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Modal Logic of Multivalued Frames over Inversely
Well-Ordered Sets*

Fan He

Abstract. Multivalued frames generalize Kripke frames via introducing a set of values for
pairs of states. A set of values @) is supposed to be an inversely well-ordered set. The intended
multimodal language is interpreted in models based on multivalued frames over Q. Goldblatt-
Thomason theorems for certain classes of Q-frames are established. Normal (Q-modal logics are
introduced, and some completeness results are naturally given by adjusting the canonical model
method. Makinson’s classification theorem as well as some logical properties are established
for normal @-modal logics.

1 Introduction

Multimodal logic is a name for a bunch of modal logics which formalize rea-
soning about multiple modalities. The following passage from Dana Scott is often
quoted when the significance of multimodal logic is concerned:

Here is what I consider one of the biggest mistakes of all in modal logic:
concentration on a system with just one modal operator. The only way to
have any philosophically significant results in deontic logic or epistemic
logic is to combine those operators with: tense operators (otherwise how
can you formulate principles of change?); the logical operators (other-
wise how can you compare the relative with the absolute?); the operators
like historical or physical necessity (otherwise how can you relate the
agent to his environment?); and so on and so on. ([11], p. 161)

Scott emphasizes many faces of a philosophical modality. For instance, the notion of
belief should be combined with tense if the change or update of an agent’s belief is
concerned. Although the combination is needed for some philosophical purposes, the
exact way of combination which represents the intrinsic corelation between modalities
has not been well-explored yet.

A direct response to Scott’s remark is the development of multimodal logic in
the study of reasoning in multiagent systems. Multimodal logics have been widely
studied in the literature (e.g., [2, 3]). For example, the multiagent epistemic logic
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requires a knowledge operator K, for each agent a (e.g., [13]). A typical example
is the multimodal logic S5 as the standard multiagent epistemic logic. In an idealis-
tic multiagent model, agents are usually assumed to be independent, i.e., every agent
makes reasoning in situations without disturbance from other agents. However, if
agents are organized or structured in a certain way, the corresponding modalities in
logic must be connected in the same way. A sort of combination is shown in propo-
sitional dynamic logic where each program 7 is assigned with a modality [r], and the
composition, choice and repetition of programs are presented by interaction axioms
between modalities (e.g., [9]).

From the semantic perspective, relational semantics for modal logic has been
well-explored. A Kripke frame (‘K-frame’ for short) for a monomodal language is
a pair (W, R) where W is a non-empty set of states, and R is a binary relation on
W. Each modal formula Oy is true at a state w if and only if ¢ is true at all R-
accessible states of w (e.g., [1, 2]). An accessibility relation R is indeed a bivalent
function R : W x W — {0, 1}. In the present work, we generalize Kripke frames
by changing the set {0, 1} into a set of values () and obtain multivalued frames. This
leads to a general framework for the investigation of multimodal logics. One can
impose additional structure on (), and study the modal logics of these special class
of frames.

One should mention that two sorts of semantics for many-valued modal logic
are given by Fitting [6, 7]. Let T" be a finite distributive lattice the elements of which
are accounted as values. Every formula ¢ will take a value V (w, ¢) at the state w in
a model. In Fitting’s second version, a model is a triple (W, R, V') where W # &
and R is a multivalued relation on W, i.e., a function R : W x W — T. The value
V(w,O) is defined as A{R(w,u) = v(u,p) : v € W} where = is a relative
pseudo-complement implication. Fitting’s many-valued modal logic is a monomodal
many-valued logic, and the value set of formulas coincides with that of relations in
a frame.

In the present work, we assumes that the set of values () is an inversely well-
ordered (or dually well-ordered) set, i.e., every nonempty subset of () has a maximal
element. Formally, a partial (Q-valued frame is a pair (W, o) where W # & is a set of
statesand o : W x W — () is a partial function. If o is a total function, one obtains
total Q-valued frames. In general, o(w, u) = a (if exists) means that u is accessible
from w by a. Each value a € () can be interpreted in practical scenarios as an agent,
and hence the relation R = {(w, u) : o(w, u) exists and it is above a in Q) } is used
to interpret the modality [a]. A modal formula [a]y states that a makes sure that .
In general, since the values in () are ordered by <, one could require that [b]¢ holds
if a < b and [a]y holds. The agent with higher level has the ability to achieve what
agents with lower level can do. Concrete scenarios where such frames can be used
for modeling are not discussed in the present work. What we shall present contains a
general framework for the study of multimodal logic and some related normal modal
logics. This framework certainly differs from Fitting’s many-valued modal logic.
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This article is structured as follows. Section 2 gives the modal language and
semantics where partial ()-valued frames are introduced. Section 3 introduces nor-
mal )-modal logics and proves the completeness of the minimal normal ()-modal
logic. Section 4 defines some model constructions and proves some preservation re-
sults. Section 5 presents a Goldblatt-Thomason theorem for characterizing the modal
definability of certain classes of partial ()-frames by the duality between partial Q-
valued frames and modal (Q-algebras. Section 6 makes more observations on normal
(Q-modal logics and proves some general results. Section 7 gives concluding remarks.

2 Language and Semantics

The cardinal of a set X is denoted by |X|. In the present work, we assume
the axiom of choice, and hence admit the well-ordering theorem, i.e., for every set
X there exists a binary relation which well-orders X. An inversely well-ordered set
(‘i.w.o set’ for short) is a pair (@), <) such that > well-orders the nonempty set @, i.e.,
< is a linear order on () such that every subset @ # X C () has a maximal element
\/ X. The minimal element of X is denoted by A X if it exists. Every i.w.o set () has
the top element 1. If @ is finite, every a € @ \ {1} has a unique proper successor a*.
A downset in an i.w.o set () is a subset X C () such thata < b € X impliesa € X.
An upset in () is a subset X C ) suchthata € X anda < bimply b € X. Let | X
and 17X be the downset and upset in () generated by X respectively.

Definition 1. Let ) be an i.w.o set. The multimodal language £;((Q) consists of
a denumerable set of propositional variables P = {p; : i < w}, connectives L and
—, and unary modal operators {[a] : @ € Q}. The set of formulas F'm(Q) is defined
inductively as follows:

Fm(Q) 3 ¢ u=p| L[ (p1— p2)|la]p

where p € P and a € (). Connectives T,—, A,V and <> are defined as usual. For
every a € @, one defines (a)¢ := —[a]-p. The complexity of a formula p € Fm(Q),
denoted by (), is defined inductively as follows:

(p) = 0=06(L);0(p = ¢) = maz{d(¢),6()} + 1;0([alp) = 6(p) + 1.

A substitution is a function s : P — F'm/(Q). For every formula ¢ € Fm(Q), let ¢*
be obtained from ¢ by the substitution s.

Definition 2. Let Q) be an i.w.o set. A multivalued frame over Q) (‘Q-frame’ for
short) is a pair F = (W, o) where W # @ is a set of states, and o : W x W — Q is
a partial function from W x W to Q). An Q-frame F = (W, o) is called total, if o is
total, i.e., every pair in W x W is defined.

LetF = (W, o) be a Q-frame. The notation o(w, u)! means that o(w, u) exists
in Q. One writes o(w, u)! > a if o(w,u)! and o(w,u) > a. For every a € @, the
binary relation R on W is defined as follows:
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wRJw if and only if o(w, u)! > a.

Let R (w) = {u € W : o(w,u)! > a}. Let Fq be the class of all Q-frames.

A valuation in a Q-frame F = (W, o) is a function V' : P — P(W) from P to
the powerset of W. A Q-model is a triple Ml = (W, o, V') where (W, o) is a Q-frame
and V is a valuation in (W, o).

Example 1. Consider the following Q-frames F; and Fo:

a a
S CEy.0
w U al w b
’\b/ b

Fl I[3-"2

Here F; is not total since o(w, w) and o(u, u) are undefined. But Iy is total.

Definition 3. LetF = (W, 0) be a Q-frame, M = (W, 0, V) a Q-model and w €
W. Forevery ¢ € Fm(Q), the satisfaction relation M, w = ¢ is defined inductively
as follows:

() M, w = pifand only if w € V(p).

Q)M,w £ L.

B)M,w | ¢ — ¢ ifand only if M, w [~ ¢ or M, w |= .

(4) M, w = [a]g if and only if M, u |= ¢ for all u such that o (w, u)! > a.

Let V(p) = {w € W : M,w [= ¢}. A formula ¢ is true in M, notation M = ¢,
if V(p) = W. A formula ¢ is valid at w in F = (W, o), notation F,w |= ¢, if
F,V,w = ¢ for every valuation V in F. A formula ¢ is valid in IF, notation F |= ¢, if
F,w | ¢ for every w € W. A formula ¢ is valid in a class of Q-frames K, notation
K = ¢, ifF = ¢ forevery F € K.

LetI' € Fm(Q) be a set of formulas. Let S |= I stand for that S = ¢ for all
¢ € I'. The class of all Q-frames defined by I is denoted by Fro(I') = {F : F |=T'}.
IfT' = {¢}, one writes Frg (). The modal theory of a class of Q-frames /C is defined
as the set Th(K) = {¢ € Fm(Q) : K = ¢}. We say that K is modally Q-definable,
if £ = Frg(Th(K)).

Example 2. One can easily show that [a]p <> [b]p is not valid in Fg if a # b.
Assume a # b. Without loss of generality, let a > b. Let M = (W, 0, V) be the
@-model where W = {w,u,v}, o(w,u) = a and o(w,v) = b, and V (p) = {u}.
Then M, w |= [a]p and M, w = [b]p. It follows that Ml = [a]p <> [b]p. However, by
b < a, one has Fg = [b]p — [a]p. For every Q-frame F = (W, o), F |= [a]p — [b]p
ifand only if Vw,u € W(o(w,u)! > b= o(w,u)! > a).
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3 Normal ()-modal Logics and Completeness

In this section, we introduce normal ()-modal logics. As expected, the canonical
method is applied in showing the completeness of the minimal normal (J-modal logic.

Definition 4. A normal QQ-modal logic is a set of formulas L C F'm(Q) such that
L contains the following formulas:

(Tau) All instances of classical propositional tautologies.

(Ka) [al(p — ¢) = ([alp — [ag).
(Cq) [a]p — [b]p, where a < bin Q.

and L is closed under the following rules:

(MP) if o, o — 9 € L, theny € L.
(Gen) if ¢ € L, then [a]p € L.
(Sub) if ¢ € L, then ¢° € L for every substitution s.

A formula ¢ is a theorem of L, notation -y, o, if p € L.

For every family of normal Q-modal logics {L; : i € I}, (),c; Li is a normal
@Q-modal logic. The minimal normal ()-modal logic is denoted by K¢. Let @, L;
be the smallest normal Q-modal logic containing | J,;.; L;. For every set of formulas
Y, let Kg @ ¥ ={L: X C L}, the minimal normal ()-modal logic containing 3.
If ¥ = {¢}, we write K¢ @ ¢ instead of K @& {¢}. For every normal )-modal logic
L, let NExt(L) be the set of all normal ()-modal logics containing L.

Remark 1. If |Q| = 1, Kq is exactly the standard monomodal logic with a single
modality (J (e.g., [2]). Notions for basic normal modal logic can be applied. If |Q| >
1, one obtains multimodal logics with respect to ). Moreover, the following hold for
every normal ()-modal logic L:

() [a]T <+ T € Land (a)L <» L € L.

) [al(p1 A ... Apn) « ([aler A .. [alen) € L.

3) (a)(p1 V...V n) < ((a)p1 V... {a)p,) € L.

) [alp A (a)p — (a)(p AY) € L.

(5)if o — ¢ € L, then [alp — [a]p € L and (a)p — (a)y) € L.

Let L be anormal ()-modal logic. A formula ¢ is a L-consequence of a set of formulas
I', notationI" 1, ¢, if p € L or there exist ¢,...,¥, € Uwithy1 A... A, = ¢ €
L. A set of formulas I is L-consistent, if I' t/;, 1; and I' is maximal L-consistent, if I’
is L-consistent and C-maximal. One obtains the deduction theorem and Lindenbaum-
Tarski lemma for L: (i)', ¢ 1, ¢ ifand only if " -, o — ; (i1) if I is L-consistent,
there is a maximal L-consistent set > with I' C X,

A normal )-modal logic L is complete, if L = Th(Frg(L)). One can obtain
some completeness results using the canonical method.
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Definition 5. Let W7 be the set of all maximal L-consistent sets of formulas. For
every a € @), one defines Rg C WL x WL as follows:

YRLO if and only if p € © for all [a]p € .

For every pair (X,0) € W% x W, one defines Xé(Z,@) = {a € Q: 2RO}
The canonical Q-model for L is defined as MY = (WE, o VE) where

VX5(2,0) ifX5(%,0)# 2.
undefined otherwise.

ol(x,0) = {

and VE(p) = {¥ € WE : p € 22} for every p € P. The canonical Q-frame for L is
defined as FX = (WE, oF).

Lemma 1. Forevery ©,0 € W¥ and a € Q, the following hold:

(1) Xé(Z, ©) is a downset in Q.
(2)if X5(2,0) # @, then X}(5,0) = L\ Xq(Z, 0).
(3)ac XCLQ(E, ©) ifand only if c*(%, 0)! > a.

Proof. (1) Assumea < bandb € Xé(E, ©). Then SR}'O. Suppose [a]p € T. By
(Cq), [alp — [ble € L. Hence [blp € ¥. By RO, one obtains ¢ € ©. It follows
thata € X5(%,0).

(2) Assume Xé(E, ©) # ©. Then \/Xé(E, ©) is the maximal element of
X5(2,0). By (1), X5(2,0) = LV X5(2,0).

(3) Assume a € X5(%,0). Then o/(%,0)! = \/ Xj(%,0) > a. Assume
ol (2,0)! > a. Thena < \/Xé(z,@). By (2),a € X(s(E, ©). O

Lemma2. ForeveryY € WL, iflale ¢ %, there exists © € W witha € Xé(E, 0)
and p & O.

Proof. Assume[a]p & . LetI’ = {¢ : [a]yp € Z}U{—¢}. Assume that I is not L-
consistent. ThenI" -7, L. There exist¢1,..., ¥, € I'with (Y1 A...AYy,) — ¢ € L.
By (Gen), (K,) and (MP), [a](¢1 A ... Ayn) — [ale € L. By [a](1 A ... Ahy) >
(lalyr A ... [a]pn) € L, one obtains [a]p € L. Then [a]e € 3, which contradicts the
assumption. Hence I is L-consistent. Let ' C © € W’. Thena € Xé(Z, ©) and
p & 0. O

Lemma 3. Forevery ¥ € WX, M~ S = o ifand only if o € 3.

Proof. The proof proceeds by induction on the complexity 6(¢). The atomic and
Boolean cases are obvious. Let ¢ = [a]i). Assume [a]y) € 3. Suppose o*(3, ©)! >
a. By Lemma 1, a € Xé(Z,@). Then X RLO. Hence p» € ©. By induction hy-
pothesis, M*, © = ¢. Hence M, % |= [a]p. Assume [a]i) ¢ . By Lemma 2,
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there exists © € W with a € XCLQ(E,@) and ¢ ¢ ©. Then XCLQ(E,@) # & and
ol(%,0)! = V X5(%,0) > a. By induction hypothesis, M*, © - . Hence
M*, ¥ [ [a]p. O

Theorem 1. Kg is complete.

Proof. Clearly Fr(Kqg) = Fg. Obviously Kg € Th(Fg). Assume ¢ ¢ K¢. Then
{=¢} is Kg-consistent. Let ¥ € WXe with =¢ € X. By Lemma 3, ML, % [ .
Hence ¢ ¢ Th(Fg). O

4 Model Constructions and Preservation Results

As far as modal ()-definability of )-frames concerned, one can define some
interesting properties of ()-frames. For example, let () be finite. For every a < 1,
consider the property ®(a): for every state w there exist u with o(w, u) = a and no
v with o(w, v) > a. Clearly ®(a) is defined by the formula (a)T A [a*] L where a*
is the successor of a in ). For more general results on the modal ()-definability of
frames in £/(Q), one needs some preservation results on ()-frames.

Definition 6. The disjoint union of a family of Q-frames {F; = (W;,0;) : i € I}
is defined as |, ; F; = (W, 0) where W = J,c;(W; x {i})and o : W x W — Q
is defined as follows:

, , oi(w,u) ifw,u € W, forsomei € [ andi = j.
J(<w’z>v<u7]>) = .
undefined otherwise.
The disjoint union of a family of @-models {M; = (F;,V;) : i € I} is defined as
Wicr M = (Wi Fi, V) where V(p) = U, (Vi(p) x {i}) forall p € P.

Proposition 1. Let {M; = (F;,V;) : i € I} be a family of disjoint Q-models where
F; = (Wi, 0;) withi € I. Foreveryi € I, w € Wyand p € Fm(Q), (1) M;,w = ¢
if and only if \§);c ; My, (w, i) = @, and (2) 4, Fs = @ if and only if F; |= ¢ for all
1€ 1.

Proof. One obtains (1) immediately by induction on the complexity 6(¢). The proof
is omitted. Obviously (2) follows from (1). (I

By Proposition 1, every modally ()-definable class of partial )-frames is closed
under taking disjoint unions. It follows that the class of all total Q)-frames is not
modally ()-definable since it is certainly not closed under taking disjoint unions.
The disjoint union of more than two total ()-frames (@)-models) must be partial and
not total.
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Definition 7. LetF = (W, o) be a Q-frame. For every @ # X C W, the subframe
of F generated by X is the Q-frame Fx = (Wx,ox) where (i) Wy is the smallest
subset of W containing X such that o (w, u)! implies u € Wx whenever w € Wx and
u€ Wiand(i))ox = oN(Wx xWx). If X = {v}, one writes F,, = (W,,, 0,). A Q-
frame F' = (W', ¢’) is a generated subframe of F, if I’ = F x forsome @ # X C W.
A Q-model M = (F', V") is a generated submodel of a Q-model Ml = (F, V), if F
is a generated subframe of F’ and V' (p) = V'(p) N W for every p € P. One uses
S »— S’ to denote that S is isomorphic to a generated substructure of S'.

Proposition 2. Let M = (F, V) and M = (F', V") be Q-models. Assume M — M.
Foreveryw € W and formula ¢ € Fm/(Q), (1) M, w = ¢ ifand only if M, w = ¢;
and 2) if F' |= o, then F |= .

Proof. One obtains (1) immediately by induction on the complexity d(¢). The proof
is omitted. Obviously (2) follows from (1). O

Definition 8. Let F = (W,0) and F' = (W’,0’) be Q-frames. A function 7 :
W — W' is a bounded morphism from ¥ to I/, if the following conditions hold for
allw,u e W,u € W anda € Q:

(1) ifo(w,u)! > a, then o(n(w),n(u))! > a.

(2)if o' (n(w),u)! > a, there exists u € W with o(w,u)! > a and n(u) = u'.
For Q-models M = (F, V) and M’ = (F', V'), a functionn : W — W' is a bounded
morphism from M to M, if n) is a bounded morphism from IF to " and the following
condition holds forall w € W and p € P:

(3) w € V(p) if and only if n(w) € V'(p).
A Q-frame F’ is called a bounded morphic image of F, notation F — F’, if there

exists a surjective bounded morphism from F to F’.

Example 3. Let {a1,...,a,} € Q witha; < ajforl < i < j < n. LetF =
(W,o)andF' = (W', o’) be Q-frames where (i) W = {w; : i < n}and o(wp, w;) =
a;; (i) W = {u,v} and o/ (u,v) = an,.

wy - Wy
wo

Letn : W — W be the function with n(wp) = u and n(w;) = v forall 1 < i < n.
Note that o’ (u,v) = a,, > a; forall 1 < i < n. It is quite easy to observe that 7) is a
surjective bounded morphism from F to F’.
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Proposition 3. Let F = (W,0) and F' = (W', 0') be Q-frames, and Ml = (F,V)
and M' = (F', V') be Q-models. Assume thatn : W — W' is a bounded morphism
from M to M. For every w € W and formula ¢ € Fm(Q), (1) M,w [ ¢ if and
only if M, n(w) | ¢, and (2) if ) is surjective and F |= ¢, then F' |= .

Proof. One obtains (1) by induction on the complexity d(¢). The proof is omitted.
For (2), let n be surjective and F' }= ¢. Let F/, V', w' [~ ¢ for some valuation V'
and w’ in F/. Let V be the valuation in F with V(p) = {u € W : n(u) € V'(p)}
for each p € P. Since 7 is surjective, there exists w € W with n(w) = w’. By (1),
F,V,w F~ . Hence F = . O

Let F = (W, 0) be a Q-frame. The unary operation {¢J on P(W) is defined by
setting O7Y = {w € W | RS(w)NY # @}. ForeveryY C W,letY = W\ Y.
One defines 7Y = O2Y = {w € W | RS(w) C Y}.

Lemmad4. LetF = (W, 0) be a Q-frame. For everyY C W and a,b € Q, ifa < b,
then Q7Y C Q7Y and LI]Y C LI7Y.

Proof. Assumea < bandw € O7Y. Letu € R} (w)NY. Thenu € R](w). Then
u € OY. Hence O7Y C O7Y. Similarly 07Y C 7Y, O

Let F = (W,0) be a Q-frame and W"¢ be the set of ultrafilters over W. A
subset T' C P (W) has the finite intersection property (FIP), if Y1, ..., Y, € T imply
Yin...NY, # @. If T has the FIP, there exists u € W"¢ with T C .

Definition 9. LetF = (W, 0) be a Q-frame. For every u,v € W€, let
X§ (u,v) ={a € Q: (VY €v)0gY € u}.

The ultrafilter extension of I is defined as the Q)-frame F"¢ = (W*"¢ o"¢) where
ot WH x W — @ is defined as follows:

ey - {VEE@D) EXE ) £
" (u,v) = .
undefined otherwise.

The ultrafilter extension of a partial @Q-model M = (F,V) is defined as M"¢ =
(Fue, Vue) where V% (p) = {u € W"¢ : V(p) € u} for every p € P.

Proposition 4. Let F = (W, 0) be a Q-frame and M = (F, V') be a Q-model. For
every u € WU and formula o € Fm(Q), (1) V() € wif and only if M", u = ¢,
and (2) if F“¢ |= ¢, then F = .

Proof. (1) The proof proceeds by induction on §(yp). Atomic and Boolean cases
are obvious. Let ¢ = (a)yp. Assume M““ u | (a)ip. There exists v € We
with 0"¢(u,v)! > a and M"¢,v = . By induction hypothesis, V(¢)) € v. Let
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0"(u,v) = b > a. Thenb € X (u,v). Then O7V(¢)) € u. By Lemma 4,
V((a)y) = OV () 2 07V (). Hence V ((a)y)) € u. Assume V({a)) € wu.
Let v/ = {Y : O9Y € u}. Clearly v’ is closed under finite intersection. Suppose
Y € v/. Then O%Y € u. Hence @ # 7Y NV ((a)y)) € u. Let s € 7Y N
V({a)yy) =0%Y NOIV (¢) C O9(Y NV (¢)). Then there existst € Y NV (), i.e.,
YNV (y) # @. Hence v’ U{V (¢)) } has the FIP. Let v € W"¢ and v’ U{V (¢))} C v.
By induction hypothesis, M"?, v |= . Now we show a € X§°(u,v). Suppose not.
Then (0 Z ¢ u for some Z € v. ThenJJZ € u. Then Z € v' C v which contradicts
Z € v. Hence a € X (u,v). Then 0“*(u, v)! > a. Hence M, u [= (a)y.

(2) Assume F [~ . There exists a valuation V inF and w € W withw &€ V().
Letm(w) ={Y CW :w € Y}. Clearly 7(w) € W"¢. Then V (¢) ¢ m(w). By (1),
M“e, 7(w) ¥~ . Hence F“¢ [~ . O

A class of Q-frames /C reflects ultrafilter extensions, if F*¢ € IC implies ' € K.
By Proposition 4, every modally (J-definable class of Q)-frames reflects ultrafilter
extensions.

5 Goldblatt-Thomason Theorems

The Goldblatt-Thomason theorem for modal logic (e.g., [2, 8]) applies the Birkh-
off’s variety theorem in universal algebra to modal logic. In this section, we first
show such theorem holds for finite transitive ()-frames. Then we introduce modal
(Q-algebras for normal ()-modal logics, and establish a Goldblatt-Thomason theorem
for inversely well-ordered modal logic via the duality between modal (Q-algebras and
@-frames.

Definition 10. A Q-frame F = (W, 0) is transitive, if o(w,u)! and o (u, v)! imply
o(w,v)! for all w,u,v € W. Let ’7'Q<"J be the class of all finite transitive QQ-frames.
A transitive Q-frame F = (W, o) is rooted, if there exists w € W with o(w, u)! for
all u # w in W. Such a state is called the root of FF.

Remark 2. Let ) be finite and A\ @ = a. The class of all transitive Q-frames is
defined by the formula [a]p — [a][a]p. This is shown as follows. Let F = (W, 0)
be a )-frame. Assume that [ is transitive. Let Ml = (IF, V') be a model. Suppose
M,w = [a]lp, o(w,u)! > a and o(u,v)! > a. By the transitivity, o(w,v)! > a.
Then M,v = p. Hence F |= [a]p — [a][a]p. Now assume F = [a]p — [a][a]p.
Suppose o(w, u)! and o(u, v)!. Let V be a valuation in F with V' (p) = R (w). Then
M,w E [a]p. Hence M,w = [a][a]p. Then M,v &= p. Then v € RJ(w), i.e.,
o(w,v)! > a.

Let @ be finite. A Goldblatt-Thomason theorem within the class TQ<‘*’ can be
established by the Jankov-Fine formula for a rooted finite transitive frame as in basic
modal logic (e.g., [2, pp. 143—144]). Let F = (W, o) be a finite transitive ()-frame



62 Studies in Logic, Vol. 15, No. 3 (2022)

with root w = wg and W = {wy,...,w,}. Eachindex i < n is associated with a
variable p;. Let A Q = aand [a] "¢ = @A[a]y for every formula . The Jankov-Fine
formula ¢ ,, is defined as the conjunction of the following formulas:

Do D
[a] \/ pi (I1)
i<n
N [al* (i = —p;) (111
i<j<n
A Ll (pi = (a)p;) (Iv)
wi ERG (w;)
N lalt (i = = (a)p;) V)
w; ERG (w;)

For every transitive Q-frame G = (G,7) and v € G, let G, = (G, 7’) be the Q-
frame generated by v.

Lemma 5. Let Q be finite. For every transitive Q-frame G = (G, 7) and v € G,
there exists a valuation U in G with G,U,v |= @r., if and only if there exists a
surjective bounded morphism 1) from G, to F with n(v) = w.

Proof. Let AQ = aand G, = (G',7'). Assume thatn : G’ — W is a surjective
bounded morphism from G, to F with n(v) = w. Let V be a valuation in F with
V(pi) = {w;} fori < n. Let U be a valuation in G, with U (p;) = {z € G’ | n(z) =
w;} fori < m,and U(q) = V(q) = @ forall ¢ € {po,...,pn} Clearly z € U(p;)
if and only if n(x) € V(p;). Then n is a surjective bounded morphism from (F, V)
to (G, U). Obviously F,V,w |= ¢r.. By Proposition 3, G,,U,v |= ¢p . By
Proposition 2, G,U,v = ¢F.. Now assume G,U,v |= ¢F,,. By Proposition 2,
Gy, U,v |= ¢F . Letn : G' — W be defined by setting: 7(z) = w; if and only if
x € U(p;). Now one shows that 7 is a surjective bounded morphism.

(1) Clearly n(v) = wsince v € U(py). For every i > 0, one has o (w;, wp) > a.
By the formula (IV) is true at v in (G,, U), one has G,,U,v |= (a)p;. Hence there
exists z € R7(v) with z € U(p;), i.e., n(z) = w;.

(2) Assume 2R y. Let n(z) = w; and n(y) = wj. Then x € U(p;) and
y € U(pj). Hence G, U,z = (a)p;. For a contradiction, suppose w; & R (w;).
Since (V) is true at v in (G, U) and « € U(p;), one has G, U,z |= —(a)p; which
contradicts G, U,z = (a)p;.

(3) Assume n(xz)RJwj. Let n(z) = w;. Then x € U(p;). Since (IV) is true at
v in (G,, U), one has G,, U,z = (a)p;. Then there exists y € G’ with xR y and
y € V(py), ie, n(y) = w;. 0

Let @) be finite. We say that a class of finite transitive Q)-frames X is modally

Q-definable within 75, if K = Frgo(Th(K)) N 75*. Then we obtain the following
Goldblatt-Thomason theorem.
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Theorem 2. Let ) be finite. A class of finite transitive QQ-frames K is modally Q-
definable within TQ<“’ if and only if K is closed under taking disjoint unions, generated
subframes and bounded morphic images.

Proof. The left-to-right direction follows from Proposition 1, Proposition 2 and
Proposition 3. Conversely, assume that K is closed under taking disjoint unions, gen-
erated subframes and bounded morphic images. We show K = Frq(Th(K)) N75*.
Obviously £ C Fro(Th(K)) N 75*. Assume that F € 75 and F = Th(K). Let
F = (W, o). One has two cases:

Case 1. Suppose F has root w. Obviously —p ,, & Th(K). There exists G € K
with G [~ —¢F .. By Lemma 5, there exists v in G such that F is a bounded morphic
image of G,. Since G € I, onehas G, € K andso F € K.

Case 2. Suppose F is not rooted. Clearly F is a bounded morphic image of the
disjoint union (4, .y, F. By the proof of Case 1, one has I, € K for every z € W.
It follows that F € K. O

Now, for a more general Glodblatt-Thomason theorem, let us introduce modal
(Q-algebras for an arbitrary i.w.o set () and give some duality results.

Definition 11. Let@ beai.o.wset. Analgebra®B® = (B, +, —,0, Og)acq is amodal
Q-algebra (‘Q-MA’ for short), if (B, +, —, 0) is a Boolean algebra and {,, is a unary
operator on B satisfying the following conditions:

(1) 0,0 = 0.
(2) <>a(£L' + y) = <>a33 + an.
3) Opr < Qg ifa < b.

One defines = - y = —(—x 4+ —y), gz := =04 — xz and 1 := —0. One writes
(B, Oa)acq as a Q-MA where B is supposed to be Boolean.

Fact3. Let (B, 0q)qcq bea @-MA and z,y € B. The following hold:

(D) ifx <y, then Oyz < Oqy and Uy < Lyy.
2)0,1 =1and O, (x - y) = Ogz - Ogy.
3)ifa < b, then Uyx < L.

Basic notions in Q-MA are defined as usual (e.g., [2]). Let B = (B, 0a)ac
and B’ = (B, 0},)acq be Q-MAs. One writes (i) B = B’, if B is isomorphic to B’;
(ii) B — B, if B is isomorphic to a subalgebra of B’; and (iii) B — B/, if B’ isa
homomorphic image of B. The product of a family of Q-MAs {B; = (B;, 0!)aeq
i € I} is denoted by [[,c; Bi = ([1;c; Bis [Lics OL)acq where [T, OL is the
operation [[,.; 0% (2)(j) = Ol (z(5)) with z € [Lic; Bi- Let H, S and P be class
operations of homomorphism, subalgebra and product respectively. A class of Q-
MAs C is a variety, if C = HSPC.
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Let F = (W,0) be a Q-frame. The complex algebra of F is defined as F+ =

(P(W),U, (.),,0%)acq- It is quite easy to observe that Ft is a Q-MA. For every
class of Q-frames K, let CmK = {F* : F € K}

Definition 12. LetB = (B, {4)qcq be a finite Q-MA. An element = € B is called
an atom, if r # 0,and 0 < y < z implies y = 0. Let Wy be the set of all atoms in
B. For every x,y € Wp, one defines

So(xz,y) ={aeQ:Vze B(x <Ouz =y < 2)}.

Letop : Wi x Wi — @ be the partial function defined as follows:

_ )V Sq(z,y)  ifSq(z,y) # 2.
OB (J:a y) - .
undefined  otherwise.
The Q-frame B, = (Wp,op) is called the dual of B.
Proposition 5. B = (B,) ™ for every finite Q-MA *B.
Proof. LetB = (B, 0q)acq- One defines ) : B — P(Wpg) by setting
n(x) ={z€ Wp:z <z}

It suffices to show that 7 is an isomorphism. Clearly 7 is a bijective Boolean homo-
morphism. It suffices to show n(0,x) = O78n(x). Assume y € n(0,z). Then
y € Wpand y < Oz. Suppose 05(y,2)! > a. Then b = \/ Sg(y, z) > a. It fol-
lows Ogz < Opz. Theny < Oyx. By b € Sg(y, 2), we have z < z, i.e., z € n(z).
Hence y € 0787 (x). Now assume y € (0787 (z). Then

VzGWB(\/SQ(y,z) >a=z<ux). )

Letv = A{u € B :y < UOgu}. Then O,v = O, A{u € B : y < Oyu} =
MANMOgu € B : y < Ogu}. Clearly Sg(y, ) is a downset. Then \/ Sg(y,2) > a if
and only if @ € Sg(y, z), which is equivalent to Vu € B(y < O,u = z < u), and
also equivalent to z < v. By (}), one gets

VzeWp(z<v=z<ux). ®

By (1), v < 2. Then O,v < Oyz. Clearly y < O,v. Hence y < [, O

Definition 13. Let®B = (B, 04)qcq be a Q-MA. Let B*f be the set of all ultrafilters
in B. For every u,v € B, one defines

Xg(u,v) ={a€Q: (Vx € v)0ux € u}.
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The partial function o*f : BYf x B — @ is defined by:

auf(u,v) _ \/Xéf(uﬂ)) le(%)f(uav) 7& 9.
undefined otherwise.

The Q-frame B = (BY, %) is called the ultrafilter frame of B.

Obviously, for every Q-frame F, (F+) = F“¢. Moreover, the following Jonsson-
Tarski representation theorem holds for ()-MAs.

Theorem 4. B — (B )" for every Q-MA B.

Proof. Let®B = (B, 0u)acq and B, = (BY o). Let U : B — P(B) be the
map U(z) = {u € B : 2 € u} for x € B. Clearly U is a Boolean homomorphism
and injective. We show U (Qqz) = OgufU(m). Assume u € U(Qqz). Then Qg € u.
Clearly {y € B : Ouy € u} U {x} has the finite meet property (i.e., every meet of
finitely many elements in this set is nonzero), and so it is extended to an ultrafilter
v. Then a € Xg(u,v) and 0% (u,v)! > a. Hence u € OgUfU(:z:). Now assume
u € OgufU(m). There exists v € B with ¢"f(u,v)! > a and v € U(x). Clearly
ngf(u, v) is a downset and so a € ngf(u, v). Byv € U(x), x € vand so Qux € u,
ie,u € U(Qqx). O

Lemma 6. Let {F; = (W;,0;) : i € I} be a family of disjoint Q-frames. Then
(W; Fi)* = I FT
Proof. One defines g : P(lt);,c; Wi) — [L;c; P(W;) by setting, for all X C |4,
P(W;),9(X)(i) = XNW;. Then g is an isomorphism. Here we Verifyg(O'g?iEIUi (X))
= TLies 95(9(X)). By the definition, g(0&*<' ™ (X))(j) = 08! ™(X) N W; =
o (X N Wj)and [T, 057 (9(X))(4) = Oa’ (9(X)(4)) = Oa’ (X N Wj). Forall
. Lﬂz [e47 . o; ;
j €1, 9(0a" " (X))(J) = [Lies 07 (9(X)) () 0
Letn : W — W’ be a function. The dual of 7 is the function n* : P(W') —
P(W) defined by n* (X’) = n~1(X’). LetB and B’ be Q-MAsand g : B — B’bea
function. The dual of g is the function g : B — B% defined by g, (v/) = g~ (u).
Since u’ € B™, one gets g~ (u’) € B,

Lemma 7. Let F = (W,0) and G = (W', 0") be Q-frames, andn: W — W' be a
bounded morphism from F to G. Then (1) " is a homomorphism from GT to F+, (2)
if 0 is injective, then " is surjective; and (3) if 1) is surjective, then n™ is injective.

Proof. Clearly (2) and (3) hold by the definition. For (1), the dual " is a Boolean
homomorphism. It suffices to show 1T (07 X') = OIn*t(X’) for every a € Q
and X' C W'. Assume y € 17 (07 X’). Then n(y) € O X’'. There exists
¥ € X' with o’'(n(y),2’)! > a. Since n is a bounded morphism, there exists
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z € Wwitho(y,z)! > aandn(z) = 2. Theny € O0Int(X’). Conversely, assume
y € 09t (X'). There exists x € 5 (X’) with o(y, x)! > a. Since 7 is a bounded
morphism, one obtains n(x) € X’ with o’(n(y), n(z))! > a. Then n(y) € O X'
Hence y € (07 X"). O

Lemma 8. LetB = (B, 0g)acq and B’ = (B', 0),)acq be Q-MAs, and g : B — B’
be a homomorphism. Then (1) g4 is a bounded morphism from B’ to B, (2) if g is
injective, then g, is surjective; and (3) if g is surjective, then g, is injective.

Proof. Clearly (2) and (3) hold by the definition. For (1), let B, = (B, %)
and B/, = (B, 0. Let u,v € B" and 0""{(u,v)! > a. Let A; = {b € Q :
(Vo' € v)0j2’ € u}and Ay = {b € Q : (Vx € g4+ (v))0pz € g4(u)}. Then
o™ (u,v) = \/ A1 and 0" (g, (u), g4 (v)) = \ Ag. It suffices to show A; C Ay
which yields o"(g, (u), g+ (v)) = VA2 > VA1 > a. Assume b € A;. Let
z € g4(v). Then g(x) € v. By b € Ay, Ojg9(x) = g(Opx) € u. Then Opz € g4 (u).
Hence b € As. It follows that A1 C As.

Assume u € B", v/ € B and 0“(g, (u),v’) > a. It suffices to find v € B
such that o""(u,v) > a and g (v) = v'. Letv; = {g(z) : z € v/} and vy = {y €
B’ : OLy € u}. One can easily show that v1 U v9 has the finite meet property. Then
there exists v € B with v;Uvy C v. Now one shows that v is arequired ultrafilter as
follows: (i) o"*(u,v) > a. It suffices to show a € A;. For a contradiction, suppose
z € vand Oz ¢ u. Then —Q/,x = —O), — —z € u. Then —x € vy C v which
contradicts x € v. (ii) g+ (v) = v'. If 2 € ¢/, then g(z) € v; Cvandso x € g4+ (v).
Suppose = ¢ v'. Then —z € v’ and g(—z) € v; C v. Hence —z € g4 (v), i.e.,
z ¢ g+ (v). O

Lemma 9. Let F and G be Q-frames, 6 and € be Q-MAs. Then (1) if F — G, then
Gt - F*; 2 ifF - G, then Gt — F*; (3) if B — €, then €, — B, and (4) if
B — Q:, then Q:+ — %+.

Proof. Straightforward by Lemma 7 and Lemma 8. O

Theorem 5. Let () be ai.w.o set and K be a class of Q-frames which is closed under
taking ultrafilter extensions. Then K is modally Q-definable if and only if it is closed
under taking disjoint unions, generated subframes, bounded morphic images, and
reflects ultrafilter extensions.

Proof. The left-to-right direction follows from Proposition 1, Proposition 2, Propo-
sition 3 and Proposition 4. Assume that K satisfies the closure conditions. Clearly
K C Fro(Th(K)). Assume F |= Th(K). By Birkhoff’s theorem, F* € HSPCmK.
Then there exist a family of Q-frames {G; };c; in K and a Q-MA B such that F™ «
B — [[,c; G- By Lemma 6, one obtains F* « B — (lt,.;G;)". By Lemma
9, one obtains F*¢ = (F*). — By « ((H;c;Gi) ")+ = (W;e; Gi)*e. Since K
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is closed under taking disjoint unions, |, G; € K. Furthermore, as K is closed un-
der taking ultrafilter extensions, bounded morphic images and generated subframes,
it follows that (l#, G;)"¢, B4 and F"¢ belong to K. Then F € K since K reflects
ultrafilter extensions. 0

6 More Observations on Normal ()-modal Logics

In section 3, we introduce normal ()-modal logics and apply the canonical method
to prove the completeness of the minimal normal Q-modal logic. In this section, we
will make some particular observations on these logics.

A normal Q-modal logic is canonical, if FL € Frg(L). Obviously every canon-
ical normal (Q-modal logic is complete. As the Sahlqvist theorem for modal logic
(e.g., [2]), one obtains Sahlqvist normal Q-modal logics which are elementary and
complete. The statement of elementarity needs an appropriate first-order language
for talking about properties of ()-frames. A choice is the first-order Q-frame lan-
guage with identity /;ég consists of binary relational symbols {R,, : a € Q} where
each R, is interpreted as o(w, u)! > a in a Q-frame F = (W, 0).

Name | Formulas First-order Correspondent
(Dg) | ()T VeIyRqxy

(Ts) lalp — p VeRgxx

<4abc) [a]p — [b] [C}p mez(Ramy A Rbyz — chz)
(

(

Baw) | p— [a](b)p Vzy(R.xy — Rpyx)
Sabe) | (a)p — [b]{c)p | Yxy(Rexy A Ryxz — Rcyz)

Table 1: Some correspondence results

A formula ¢ € F'm(Q) corresponds a sentence « in Eb, if Frg(¢p) is defined
by a. The correspondence between modal and first-order sentences in Table 1 can
be shown immediately. One can define Sahlgvist formulas exactly as in e.g., [2].
Every Sahqvist formula ¢ in F'm/(Q) has a correspondent c, in ﬁb that is computed
automatedly. A Sahlgvist Q-modal logic is Kg @ I" where I' is a set of Sahlqvist
formulas. One can show as usual that every Sahlqvist ()-modal logic is canonical and
hence complete (e.g., [2]).

Next we make observations on the modal logics of singleton )-frames. In the
standard normal monomodal logic, there are only two singleton frames the logics of
which are Post complete (e.g., [4, 12]). This is a direct consequence of Makinson’s
classification theorem ([10]). In the setting of normal Q-modal logics with |Q] > 1
the situation is different. Let  be the Q-frame ({®}, o) with o (e, @) undefined. Let o,
be the Q-frame ({0}, o) with o(0,0) = a. A normal )-modal logic L is consistent,
if Fro(L) # @.

Proposition 6. Let a,b € Q and @ # X,Y C Q. The following hold:
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(1) Th(e) = Kg @ {[a] L : a € Q}.

) ifa+be Q, then Th(og) € Th(oy) and Th(oy) Z Th(og).
(3) Th(oy) = Kq & p < [1]p.

(4) Th(\Y e x °a) = Nuex Th(ca).

Proof. (1) Let Le = Ko @ {[a]L : a € Q}. Clearly @ = L,, i.e., Ly C Th(e).
Suppose ¢ & Lo. Let X be a state in the canonical frame FFe = (Whe o) with
¢ & ¥. Clearly there is no A € Wke with ol* (X, A)!. Then e is the subframe of
[FLe generated by ¥. Hence o [~ . It follows that L = Th(e).

(2) Assume a # b. Then a < b or b < a. Without loss of generality, suppose
a < b. Then (b) T € Th(op) \ Th(o,) and [b] L € Th(o,) \ Th(op).

(3)Let L1 = Kg @ p <> [1]p. Then oy |= Ly, i.e., Ly C Th(oy). Obviously L;
is canonical, i.e., its canonical frame FZ1 = L;. Clearly FL1 satisfies the conditions
VR zx and Voy(R{ry — = = y). This means that FL1 consists of isolated copies
of o;. Hence o7 is a generated subframe of Fit,

(4) It follows from Proposition 1. (Il

Definition 14. Let M = (W, 0, V') be a Q-model. A subset U C W is definable in
M, if there exists ¢ € F'm(Q) with U = V(). A @-model M' = (W, 0, V') with a
valuation V"’ in W is called a variant of M. We say that M is a definable variant of
M, if V/(p) is definable in M for each p € P.

Lemma 10. Suppose I' C Fm(Q) is closed under substitution. If M |= T, then
M’ [= T for every definable variant M of ML

Proof. LetM = (W, 0,V) beamodel and M =T'. Let ¢ € F'm(Q) and ¢’ be the
formula obtained from ¢ by substituting v; for p; in ¢, and M’ = (W, o, V') be the
Q@-model where V'(p;) = V(¢;) with 1 < i < n. By induction on the complexity
d() one obtains that w € V(¢’) if and only if w € V’(¢). One obtains M |= T by
the same proof as [5, Theorem 5]. O

Theorem 6. Let L € NExt(Kg) be consistent. The following hold:

(1) if (a)T & L for every a € Q, then L C Th(e).
(2) if (a) T € L for some a € Q, then L C Th(oy) for some b € Q.

Proof. (1) Assume (a)T ¢ L for every a € Q. Let ME = (WL ol VL) be
the canonical model for L. Let ' = {[a]L : @ € @Q}. Now we show that I is L-
consistent. Suppose not. Then \/,_y(a)T € L for some finite @ # X C Q. Let
AX =b. Clearly \/ .. x(a) T — (b)T € L. Then (b)) T € L which contradicts the
assumption. Hence I' is L-consistent. Let ¥ € W% and I' C . Clearly there is no
A € WL with o%(3, A)!. Let M = (W, 0, V) be the model generated from M* by
Y. Dueto [a]L € ¥ forall a € Q, one obtains that § = (W, o) consists of a single
state X with (X, ¥) undefined. Obviously M, ¥ = L. Note that L is closed under
substitution. By Lemma 10, one obtains @ € Frg(L), i.e., L C Th(e).
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(2) Assume (a)T € Lforsomea € Q. Letb =\/{ce Q : (¢)T € L}. Then
(b)T € L. Since L is consistent, let F = (W, 0) be a Q-frame and F |= L. Then
F |= (b)T. Hence Ry (w) # @ forallw € W. Letn be the function which maps each
w € W to o. Then 7 is a surjective bounded morphism from F to o,. By Proposition
3,0 = L,ie., L C Th(op). O

The notion of total Q-frame is given in Definition 2. Here we consider a partic-
ular class of total ()-frames. Let (g be an i.w.o set with bottom element 0. Obviously
every finite chain is certainly such an i.w.o set. The class of all total (Qp-frames is
denoted by F(,. Note that, although Fq, is not closed under taking disjoint unions,
it is closed under taking generated subframes, bounded morphic images, and ultrafil-
ter extensions. Moreover, Propositions 2, 3 and 4 hold for total ()o-frames. Now we
introduce normal total ()g-modal logics.

Definition 15. A normal total QQy-modal logic is a set of formulas L C Fm(Qp)
which contains (Tau), (K,), (Cg, ), and the following formulas:

(To) [0]p — p, (40) [0]p = [0][0]p, (Bo) p — [0[{0)p-

and is closed under (MP), (Gen) and (Sub). The minimal normal total )g-modal logic
is denoted by KZQO . Let NExt” (L) be the set of all normal total Qg-modal logics which
contain L.

Theorem 7. KZQO = Th(Fgq,)

Proof. LetF = (W, o) be a total Qo-frame. Then u € R (w) for all w,u € W.
It follows that (T), (40) and (By) are valid in F¢,. Then K"Q0 C Th(Fg,). For

the completeness, let M = (W, 0, V') be the canonical model for KZQO. Note that 0 €
Xg,(%,0) and so 0(%,0) = \/ Xg, (X, ) which is a total function. If p & K’ o
then M = . Hence T'h(Fg,) C KEQO. O

Proposition 7. For every consistent normal total QQo-modal logic L, there exists a €
Qo with L C Th(oy).

Proof. By (0)T € L and Theorem 6, L C T'h(o,) for some a € Qo. O

Finally, we shall consider the embedding from a normal (-modal logic to a nor-
mal Q’-modal logic where @ is embedded into Q" in some way. In what follows, Q
and @’ are supposed to be i.w.o0 sets.

Definition 16. Let (Q, <, 1) and (Q’, <¢,1") be i.w.o sets. A function f : Q —
Q' is an embedding, notation f : Q — @', if f(1) = 1" and forall a,b € Q,a < b
if and only if fa <¢ fb. Anembedding f : Q — Q' is upward, if f(Q) is an upset
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in Q. Forevery f : Q — @', the function e : Fm(Q) — Fm(Q') is defined
inductively as follows:

er(p) =, ifpePU{L}.
efle =) =ep(p) = e5(¥).
ef(lalp) = [fales(p).
For every set of formulas X C Fm(Q), letef(X) = {ef(p) : ¢ € X}.

Lemma 11. Let f : Q < Q. For every set of formulas ¥ U {p} C Fm(Q), if
peKo@X, thenes(p) € Koy ®ep(X).

Proof. Assume ¢ € Kg @ X. The case ¢ € X is obvious. If ¢ is an instance
of (Tau), by the definition of €y, so is (). If ¢ be (K,), then e¢(¢) is (Kyq).
Suppose that p is (Cg), i.e., ¢ = [a]p — [b]p with a < b. Then fa < fb. Hence
ef(p) = [falp — [fb]p. If ¢ is obtained by a rule (R) in Kg @ 3, then £ ¢(¢) is also
obtained by (R) in K¢y @ £4(X). O

Let f : Q@ — @'. For every Q-frame F = (W, o), one defines the @)'-frame
F/ = (W, o7) by setting for all w,u € W:

o (w0,0) = {f(a(w,u)) if (e, )L

] undefined otherwise.

For every Q-model M = (F, V), let M/ = (F/, V).

Lemma 12. Let f : Q — Q' and M = (F, V) be a Q-model with F = (W, o). For
everyw € Wand ¢ € Fm(Q), (i) M,w [= ¢ if and only if MY ,w = 4(p); and
(i1) F = ¢ if and only if BT |= e (p).

Proof. Clearly (i7) follows from (7). For (i), the proof proceeds by induction on the
complexity 0(¢). Atomic and Boolean cases are obvious. Let ¢ = [a]i and e (p) =
[falep(v). Assume MY, w [~ e¢(¢p). Then of (w,u)! > fa and M/, u B e¢(¢)
for some u € W. Clearly o/ (w,u) = f(o(w,u)) > fa. Then o(w,u)! > a. By
induction hypothesis, M, u [~ . Hence M, w [~ [a]t). The other direction is shown
similarly. O

Theorem 8. Let f : Q — Q' beupward and> C Fm/(Q). Suppose that L = Ko®X
and L' = Kg' @ €4(X) are complete. For every ¢ € Fm(Q), ¢ € L if and only if
ef(p)e L.

Proof. By Lemma 11, if p € L, thene¢(p) € L. Assume ¢ ¢ L. Since L is
complete, there exists F € Frg(L) with F £ . By Lemma 12, F/ € Frg/(L') and
F/ B~ e4(p). Hence ef(p) € L. O

Corollary 1. Let f : QQ — Q' be upward. For every ¢ € Fm(Q), ¢ € Kq if and
onlyifes(p) € Ko
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7 Concluding Remarks

In the present work we contribute new multimodal logics over multivalued fra-
mes. Multivalued frames over a set of values () are taken as the semantic ontology
to interpret the corresponding multimodal language. We obtain Goldblatt-Thomason
theorems for certain classes of (Q-frames. In the study of normal ()-modal logics,
we adjust the canonical model method and obtain some completeness results. The
logics of singleton frames and related Makinson’s classification theorem are estab-
lished. There are many problems that are interesting for further exploration. Here
we mention two of them: (i) throughout this paper, we considered only i.w.o sets as
organizations of agents. One could change the set of values () into a (possibly dis-
tributive or Boolean) lattice in general, and study related problems; and (ii) try to
give a Goldblatt-Thomason theorem which characterizes the modal ()-definability of
certain classes of total ()-frames.
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