibility ordering
of the causal plausibility model, the qualitative logical framework can also be used to
analyse the dependence and independence among variables in a causal graph.

9||ϕ|| = {A ∈ WF |⟨S,F ,≤,A⟩ |= ϕ}.



26 Studies in Logic, Vol. 15, No. 6 (2022)

References

[1] A. Baltag and S. Smets, 2008, “A qualitative theory of dynamic interactive belief re­
vision”, in G. Bonanno et al. (eds.), Texts in Logic and Games, Vol. 3: Logic and the
Foundations of Game and Decision Theory (LOFT 7), pp. 11–58, Amsterdam: Ams­
terdam University Press.

[2] A. Baltag and S. Smets, 2008, “Probabilistic dynamic belief revision”, Synthese, 165(2):
179–202.

[3] R. Briggs, 2012, “Interventionist counterfactuals”,Philosophical Studies, 160(1): 139–
166.

[4] B. C. van Fraassen, 1976, “Representational of conditional probabilities”, Journal of
Philosophical Logic, 5(3): 417–430.

[5] B. C. van Fraassen, 1995, “Fine­grained opinion, probability, and the logic of full be­
lief”, Journal of Philosophical Logic, 24(4): 349–377.

[6] J. Y. Halpern, 2000, “Axiomatizing causal reasoning”, Journal of Artificial Intelli­
gence Research, 12: 317–337.

[7] D. Ibeling and T. Icard, 2020, “Probabilistic reasoning across the causal hierarchy”,
Proceedings of the AAAI Conference on Artificial Intelligence, 34(6): 10170–10177.

[8] J. Pearl, 1995, “Causal diagrams for empirical research”, Biometrika, 82(4): 669–688.
[9] J. Pearl, 2000, Causality: Models, Reasoning, and Inference, New York: Cambridge

University Press.
[10] J. Pearl, 2002, “Causality: models, reasoning, and inference”, IIE Transactions, 34(6):

583–589.
[11] K. R. Popper, 2002, The Logic of Scientific Discovery, London: Routledge.
[12] A. Rényi, 1955, “On a new axiomatic theory of probability”, Acta Mathematica Hun­

garica, 6(3­4): 285–335.
[13] T. Verma and J. Pearl, 1990, “Causal networks: Semantics and expressiveness”, in

R. D. Shachter et al. (eds.),Machine Intelligence and Pattern Recognition, Vol. 9: Un­
certainty in Artificial Intelligence, pp. 69–76, Amsterdam: Elsevier.



Kaibo Xie / A Qualitative Logical Analysis of Probabilistic Causal Models 27

概率因果模型的质化逻辑分析

谢凯博

摘 要

因果推理往往需要处理不确定性。尽管传统的结构等式模型擅于处理确定因

果结构中的推理，却不能直接用来刻画涉及概率的因果推理。当前一些学者试图

将量化的概率表达式引入到关于因果性的形式语言中，从而描述概率因果推理。

有别于这种量化研究路径，本文提出一种关于概率因果推理的质化模型，通过认

知关系来表达变元的不确定性。此外，基于该模型的形式语言能够在质化的意义

上表达变元间的独立关系，有助于进一步研究因果与概率之间的联系。
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