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Modal Logic of Multivalued Frames over Inversely
Well-Ordered Sets*

Fan He

Abstract. Multivalued frames generalize Kripke frames via introducing a set of values for
pairs of states. A set of values Q is supposed to be an inversely well-ordered set. The intended
multimodal language is interpreted in models based on multivalued frames over Q. Goldblatt-
Thomason theorems for certain classes ofQ-frames are established. NormalQ-modal logics are
introduced, and some completeness results are naturally given by adjusting the canonical model
method. Makinson’s classification theorem as well as some logical properties are established
for normal Q-modal logics.

1 Introduction

Multimodal logic is a name for a bunch of modal logics which formalize rea-
soning about multiple modalities. The following passage from Dana Scott is often
quoted when the significance of multimodal logic is concerned:

Here is what I consider one of the biggest mistakes of all in modal logic:
concentration on a system with just one modal operator. The only way to
have any philosophically significant results in deontic logic or epistemic
logic is to combine those operators with: tense operators (otherwise how
can you formulate principles of change?); the logical operators (other-
wise how can you compare the relative with the absolute?); the operators
like historical or physical necessity (otherwise how can you relate the
agent to his environment?); and so on and so on. ([11], p. 161)

Scott emphasizes many faces of a philosophical modality. For instance, the notion of
belief should be combined with tense if the change or update of an agent’s belief is
concerned. Although the combination is needed for some philosophical purposes, the
exact way of combinationwhich represents the intrinsic corelation betweenmodalities
has not been well-explored yet.

A direct response to Scott’s remark is the development of multimodal logic in
the study of reasoning in multiagent systems. Multimodal logics have been widely
studied in the literature (e.g., [2, 3]). For example, the multiagent epistemic logic
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requires a knowledge operator Ka for each agent a (e.g., [13]). A typical example
is the multimodal logic S5 as the standard multiagent epistemic logic. In an idealis-
tic multiagent model, agents are usually assumed to be independent, i.e., every agent
makes reasoning in situations without disturbance from other agents. However, if
agents are organized or structured in a certain way, the corresponding modalities in
logic must be connected in the same way. A sort of combination is shown in propo-
sitional dynamic logic where each program π is assigned with a modality [π], and the
composition, choice and repetition of programs are presented by interaction axioms
between modalities (e.g., [9]).

From the semantic perspective, relational semantics for modal logic has been
well-explored. A Kripke frame (‘K-frame’ for short) for a monomodal language is
a pair (W,R) where W is a non-empty set of states, and R is a binary relation on
W . Each modal formula □ϕ is true at a state w if and only if ϕ is true at all R-
accessible states of w (e.g., [1, 2]). An accessibility relation R is indeed a bivalent
function R : W ×W → {0, 1}. In the present work, we generalize Kripke frames
by changing the set {0, 1} into a set of valuesQ and obtain multivalued frames. This
leads to a general framework for the investigation of multimodal logics. One can
impose additional structure on Q, and study the modal logics of these special class
of frames.

One should mention that two sorts of semantics for many-valued modal logic
are given by Fitting [6, 7]. Let T be a finite distributive lattice the elements of which
are accounted as values. Every formula ϕ will take a value V (w,ϕ) at the state w in
a model. In Fitting’s second version, a model is a triple (W,R, V ) where W /= ∅
and R is a multivalued relation onW , i.e., a function R : W ×W → T . The value
V (w,□ϕ) is defined as

∧
{R(w, u) ⇒ v(u, ϕ) : u ∈ W} where ⇒ is a relative

pseudo-complement implication. Fitting’s many-valued modal logic is a monomodal
many-valued logic, and the value set of formulas coincides with that of relations in
a frame.

In the present work, we assumes that the set of values Q is an inversely well-
ordered (or dually well-ordered) set, i.e., every nonempty subset of Q has a maximal
element. Formally, a partialQ-valued frame is a pair (W,σ)whereW /= ∅ is a set of
states and σ :W ×W → Q is a partial function. If σ is a total function, one obtains
total Q-valued frames. In general, σ(w, u) = a (if exists) means that u is accessible
from w by a. Each value a ∈ Q can be interpreted in practical scenarios as an agent,
and hence the relation Rσ

a = {<w, u> : σ(w, u) exists and it is above a in Q} is used
to interpret the modality [a]. A modal formula [a]ϕ states that a makes sure that ϕ.
In general, since the values in Q are ordered by ≤, one could require that [b]ϕ holds
if a ≤ b and [a]ϕ holds. The agent with higher level has the ability to achieve what
agents with lower level can do. Concrete scenarios where such frames can be used
for modeling are not discussed in the present work. What we shall present contains a
general framework for the study of multimodal logic and some related normal modal
logics. This framework certainly differs from Fitting’s many-valued modal logic.
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This article is structured as follows. Section 2 gives the modal language and
semantics where partial Q-valued frames are introduced. Section 3 introduces nor-
mal Q-modal logics and proves the completeness of the minimal normal Q-modal
logic. Section 4 defines some model constructions and proves some preservation re-
sults. Section 5 presents a Goldblatt-Thomason theorem for characterizing the modal
definability of certain classes of partial Q-frames by the duality between partial Q-
valued frames and modal Q-algebras. Section 6 makes more observations on normal
Q-modal logics and proves some general results. Section 7 gives concluding remarks.

2 Language and Semantics

The cardinal of a set X is denoted by |X|. In the present work, we assume
the axiom of choice, and hence admit the well-ordering theorem, i.e., for every set
X there exists a binary relation which well-orders X . An inversely well-ordered set
(‘i.w.o set’ for short) is a pair (Q,≤) such that≥well-orders the nonempty setQ, i.e.,
≤ is a linear order on Q such that every subset ∅ /= X ⊆ Q has a maximal element∨
X . The minimal element ofX is denoted by

∧
X if it exists. Every i.w.o setQ has

the top element 1. IfQ is finite, every a ∈ Q \ {1} has a unique proper successor a∗.
A downset in an i.w.o set Q is a subset X ⊆ Q such that a ≤ b ∈ X implies a ∈ X .
An upset in Q is a subset X ⊆ Q such that a ∈ X and a ≤ b imply b ∈ X . Let ↓X
and ↑X be the downset and upset in Q generated by X respectively.

Definition 1. Let Q be an i.w.o set. The multimodal language LM (Q) consists of
a denumerable set of propositional variables P = {pi : i < ω}, connectives ⊥ and
→, and unary modal operators {[a] : a ∈ Q}. The set of formulas Fm(Q) is defined
inductively as follows:

Fm(Q) ∋ ϕ ::= p | ⊥ | (ϕ1 → ϕ2) | [a]ϕ

where p ∈ P and a ∈ Q. Connectives ⊤,¬,∧,∨ and ↔ are defined as usual. For
every a ∈ Q, one defines <a>ϕ := ¬[a]¬ϕ. The complexity of a formulaϕ ∈ Fm(Q),
denoted by δ(ϕ), is defined inductively as follows:

δ(p) = 0 = δ(⊥); δ(ϕ→ ψ) = max{δ(ϕ), δ(ψ)}+ 1; δ([a]ϕ) = δ(ϕ) + 1.

A substitution is a function s : P → Fm(Q). For every formula ϕ ∈ Fm(Q), let ϕs

be obtained from ϕ by the substitution s.

Definition 2. Let Q be an i.w.o set. A multivalued frame over Q (‘Q-frame’ for
short) is a pair F = (W,σ) whereW /= ∅ is a set of states, and σ : W ×W → Q is
a partial function fromW ×W to Q. An Q-frame F = (W,σ) is called total, if σ is
total, i.e., every pair inW ×W is defined.

Let F = (W,σ) be a Q-frame. The notation σ(w, u)! means that σ(w, u) exists
in Q. One writes σ(w, u)! ≥ a if σ(w, u)! and σ(w, u) ≥ a. For every a ∈ Q, the
binary relation Rσ

a onW is defined as follows:
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wRσ
au if and only if σ(w, u)! ≥ a.

Let Rσ
a(w) = {u ∈W : σ(w, u)! ≥ a}. Let FQ be the class of all Q-frames.
A valuation in a Q-frame F = (W,σ) is a function V : P → P(W ) from P to

the powerset ofW . AQ-model is a tripleM = (W,σ, V ) where (W,σ) is aQ-frame
and V is a valuation in (W,σ).

Example 1. Consider the following Q-frames F1 and F2:

•• uw

a

b
F1

uw ••a b

a

b
F2

Here F1 is not total since σ(w,w) and σ(u, u) are undefined. But F2 is total.

Definition 3. Let F = (W,σ) be a Q-frame, M = (W,σ, V ) a Q-model and w ∈
W . For every ϕ ∈ Fm(Q), the satisfaction relationM, w |= ϕ is defined inductively
as follows:

(1)M, w |= p if and only if w ∈ V (p).
(2)M, w /|= ⊥.
(3)M, w |= ϕ→ ψ if and only ifM, w /|= ϕ orM, w |= ψ.
(4)M, w |= [a]ϕ if and only ifM, u |= ϕ for all u such that σ(w, u)! ≥ a.

Let V (ϕ) = {w ∈ W : M, w |= ϕ}. A formula ϕ is true in M, notation M |= ϕ,
if V (ϕ) = W . A formula ϕ is valid at w in F = (W,σ), notation F, w |= ϕ, if
F, V, w |= ϕ for every valuation V in F. A formula ϕ is valid in F, notation F |= ϕ, if
F, w |= ϕ for every w ∈W . A formula ϕ is valid in a class of Q-frames K, notation
K |= ϕ, if F |= ϕ for every F ∈ K.

Let Γ ⊆ Fm(Q) be a set of formulas. Let S |= Γ stand for that S |= ϕ for all
ϕ ∈ Γ. The class of allQ-frames defined by Γ is denoted by FrQ(Γ) = {F : F |= Γ}.
If Γ = {ϕ}, one writesFrQ(ϕ). Themodal theory of a class ofQ-framesK is defined
as the set Th(K) = {ϕ ∈ Fm(Q) : K |= ϕ}. We say that K is modally Q-definable,
if K = FrQ(Th(K)).

Example 2. One can easily show that [a]p ↔ [b]p is not valid in FQ if a /= b.
Assume a /= b. Without loss of generality, let a > b. Let M = (W,σ, V ) be the
Q-model where W = {w, u, v}, σ(w, u) = a and σ(w, v) = b, and V (p) = {u}.
ThenM, w |= [a]p andM, w /|= [b]p. It follows thatM /|= [a]p↔ [b]p. However, by
b ≤ a, one has FQ |= [b]p→ [a]p. For every Q-frame F = (W,σ), F |= [a]p→ [b]p

if and only if ∀w, u ∈W (σ(w, u)! ≥ b⇒ σ(w, u)! ≥ a).
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3 Normal Q-modal Logics and Completeness

In this section, we introduce normalQ-modal logics. As expected, the canonical
method is applied in showing the completeness of the minimal normalQ-modal logic.

Definition 4. A normal Q-modal logic is a set of formulas L ⊆ Fm(Q) such that
L contains the following formulas:

(Tau) All instances of classical propositional tautologies.
(Ka) [a](p→ q) → ([a]p→ [a]q).
(CQ) [a]p→ [b]p, where a ≤ b in Q.

and L is closed under the following rules:

(MP) if ϕ,ϕ→ ψ ∈ L, then ψ ∈ L.
(Gen) if ϕ ∈ L, then [a]ϕ ∈ L.
(Sub) if ϕ ∈ L, then ϕs ∈ L for every substitution s.

A formula ϕ is a theorem of L, notation ⊢L ϕ, if ϕ ∈ L.

For every family of normal Q-modal logics {Li : i ∈ I},
∩

i∈I Li is a normal
Q-modal logic. The minimal normal Q-modal logic is denoted by KQ. Let

⊕
i∈I Li

be the smallest normal Q-modal logic containing
∪

i∈I Li. For every set of formulas
Σ, let KQ ⊕ Σ =

∩
{L : Σ ⊆ L}, the minimal normal Q-modal logic containing Σ.

IfΣ = {ϕ}, we write KQ⊕ϕ instead of KQ⊕{ϕ}. For every normalQ-modal logic
L, let NExt(L) be the set of all normal Q-modal logics containing L.

Remark 1. If |Q| = 1, KQ is exactly the standard monomodal logic with a single
modality□ (e.g., [2]). Notions for basic normal modal logic can be applied. If |Q| >
1, one obtains multimodal logics with respect toQ. Moreover, the following hold for
every normal Q-modal logic L:

(1) [a]⊤ ↔ ⊤ ∈ L and <a>⊥ ↔ ⊥ ∈ L.
(2) [a](ϕ1 ∧ . . . ∧ ϕn) ↔ ([a]ϕ1 ∧ . . . [a]ϕn) ∈ L.
(3) <a>(ϕ1 ∨ . . . ∨ ϕn) ↔ (<a>ϕ1 ∨ . . . <a>ϕn) ∈ L.
(4) [a]ϕ ∧ <a>ψ → <a>(ϕ ∧ ψ) ∈ L.
(5) if ϕ→ ψ ∈ L, then [a]ϕ→ [a]ψ ∈ L and <a>ϕ→ <a>ψ ∈ L.

LetL be a normalQ-modal logic. A formulaϕ is aL-consequence of a set of formulas
Γ, notation Γ ⊢L ϕ, if ϕ ∈ L or there exist ψ1, . . . , ψn ∈ Γwith ψ1∧ . . .∧ψn → ϕ ∈
L. A set of formulas Γ isL-consistent, if Γ /⊢L ⊥; and Γ ismaximalL-consistent, if Γ
isL-consistent and⊆-maximal. One obtains the deduction theorem and Lindenbaum-
Tarski lemma forL: (i) Γ, ϕ ⊢L ψ if and only if Γ ⊢L ϕ→ ψ; (ii) if Γ isL-consistent,
there is a maximal L-consistent set Σ with Γ ⊆ Σ.

A normal Q-modal logic L is complete, if L = Th(FrQ(L)). One can obtain
some completeness results using the canonical method.
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Definition 5. LetWL be the set of all maximal L-consistent sets of formulas. For
every a ∈ Q, one defines RL

a ⊆WL ×WL as follows:

ΣRL
aΘ if and only if ϕ ∈ Θ for all [a]ϕ ∈ Σ.

For every pair <Σ,Θ> ∈ WL ×WL, one defines XL
Q(Σ,Θ) = {a ∈ Q : ΣRL

aΘ}.
The canonical Q-model for L is defined asML = (WL, σL, V L) where

σL(Σ,Θ) =

{∨
XL

Q(Σ,Θ) if XL
Q(Σ,Θ) /= ∅.

undefined otherwise.

and V L(p) = {Σ ∈ WL : p ∈ Σ} for every p ∈ P. The canonical Q-frame for L is
defined as FL = (WL, σL).

Lemma 1. For every Σ,Θ ∈WL and a ∈ Q, the following hold:

(1) XL
Q(Σ,Θ) is a downset in Q.

(2) if XL
Q(Σ,Θ) /= ∅, then XL

Q(Σ,Θ) = ↓
∨
XQ(Σ,Θ).

(3) a ∈ XL
Q(Σ,Θ) if and only if σL(Σ,Θ)! ≥ a.

Proof. (1) Assume a ≤ b and b ∈ XL
Q(Σ,Θ). Then ΣRL

b Θ. Suppose [a]ϕ ∈ Σ. By
(CQ), [a]ϕ→ [b]ϕ ∈ L. Hence [b]ϕ ∈ Σ. By ΣRL

b Θ, one obtains ϕ ∈ Θ. It follows
that a ∈ XL

Q(Σ,Θ).
(2) Assume XL

Q(Σ,Θ) /= ∅. Then
∨
XL

Q(Σ,Θ) is the maximal element of
XL

Q(Σ,Θ). By (1), XL
Q(Σ,Θ) = ↓

∨
XL

Q(Σ,Θ).
(3) Assume a ∈ XL

Q(Σ,Θ). Then σL(Σ,Θ)! =
∨
XL

Q(Σ,Θ) ≥ a. Assume
σL(Σ,Θ)! ≥ a. Then a ≤

∨
XL

Q(Σ,Θ). By (2), a ∈ XL
Q(Σ,Θ). □

Lemma 2. For everyΣ ∈WL, if [a]ϕ /∈ Σ, there existsΘ ∈WL with a ∈ XL
Q(Σ,Θ)

and ϕ /∈ Θ.

Proof. Assume [a]ϕ /∈ Σ. LetΓ = {ψ : [a]ψ ∈ Σ}∪{¬ϕ}. Assume thatΓ is notL-
consistent. Then Γ ⊢L ⊥. There existψ1, . . . , ψn ∈ Γwith (ψ1∧. . .∧ψn) → ϕ ∈ L.
By (Gen), (Ka) and (MP), [a](ψ1 ∧ . . .∧ψn) → [a]ϕ ∈ L. By [a](ψ1 ∧ . . .∧ψn) ↔
([a]ψ1∧ . . . [a]ψn) ∈ L, one obtains [a]ϕ ∈ L. Then [a]ϕ ∈ Σ, which contradicts the
assumption. Hence Γ is L-consistent. Let Γ ⊆ Θ ∈ WL. Then a ∈ XL

Q(Σ,Θ) and
ϕ /∈ Θ. □

Lemma 3. For every Σ ∈WL, ML,Σ |= ϕ if and only if ϕ ∈ Σ.

Proof. The proof proceeds by induction on the complexity δ(ϕ). The atomic and
Boolean cases are obvious. Let ϕ = [a]ψ. Assume [a]ψ ∈ Σ. Suppose σL(Σ,Θ)! ≥
a. By Lemma 1, a ∈ XL

Q(Σ,Θ). Then ΣRL
aΘ. Hence ϕ ∈ Θ. By induction hy-

pothesis, ML,Θ |= ϕ. Hence ML,Σ |= [a]ϕ. Assume [a]ψ /∈ Σ. By Lemma 2,
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there exists Θ ∈ WL with a ∈ XL
Q(Σ,Θ) and ϕ /∈ Θ. Then XL

Q(Σ,Θ) /= ∅ and
σL(Σ,Θ)! =

∨
XL

Q(Σ,Θ) ≥ a. By induction hypothesis, ML,Θ /|= ϕ. Hence
ML,Σ /|= [a]ϕ. □

Theorem 1. KQ is complete.

Proof. Clearly Fr(KQ) = FQ. Obviously KQ ⊆ Th(FQ). Assume ϕ /∈ KQ. Then
{¬ϕ} is KQ-consistent. Let Σ ∈ WKQ with ¬ϕ ∈ Σ. By Lemma 3, ML,Σ /|= ϕ.
Hence ϕ /∈ Th(FQ). □

4 Model Constructions and Preservation Results

As far as modal Q-definability of Q-frames concerned, one can define some
interesting properties of Q-frames. For example, let Q be finite. For every a < 1,
consider the property Φ(a): for every state w there exist u with σ(w, u) = a and no
v with σ(w, v) > a. Clearly Φ(a) is defined by the formula <a>⊤ ∧ [a∗]⊥ where a∗
is the successor of a in Q. For more general results on the modal Q-definability of
frames in LM (Q), one needs some preservation results on Q-frames.

Definition 6. The disjoint union of a family of Q-frames {Fi = (Wi, σi) : i ∈ I}
is defined as

⊎
i∈I Fi = (W,σ) whereW =

∪
i∈I(Wi × {i}) and σ : W ×W → Q

is defined as follows:

σ(<w, i>, <u, j>) =

{
σi(w, u) if w, u ∈Wi for some i ∈ I and i = j.

undefined otherwise.

The disjoint union of a family of Q-models {Mi = (Fi, Vi) : i ∈ I} is defined as⊎
i∈I Mi = (

⊎
i∈I Fi, V ) where V (p) =

∪
i∈I(Vi(p)× {i}) for all p ∈ P.

Proposition 1. Let {Mi = (Fi, Vi) : i ∈ I} be a family of disjoint Q-models where
Fi = (Wi, σi) with i ∈ I . For every i ∈ I , w ∈Wi and ϕ ∈ Fm(Q), (1)Mi, w |= ϕ

if and only if
⊎

i∈I Mi, <w, i> |= ϕ; and (2)
⊎

i∈I Fi |= ϕ if and only if Fi |= ϕ for all
i ∈ I .

Proof. One obtains (1) immediately by induction on the complexity δ(ϕ). The proof
is omitted. Obviously (2) follows from (1). □

By Proposition 1, every modallyQ-definable class of partialQ-frames is closed
under taking disjoint unions. It follows that the class of all total Q-frames is not
modally Q-definable since it is certainly not closed under taking disjoint unions.
The disjoint union of more than two total Q-frames (Q-models) must be partial and
not total.
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Definition 7. Let F = (W,σ) be aQ-frame. For every∅ /= X ⊆W , the subframe
of F generated by X is the Q-frame FX = (WX , σX) where (i)WX is the smallest
subset ofW containingX such that σ(w, u)! implies u ∈WX wheneverw ∈WX and
u ∈W ; and (ii) σX = σ∩(WX×WX). IfX = {v}, one writesFv = (Wv, σv). AQ-
frameF′ = (W ′, σ′) is a generated subframe ofF, ifF′ = FX for some∅ /= X ⊆W .
A Q-model M′ = (F′, V ′) is a generated submodel of a Q-model M = (F, V ), if F
is a generated subframe of F′ and V (p) = V ′(p) ∩W for every p ∈ P. One uses
S ↣ S′ to denote that S is isomorphic to a generated substructure of S′.

Proposition 2. LetM = (F, V ) andM′ = (F′, V ′) be Q-models. AssumeM ↣ M′.
For everyw ∈W and formula ϕ ∈ Fm(Q), (1)M, w |= ϕ if and only ifM′, w |= ϕ;
and (2) if F′ |= ϕ, then F |= ϕ.

Proof. One obtains (1) immediately by induction on the complexity δ(ϕ). The proof
is omitted. Obviously (2) follows from (1). □

Definition 8. Let F = (W,σ) and F′ = (W ′, σ′) be Q-frames. A function η :

W → W ′ is a bounded morphism from F to F′, if the following conditions hold for
all w, u ∈W , u′ ∈W ′ and a ∈ Q:

(1) if σ(w, u)! ≥ a, then σ(η(w), η(u))! ≥ a.
(2) if σ′(η(w), u′)! ≥ a, there exists u ∈W with σ(w, u)! ≥ a and η(u) = u′.

For Q-modelsM = (F, V ) andM′ = (F′, V ′), a function η :W →W ′ is a bounded
morphism fromM toM′, if η is a bounded morphism from F to F′ and the following
condition holds for all w ∈W and p ∈ P:

(3) w ∈ V (p) if and only if η(w) ∈ V ′(p).

A Q-frame F′ is called a bounded morphic image of F, notation F ↠ F′, if there
exists a surjective bounded morphism from F to F′.

Example 3. Let {a1, . . . , an} ⊆ Q with ai ≤ aj for 1 ≤ i ≤ j ≤ n. Let F =

(W,σ) and F′ = (W ′, σ′) beQ-frames where (i)W = {wi : i ≤ n} and σ(w0, wi) =

ai; (ii)W ′ = {u, v} and σ′(u, v) = an.

•
wn•

•
w0

•

•

v

u

w1 . . .

η ana1 an

F F′

Let η : W → W ′ be the function with η(w0) = u and η(wi) = v for all 1 ≤ i ≤ n.
Note that σ′(u, v) = an ≥ ai for all 1 ≤ i ≤ n. It is quite easy to observe that η is a
surjective bounded morphism from F to F′.
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Proposition 3. Let F = (W,σ) and F′ = (W ′, σ′) be Q-frames, and M = (F, V )

and M′ = (F′, V ′) be Q-models. Assume that η : W → W ′ is a bounded morphism
from M to M′. For every w ∈ W and formula ϕ ∈ Fm(Q), (1) M, w |= ϕ if and
only if M′, η(w) |= ϕ; and (2) if η is surjective and F |= ϕ, then F′ |= ϕ.

Proof. One obtains (1) by induction on the complexity δ(ϕ). The proof is omitted.
For (2), let η be surjective and F′ /|= ϕ. Let F′, V ′, w′ /|= ϕ for some valuation V ′

and w′ in F′. Let V be the valuation in F with V (p) = {u ∈ W : η(u) ∈ V ′(p)}
for each p ∈ P. Since η is surjective, there exists w ∈ W with η(w) = w′. By (1),
F, V, w /|= ϕ. Hence F /|= ϕ. □

Let F = (W,σ) be a Q-frame. The unary operation ♢σ
a on P(W ) is defined by

setting ♢σ
aY = {w ∈ W | Rσ

a(w) ∩ Y /= ∅}. For every Y ⊆ W , let Y = W \ Y .
One defines □σ

aY = ♢σ
aY = {w ∈W | Rσ

a(w) ⊆ Y }.

Lemma 4. Let F = (W,σ) be a Q-frame. For every Y ⊆W and a, b ∈ Q, if a ≤ b,
then ♢σ

b Y ⊆ ♢σ
aY and □σ

aY ⊆ □σ
b Y .

Proof. Assume a ≤ b and w ∈ ♢σ
b Y . Let u ∈ Rσ

b (w)∩Y . Then u ∈ Rσ
a(w). Then

u ∈ ♢σ
aY . Hence ♢σ

b Y ⊆ ♢σ
aY . Similarly □σ

aY ⊆ □σ
b Y . □

Let F = (W,σ) be a Q-frame and W ue be the set of ultrafilters over W . A
subset T ⊆ P(W ) has the finite intersection property (FIP), if Y1, . . . , Yn ∈ T imply
Y1 ∩ . . . ∩ Yn /= ∅. If T has the FIP, there exists u ∈W ue with T ⊆ u.

Definition 9. Let F = (W,σ) be a Q-frame. For every u, v ∈W ue, let

Xue
Q (u, v) = {a ∈ Q : (∀Y ∈ v)♢σ

aY ∈ u}.

The ultrafilter extension of F is defined as the Q-frame Fue = (W ue, σue) where
σue :W ue ×W ue → Q is defined as follows:

σue(u, v) =

{∨
Xue

Q (u, v) if Xue
Q (u, v) /= ∅.

undefined otherwise.

The ultrafilter extension of a partial Q-model M = (F, V ) is defined as Mue =

(Fue, V ue) where V ue(p) = {u ∈W ue : V (p) ∈ u} for every p ∈ P.

Proposition 4. Let F = (W,σ) be a Q-frame and M = (F, V ) be a Q-model. For
every u ∈ W ue and formula ϕ ∈ Fm(Q), (1) V (ϕ) ∈ u if and only if Mue, u |= ϕ;
and (2) if Fue |= ϕ, then F |= ϕ.

Proof. (1) The proof proceeds by induction on δ(ϕ). Atomic and Boolean cases
are obvious. Let ϕ = <a>ψ. Assume Mue, u |= <a>ψ. There exists v ∈ W ue

with σue(u, v)! ≥ a and Mue, v |= ψ. By induction hypothesis, V (ψ) ∈ v. Let
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σue(u, v) = b ≥ a. Then b ∈ Xue
Q (u, v). Then ♢σ

b V (ψ) ∈ u. By Lemma 4,
V (<a>ψ) = ♢σ

aV (ψ) ⊇ ♢σ
b V (ψ). Hence V (<a>ψ) ∈ u. Assume V (<a>ψ) ∈ u.

Let v′ = {Y : □σ
aY ∈ u}. Clearly v′ is closed under finite intersection. Suppose

Y ∈ v′. Then □σ
aY ∈ u. Hence ∅ /= □σ

aY ∩ V (<a>ψ) ∈ u. Let s ∈ □σ
aY ∩

V (<a>ψ) = □σ
aY ∩♢σ

aV (ψ) ⊆ ♢σ
a(Y ∩V (ψ)). Then there exists t ∈ Y ∩V (ψ), i.e.,

Y ∩V (ψ) /= ∅. Hence v′∪{V (ψ)} has the FIP. Let v ∈W ue and v′∪{V (ψ)} ⊆ v.
By induction hypothesis, Mue, v |= ψ. Now we show a ∈ Xue

Q (u, v). Suppose not.
Then ♢σ

aZ /∈ u for some Z ∈ v. Then□σ
aZ ∈ u. Then Z ∈ v′ ⊆ v which contradicts

Z ∈ v. Hence a ∈ Xue
Q (u, v). Then σue(u, v)! ≥ a. HenceMue, u |= <a>ψ.

(2) Assume F /|= ϕ. There exists a valuation V in F andw ∈W withw /∈ V (ϕ).
Let π(w) = {Y ⊆W : w ∈ Y }. Clearly π(w) ∈W ue. Then V (ϕ) /∈ π(w). By (1),
Mue, π(w) /|= ϕ. Hence Fue /|= ϕ. □

A class ofQ-frames K reflects ultrafilter extensions, if Fue ∈ K implies F ∈ K.
By Proposition 4, every modally Q-definable class of Q-frames reflects ultrafilter
extensions.

5 Goldblatt-Thomason Theorems

TheGoldblatt-Thomason theorem for modal logic (e.g., [2, 8]) applies the Birkh-
off’s variety theorem in universal algebra to modal logic. In this section, we first
show such theorem holds for finite transitive Q-frames. Then we introduce modal
Q-algebras for normalQ-modal logics, and establish a Goldblatt-Thomason theorem
for inversely well-ordered modal logic via the duality between modalQ-algebras and
Q-frames.

Definition 10. A Q-frame F = (W,σ) is transitive, if σ(w, u)! and σ(u, v)! imply
σ(w, v)! for all w, u, v ∈ W . Let T <ω

Q be the class of all finite transitive Q-frames.
A transitive Q-frame F = (W,σ) is rooted, if there exists w ∈ W with σ(w, u)! for
all u /= w inW . Such a state is called the root of F.

Remark 2. Let Q be finite and
∧
Q = a. The class of all transitive Q-frames is

defined by the formula [a]p → [a][a]p. This is shown as follows. Let F = (W,σ)

be a Q-frame. Assume that F is transitive. Let M = (F, V ) be a model. Suppose
M, w |= [a]p, σ(w, u)! ≥ a and σ(u, v)! ≥ a. By the transitivity, σ(w, v)! ≥ a.
Then M, v |= p. Hence F |= [a]p → [a][a]p. Now assume F |= [a]p → [a][a]p.
Suppose σ(w, u)! and σ(u, v)!. Let V be a valuation in F with V (p) = Rσ

a(w). Then
M, w |= [a]p. Hence M, w |= [a][a]p. Then M, v |= p. Then v ∈ Rσ

a(w), i.e.,
σ(w, v)! ≥ a.

Let Q be finite. A Goldblatt-Thomason theorem within the class T <ω
Q can be

established by the Jankov-Fine formula for a rooted finite transitive frame as in basic
modal logic (e.g., [2, pp. 143–144]). Let F = (W,σ) be a finite transitive Q-frame
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with root w = w0 and W = {w0, . . . , wn}. Each index i ≤ n is associated with a
variable pi. Let

∧
Q = a and [a]+ϕ = ϕ∧[a]ϕ for every formulaϕ. The Jankov-Fine

formula ϕF,w is defined as the conjunction of the following formulas:

p0 (I)

[a]
∨
i≤n

pi (II)

∧
i≤j≤n

[a]+(pi → ¬pj) (III)

∧
wj∈Rσ

a (wi)

[a]+(pi → <a>pj) (IV)

∧
wj /∈Rσ

a (wi)

[a]+(pi → ¬<a>pj) (V)

For every transitive Q-frame G = (G, τ) and v ∈ G, let Gv = (G′, τ ′) be the Q-
frame generated by v.
Lemma 5. Let Q be finite. For every transitive Q-frame G = (G, τ) and v ∈ G,
there exists a valuation U in G with G, U, v |= ϕF,w if and only if there exists a
surjective bounded morphism η from Gv to F with η(v) = w.
Proof. Let

∧
Q = a and Gv = (G′, τ ′). Assume that η : G′ → W is a surjective

bounded morphism from Gv to F with η(v) = w. Let V be a valuation in F with
V (pi) = {wi} for i ≤ n. Let U be a valuation inGv with U(pi) = {x ∈ G′ | η(x) =
wi} for i ≤ n, and U(q) = V (q) = ∅ for all q /∈ {p0, . . . , pn}. Clearly x ∈ U(pi)

if and only if η(x) ∈ V (pi). Then η is a surjective bounded morphism from (F, V )

to (Gv, U). Obviously F, V, w |= ϕF,w. By Proposition 3, Gv, U, v |= ϕF,w. By
Proposition 2, G, U, v |= ϕF,w. Now assume G, U, v |= ϕF,w. By Proposition 2,
Gv, U, v |= ϕF,w. Let η : G′ → W be defined by setting: η(x) = wi if and only if
x ∈ U(pi). Now one shows that η is a surjective bounded morphism.

(1) Clearly η(v) = w since v ∈ U(p0). For every i > 0, one has σ(wi, w0) ≥ a.
By the formula (IV) is true at v in (Gv, U), one has Gv, U, v |= <a>pi. Hence there
exists x ∈ Rσ

a(v) with x ∈ U(pi), i.e., η(x) = wi.
(2) Assume xRτ ′

a y. Let η(x) = wi and η(y) = wj . Then x ∈ U(pi) and
y ∈ U(pj). Hence Gv, U, x |= <a>pj . For a contradiction, suppose wj /∈ Rσ

a(wi).
Since (V) is true at v in (Gv, U) and x ∈ U(pi), one has Gv, U, x |= ¬<a>pj which
contradicts Gv, U, x |= <a>pj .

(3) Assume η(x)Rσ
awj . Let η(x) = wi. Then x ∈ U(pi). Since (IV) is true at

v in (Gv, U), one has Gv, U, x |= <a>pj . Then there exists y ∈ G′ with xRτ ′
a y and

y ∈ V (pj), i.e., η(y) = wj . □

Let Q be finite. We say that a class of finite transitive Q-frames K is modally
Q-definable within T <ω

Q , ifK = FrQ(Th(K))∩T <ω
Q . Then we obtain the following

Goldblatt-Thomason theorem.
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Theorem 2. Let Q be finite. A class of finite transitive Q-frames K is modally Q-
definablewithin T <ω

Q if and only ifK is closed under taking disjoint unions, generated
subframes and bounded morphic images.

Proof. The left-to-right direction follows from Proposition 1, Proposition 2 and
Proposition 3. Conversely, assume thatK is closed under taking disjoint unions, gen-
erated subframes and bounded morphic images. We showK = FrQ(Th(K))∩T <ω

Q .
Obviously K ⊆ FrQ(Th(K)) ∩ T <ω

Q . Assume that F ∈ T <ω
Q and F |= Th(K). Let

F = (W,σ). One has two cases:
Case 1. Suppose F has rootw. Obviously ¬ϕF,w /∈ Th(K). There existsG ∈ K

withG /|= ¬ϕF,w. By Lemma 5, there exists v inG such that F is a bounded morphic
image of Gv. Since G ∈ K, one has Gv ∈ K and so F ∈ K.

Case 2. Suppose F is not rooted. Clearly F is a bounded morphic image of the
disjoint union

⊎
x∈W Fx. By the proof of Case 1, one has Fx ∈ K for every x ∈ W .

It follows that F ∈ K. □

Now, for a more general Glodblatt-Thomason theorem, let us introduce modal
Q-algebras for an arbitrary i.w.o set Q and give some duality results.

Definition 11. LetQ be a i.o.w set. An algebraB = (B,+,−, 0,♢a)a∈Q is amodal
Q-algebra (‘Q-MA’ for short), if (B,+,−, 0) is a Boolean algebra and ♢a is a unary
operator on B satisfying the following conditions:

(1) ♢a0 = 0.
(2) ♢a(x+ y) = ♢ax+ ♢ay.
(3) ♢bx ≤ ♢ax if a ≤ b.

One defines x · y = −(−x + −y), □ax := −♢a − x and 1 := −0. One writes
(B,♢a)a∈Q as a Q-MA where B is supposed to be Boolean.

Fact 3. Let (B,♢a)a∈Q be a Q-MA and x, y ∈ B. The following hold:

(1) if x ≤ y, then ♢ax ≤ ♢ay and □ax ≤ □ay.
(2) □a1 = 1 and □a(x · y) = □ax ·□ay.
(3) if a ≤ b, then □ax ≤ □bx.

Basic notions in Q-MA are defined as usual (e.g., [2]). Let B = (B,♢a)a∈Q
andB′ = (B′,♢′

a)a∈Q beQ-MAs. One writes (i)B ∼= B′, ifB is isomorphic toB′;
(ii) B ↣ B′, if B is isomorphic to a subalgebra of B′; and (iii) B ↠ B′, if B′ is a
homomorphic image ofB. The product of a family of Q-MAs {Bi = (Bi,♢i

a)a∈Q :

i ∈ I} is denoted by
∏

i∈I Bi = (
∏

i∈I Bi,
∏

i∈I ♢i
a)a∈Q where

∏
i∈I ♢i

a is the
operation

∏
i∈I ♢i

a(x)(j) = ♢j
a(x(j)) with x ∈

∏
i∈I Bi. Let H, S and P be class

operations of homomorphism, subalgebra and product respectively. A class of Q-
MAs C is a variety, if C = HSPC.
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Let F = (W,σ) be a Q-frame. The complex algebra of F is defined as F+ =

(P(W ),∪, (.),∅,♢σ
a)a∈Q. It is quite easy to observe that F+ is a Q-MA. For every

class of Q-frames K, let CmK = {F+ : F ∈ K}.

Definition 12. LetB = (B,♢a)a∈Q be a finiteQ-MA. An element x ∈ B is called
an atom, if x /= 0, and 0 ≤ y < x implies y = 0. LetWB be the set of all atoms in
B. For every x, y ∈WB , one defines

SQ(x, y) = {a ∈ Q : ∀z ∈ B(x ≤ □az ⇒ y ≤ z)}.

Let σB :WB ×WB → Q be the partial function defined as follows:

σB(x, y) =

{∨
SQ(x, y) if SQ(x, y) /= ∅.

undefined otherwise.

The Q-frameB• = (WB, σB) is called the dual ofB.

Proposition 5. B ∼= (B•)
+ for every finite Q-MA B.

Proof. LetB = (B,♢a)a∈Q. One defines η : B → P(WB) by setting

η(x) = {z ∈WB : z ≤ x}.

It suffices to show that η is an isomorphism. Clearly η is a bijective Boolean homo-
morphism. It suffices to show η(□ax) = □σB

a η(x). Assume y ∈ η(□ax). Then
y ∈ WB and y ≤ □ax. Suppose σB(y, z)! ≥ a. Then b =

∨
SQ(y, z) ≥ a. It fol-

lows □ax ≤ □bx. Then y ≤ □bx. By b ∈ SQ(y, z), we have z ≤ x, i.e., z ∈ η(x).
Hence y ∈ □σB

a η(x). Now assume y ∈ □σB
a η(x). Then

∀z ∈WB(
∨
SQ(y, z) ≥ a⇒ z ≤ x). (†)

Let v =
∧
{u ∈ B : y ≤ □au}. Then □av = □a

∧
{u ∈ B : y ≤ □au} =∧

{□au ∈ B : y ≤ □au}. Clearly SQ(y, z) is a downset. Then
∨
SQ(y, z) ≥ a if

and only if a ∈ SQ(y, z), which is equivalent to ∀u ∈ B(y ≤ □au ⇒ z ≤ u), and
also equivalent to z ≤ v. By (†), one gets

∀z ∈WB(z ≤ v ⇒ z ≤ x). (‡)

By (‡), v ≤ x. Then □av ≤ □ax. Clearly y ≤ □av. Hence y ≤ □ax. □

Definition 13. LetB = (B,♢a)a∈Q be aQ-MA. LetBuf be the set of all ultrafilters
in B. For every u, v ∈ Buf, one defines

Xuf
Q (u, v) = {a ∈ Q : (∀x ∈ v)♢ax ∈ u}.



Fan He / Modal Logic of Multivalued Frames over Inversely Well-Ordered Sets 65

The partial function σuf : Buf ×Buf → Q is defined by:

σuf(u, v) =

{∨
Xuf

Q (u, v) if Xuf
Q (u, v) /= ∅.

undefined otherwise.

The Q-frameB+ = (Buf, σuf) is called the ultrafilter frame ofB.

Obviously, for everyQ-frameF, (F+)+ = Fue. Moreover, the following Jónsson-
Tarski representation theorem holds for Q-MAs.

Theorem 4. B ↣ (B+)
+ for every Q-MA B.

Proof. Let B = (B,♢a)a∈Q and B+ = (Buf, σuf). Let U : B → P(Buf) be the
map U(x) = {u ∈ Buf : x ∈ u} for x ∈ B. Clearly U is a Boolean homomorphism
and injective. We show U(♢ax) = ♢σuf

a U(x). Assume u ∈ U(♢ax). Then ♢ax ∈ u.
Clearly {y ∈ B : □ay ∈ u} ∪ {x} has the finite meet property (i.e., every meet of
finitely many elements in this set is nonzero), and so it is extended to an ultrafilter
v. Then a ∈ Xuf

Q (u, v) and σuf(u, v)! ≥ a. Hence u ∈ ♢σuf
a U(x). Now assume

u ∈ ♢σuf
a U(x). There exists v ∈ Buf with σuf(u, v)! ≥ a and v ∈ U(x). Clearly

Xuf
Q (u, v) is a downset and so a ∈ Xuf

Q (u, v). By v ∈ U(x), x ∈ v and so ♢ax ∈ u,
i.e., u ∈ U(♢ax). □

Lemma 6. Let {Fi = (Wi, σi) : i ∈ I} be a family of disjoint Q-frames. Then
(
⊎

i Fi)
+ ∼=

∏
i F

+
i .

Proof. One defines g : P(
⊎

i∈I Wi) →
∏

i∈I P(Wi) by setting, for all X ⊆
⊎

i∈I

P(Wi), g(X)(i) = X∩Wi. Then g is an isomorphism. Herewe verify g(♢
⊎

i∈I σi
a (X))

=
∏

i∈I ♢σi
a (g(X)). By the definition, g(♢

⊎
i∈I σi

a (X))(j) = ♢
⊎

i∈I σi
a (X) ∩Wj =

♢σj
a (X ∩Wj) and

∏
i∈I ♢σi

a (g(X))(j) = ♢σj
a (g(X)(j)) = ♢σj

a (X ∩Wj). For all
j ∈ I , g(♢

⊎
i∈I σi

a (X))(j) =
∏

i∈I ♢σi
a (g(X))(j). □

Let η : W → W ′ be a function. The dual of η is the function η+ : P(W ′) →
P(W ) defined by η+(X ′) = η−1(X ′). LetB andB′ beQ-MAs and g : B → B′ be a
function. The dual of g is the function g+ : B′uf → Buf defined by g+(u′) = g−1(u′).
Since u′ ∈ B′uf, one gets g−1(u′) ∈ Buf.

Lemma 7. Let F = (W,σ) and G = (W ′, σ′) be Q-frames, and η : W → W ′ be a
bounded morphism from F toG. Then (1) η+ is a homomorphism fromG+ to F+; (2)
if η is injective, then η+ is surjective; and (3) if η is surjective, then η+ is injective.

Proof. Clearly (2) and (3) hold by the definition. For (1), the dual η+ is a Boolean
homomorphism. It suffices to show η+(♢σ′

a X
′) = ♢σ

aη
+(X ′) for every a ∈ Q

and X ′ ⊆ W ′. Assume y ∈ η+(♢σ′
a X

′). Then η(y) ∈ ♢σ′
a X

′. There exists
x′ ∈ X ′ with σ′(η(y), x′)! ≥ a. Since η is a bounded morphism, there exists
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x ∈ W with σ(y, x)! ≥ a and η(x) = x′. Then y ∈ ♢σ
aη

+(X ′). Conversely, assume
y ∈ ♢σ

aη
+(X ′). There exists x ∈ η+(X ′) with σ(y, x)! ≥ a. Since η is a bounded

morphism, one obtains η(x) ∈ X ′ with σ′(η(y), η(x))! ≥ a. Then η(y) ∈ ♢σ′
a X

′.
Hence y ∈ η+(♢σ′

a X
′). □

Lemma 8. LetB = (B,♢a)a∈Q andB′ = (B′,♢′
a)a∈Q beQ-MAs, and g : B → B′

be a homomorphism. Then (1) g+ is a bounded morphism fromB′
+ toB+; (2) if g is

injective, then g+ is surjective; and (3) if g is surjective, then g+ is injective.

Proof. Clearly (2) and (3) hold by the definition. For (1), let B+ = (Buf, σuf)

and B′
+ = (B′uf, σ′uf). Let u, v ∈ B′uf and σ′uf(u, v)! ≥ a. Let ∆1 = {b ∈ Q :

(∀x′ ∈ v)♢′
bx

′ ∈ u} and ∆2 = {b ∈ Q : (∀x ∈ g+(v))♢bx ∈ g+(u)}. Then
σ′uf(u, v) =

∨
∆1 and σuf(g+(u), g+(v)) =

∨
∆2. It suffices to show ∆1 ⊆ ∆2

which yields σuf(g+(u), g+(v)) =
∨
∆2 ≥

∨
∆1 ≥ a. Assume b ∈ ∆1. Let

x ∈ g+(v). Then g(x) ∈ v. By b ∈ ∆1, ♢′
bg(x) = g(♢bx) ∈ u. Then ♢bx ∈ g+(u).

Hence b ∈ ∆2. It follows that∆1 ⊆ ∆2.
Assume u ∈ B′uf, v′ ∈ Buf and σuf(g+(u), v′) ≥ a. It suffices to find v ∈ B′uf

such that σ′uf(u, v) ≥ a and g+(v) = v′. Let v1 = {g(x) : x ∈ v′} and v2 = {y ∈
B′ : □′

ay ∈ u}. One can easily show that v1 ∪ v2 has the finite meet property. Then
there exists v ∈ B′uf with v1∪v2 ⊆ v. Now one shows that v is a required ultrafilter as
follows: (i) σ′uf(u, v) ≥ a. It suffices to show a ∈ ∆1. For a contradiction, suppose
x ∈ v and ♢′

ax /∈ u. Then −♢′
ax = −♢′

a − −x ∈ u. Then −x ∈ v2 ⊆ v which
contradicts x ∈ v. (ii) g+(v) = v′. If x ∈ v′, then g(x) ∈ v1 ⊆ v and so x ∈ g+(v).
Suppose x /∈ v′. Then −x ∈ v′ and g(−x) ∈ v1 ⊆ v. Hence −x ∈ g+(v), i.e.,
x /∈ g+(v). □

Lemma 9. Let F and G be Q-frames, B and C be Q-MAs. Then (1) if F ↣ G, then
G+ ↠ F+; (2) if F ↠ G, then G+ ↣ F+; (3) ifB ↣ C, then C+ ↠ B+; and (4) if
B ↠ C, then C+ ↣ B+.

Proof. Straightforward by Lemma 7 and Lemma 8. □

Theorem 5. LetQ be a i.w.o set andK be a class ofQ-frames which is closed under
taking ultrafilter extensions. Then K is modallyQ-definable if and only if it is closed
under taking disjoint unions, generated subframes, bounded morphic images, and
reflects ultrafilter extensions.

Proof. The left-to-right direction follows from Proposition 1, Proposition 2, Propo-
sition 3 and Proposition 4. Assume that K satisfies the closure conditions. Clearly
K ⊆ FrQ(Th(K)). Assume F |= Th(K). By Birkhoff’s theorem, F+ ∈ HSPCmK.
Then there exist a family of Q-frames {Gi}i∈I in K and a Q-MAB such that F+ ↞
B ↣

∏
i∈I G

+
i . By Lemma 6, one obtains F+ ↞ B ↣ (

⊎
i∈I Gi)

+. By Lemma
9, one obtains Fue = (F+)+ ↣ B+ ↞ ((

⊎
i∈I Gi)

+)+ = (
⊎

i∈I Gi)
ue. Since K
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is closed under taking disjoint unions,
⊎

iGi ∈ K. Furthermore, as K is closed un-
der taking ultrafilter extensions, bounded morphic images and generated subframes,
it follows that (

⊎
iGi)

ue, B+ and Fue belong to K. Then F ∈ K since K reflects
ultrafilter extensions. □

6 More Observations on Normal Q-modal Logics

In section 3, we introduce normalQ-modal logics and apply the canonicalmethod
to prove the completeness of the minimal normal Q-modal logic. In this section, we
will make some particular observations on these logics.

A normalQ-modal logic is canonical, if FL ∈ FrQ(L). Obviously every canon-
ical normal Q-modal logic is complete. As the Sahlqvist theorem for modal logic
(e.g., [2]), one obtains Sahlqvist normal Q-modal logics which are elementary and
complete. The statement of elementarity needs an appropriate first-order language
for talking about properties of Q-frames. A choice is the first-order Q-frame lan-
guage with identity L1

Q consists of binary relational symbols {Ra : a ∈ Q} where
each Ra is interpreted as σ(w, u)! ≥ a in a Q-frame F = (W,σ).

Name Formulas First-order Correspondent
(Da) <a>⊤ ∀x∃yRaxy

(Ta) [a]p→ p ∀xRaxx

(4abc) [a]p→ [b][c]p ∀xyz(Raxy ∧Rbyz → Rcxz)

(Bab) p→ [a]<b>p ∀xy(Raxy → Rbyx)

(5abc) <a>p→ [b]<c>p ∀xy(Raxy ∧Rbxz → Rcyz)

Table 1: Some correspondence results

A formula ϕ ∈ Fm(Q) corresponds a sentence α in L1
Q, if FrQ(ϕ) is defined

by α. The correspondence between modal and first-order sentences in Table 1 can
be shown immediately. One can define Sahlqvist formulas exactly as in e.g., [2].
Every Sahqvist formula ϕ in Fm(Q) has a correspondent αφ in L1

Q that is computed
automatedly. A Sahlqvist Q-modal logic is KQ ⊕ Γ where Γ is a set of Sahlqvist
formulas. One can show as usual that every SahlqvistQ-modal logic is canonical and
hence complete (e.g., [2]).

Next we make observations on the modal logics of singleton Q-frames. In the
standard normal monomodal logic, there are only two singleton frames the logics of
which are Post complete (e.g., [4, 12]). This is a direct consequence of Makinson’s
classification theorem ([10]). In the setting of normal Q-modal logics with |Q| > 1

the situation is different. Let • be theQ-frame ({•}, σ)with σ(•, •) undefined. Let ◦a
be the Q-frame ({◦}, σ) with σ(◦, ◦) = a. A normal Q-modal logic L is consistent,
if FrQ(L) /= ∅.

Proposition 6. Let a, b ∈ Q and ∅ /= X,Y ⊆ Q. The following hold:
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(1) Th(•) = KQ ⊕ {[a]⊥ : a ∈ Q}.
(2) if a /= b ∈ Q, then Th(◦a) /⊆ Th(◦b) and Th(◦b) /⊆ Th(◦a).
(3) Th(◦1) = KQ ⊕ p↔ [1]p.
(4) Th(

⊎
a∈X ◦a) =

∩
a∈X Th(◦a).

Proof. (1) Let L• = KQ ⊕ {[a]⊥ : a ∈ Q}. Clearly • |= L•, i.e., L• ⊆ Th(•).
Suppose ϕ /∈ L•. Let Σ be a state in the canonical frame FL• = (WL• , σL•) with
ϕ /∈ Σ. Clearly there is no ∆ ∈ WL• with σL•(Σ,∆)!. Then • is the subframe of
FL• generated by Σ. Hence • /|= ϕ. It follows that L = Th(•).

(2) Assume a /= b. Then a < b or b < a. Without loss of generality, suppose
a < b. Then <b>⊤ ∈ Th(◦b) \ Th(◦a) and [b]⊥ ∈ Th(◦a) \ Th(◦b).

(3) Let L1 = KQ ⊕ p↔ [1]p. Then ◦1 |= L1, i.e., L1 ⊆ Th(◦1). Obviously L1
is canonical, i.e., its canonical frame FL1 |= L1. Clearly FL1 satisfies the conditions
∀xRσ

1xx and ∀xy(Rσ
1xy → x = y). This means that FL1 consists of isolated copies

of ◦1. Hence ◦1 is a generated subframe of FL1 .
(4) It follows from Proposition 1. □

Definition 14. LetM = (W,σ, V ) be a Q-model. A subset U ⊆W is definable in
M, if there exists ϕ ∈ Fm(Q) with U = V (ϕ). A Q-modelM′ = (W,σ, V ′) with a
valuation V ′ inW is called a variant of M. We say that M′ is a definable variant of
M, if V ′(p) is definable inM for each p ∈ P.

Lemma 10. Suppose Γ ⊆ Fm(Q) is closed under substitution. If M |= Γ, then
M′ |= Γ for every definable variant M′ of M.

Proof. LetM = (W,σ, V ) be a model andM |= Γ. Let ϕ ∈ Fm(Q) and ϕ′ be the
formula obtained from ϕ by substituting ψi for pi in ϕ, and M′ = (W,σ, V ′) be the
Q-model where V ′(pi) = V (ψi) with 1 ≤ i ≤ n. By induction on the complexity
δ(ϕ) one obtains that w ∈ V (ϕ′) if and only if w ∈ V ′(ϕ). One obtains M′ |= Γ by
the same proof as [5, Theorem 5]. □

Theorem 6. Let L ∈ NExt(KQ) be consistent. The following hold:

(1) if <a>⊤ /∈ L for every a ∈ Q, then L ⊆ Th(•).
(2) if <a>⊤ ∈ L for some a ∈ Q, then L ⊆ Th(◦b) for some b ∈ Q.

Proof. (1) Assume <a>⊤ /∈ L for every a ∈ Q. Let ML = (WL, σL, V L) be
the canonical model for L. Let Γ = {[a]⊥ : a ∈ Q}. Now we show that Γ is L-
consistent. Suppose not. Then

∨
a∈X<a>⊤ ∈ L for some finite ∅ /= X ⊆ Q. Let∧

X = b. Clearly
∨

a∈X<a>⊤ → <b>⊤ ∈ L. Then <b>⊤ ∈ L which contradicts the
assumption. Hence Γ is L-consistent. Let Σ ∈ WL and Γ ⊆ Σ. Clearly there is no
∆ ∈ WL with σL(Σ,∆)!. Let M = (W,σ, V ) be the model generated from ML by
Σ. Due to [a]⊥ ∈ Σ for all a ∈ Q, one obtains that F = (W,σ) consists of a single
state Σ with σ(Σ,Σ) undefined. Obviously M,Σ |= L. Note that L is closed under
substitution. By Lemma 10, one obtains • ∈ FrQ(L), i.e., L ⊆ Th(•).
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(2) Assume <a>⊤ ∈ L for some a ∈ Q. Let b =
∨
{c ∈ Q : <c>⊤ ∈ L}. Then

<b>⊤ ∈ L. Since L is consistent, let F = (W,σ) be a Q-frame and F |= L. Then
F |= <b>⊤. HenceRσ

b (w) /= ∅ for allw ∈W . Let η be the function which maps each
w ∈W to ◦. Then η is a surjective bounded morphism from F to ◦b. By Proposition
3, ◦b |= L, i.e., L ⊆ Th(◦b). □

The notion of total Q-frame is given in Definition 2. Here we consider a partic-
ular class of totalQ-frames. LetQ0 be an i.w.o set with bottom element 0. Obviously
every finite chain is certainly such an i.w.o set. The class of all total Q0-frames is
denoted by FQ0 . Note that, although FQ0 is not closed under taking disjoint unions,
it is closed under taking generated subframes, bounded morphic images, and ultrafil-
ter extensions. Moreover, Propositions 2, 3 and 4 hold for total Q0-frames. Now we
introduce normal total Q0-modal logics.

Definition 15. A normal total Q0-modal logic is a set of formulas L ⊆ Fm(Q0)
which contains (Tau), (Ka), (CQ0), and the following formulas:

(T0) [0]p→ p, (40) [0]p→ [0][0]p, (B0) p→ [0]<0>p.

and is closed under (MP), (Gen) and (Sub). The minimal normal totalQ0-modal logic
is denoted byK♭

Q0
. LetNExt♭(L) be the set of all normal totalQ0-modal logics which

contain L.

Theorem 7. K♭
Q0

= Th(FQ0).

Proof. Let F = (W,σ) be a total Q0-frame. Then u ∈ Rσ
0 (w) for all w, u ∈ W .

It follows that (T0), (40) and (B0) are valid in FQ0 . Then K♭
Q0

⊆ Th(FQ0). For
the completeness, letM = (W,σ, V ) be the canonical model for K♭

Q0
. Note that 0 ∈

XQ0(Σ,Θ) and so σ(Σ,Θ) =
∨
XQ0(Σ,Θ) which is a total function. If ϕ /∈ K♭

Q0
,

thenM /|= ϕ. Hence Th(FQ0) ⊆ K♭
Q0
. □

Proposition 7. For every consistent normal totalQ0-modal logic L, there exists a ∈
Q0 with L ⊆ Th(◦a).

Proof. By <0>⊤ ∈ L and Theorem 6, L ⊆ Th(◦a) for some a ∈ Q0. □

Finally, we shall consider the embedding from a normalQ-modal logic to a nor-
mal Q′-modal logic where Q is embedded into Q′ in some way. In what follows, Q
and Q′ are supposed to be i.w.o sets.

Definition 16. Let (Q,≤Q, 1) and (Q′,≤Q′ , 1′) be i.w.o sets. A function f : Q →
Q′ is an embedding, notation f : Q ■→ Q′, if f(1) = 1′ and for all a, b ∈ Q, a ≤Q b

if and only if fa ≤Q′ fb. An embedding f : Q ■→ Q′ is upward, if f(Q) is an upset
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in Q′. For every f : Q ■→ Q′, the function εf : Fm(Q) → Fm(Q′) is defined
inductively as follows:

εf (ϕ) = ϕ, if ϕ ∈ P ∪ {⊥}.
εf (ϕ→ ψ) = εf (ϕ) → εf (ψ).

εf ([a]ϕ) = [fa]εf (ϕ).

For every set of formulas Σ ⊆ Fm(Q), let εf (Σ) = {εf (ϕ) : ϕ ∈ Σ}.

Lemma 11. Let f : Q ■→ Q′. For every set of formulas Σ ∪ {ϕ} ⊆ Fm(Q), if
ϕ ∈ KQ ⊕ Σ, then εf (ϕ) ∈ KQ′ ⊕ εf (Σ).

Proof. Assume ϕ ∈ KQ ⊕ Σ. The case ϕ ∈ Σ is obvious. If ϕ is an instance
of (Tau), by the definition of εf , so is εf (ϕ). If ϕ be (Ka), then εf (ϕ) is (Kfa).
Suppose that ϕ is (CQ), i.e., ϕ = [a]p→ [b]p with a ≤Q b. Then fa ≤Q′ fb. Hence
εf (ϕ) = [fa]p→ [fb]p. If ϕ is obtained by a rule (R) in KQ ⊕Σ, then εf (ϕ) is also
obtained by (R) in KQ′ ⊕ εf (Σ). □

Let f : Q ■→ Q′. For every Q-frame F = (W,σ), one defines the Q′-frame
Ff = (W,σf ) by setting for all w, u ∈W :

σf (w, u) =

{
f(σ(w, u)) if σ(w, u)!.
undefined otherwise.

For every Q-modelM = (F, V ), letMf = (Ff , V ).

Lemma 12. Let f : Q ■→ Q′ and M = (F, V ) be a Q-model with F = (W,σ). For
every w ∈ W and ϕ ∈ Fm(Q), (i) M, w |= ϕ if and only if Mf , w |= εf (ϕ); and
(ii) F |= ϕ if and only if Ff |= εf (ϕ).

Proof. Clearly (ii) follows from (i). For (i), the proof proceeds by induction on the
complexity δ(ϕ). Atomic and Boolean cases are obvious. Let ϕ = [a]ψ and εf (ϕ) =
[fa]εf (ψ). Assume Mf , w /|= εf (ϕ). Then σf (w, u)! ≥ fa and Mf , u /|= εf (ψ)

for some u ∈ W . Clearly σf (w, u) = f(σ(w, u)) ≥ fa. Then σ(w, u)! ≥ a. By
induction hypothesis, M, u /|= ψ. Hence M, w /|= [a]ψ. The other direction is shown
similarly. □

Theorem 8. Let f : Q ■→ Q′ be upward andΣ ⊆ Fm(Q). Suppose thatL = KQ⊕Σ

and L′ = KQ′ ⊕ εf (Σ) are complete. For every ϕ ∈ Fm(Q), ϕ ∈ L if and only if
εf (ϕ) ∈ L′.

Proof. By Lemma 11, if ϕ ∈ L, then εf (ϕ) ∈ L′. Assume ϕ /∈ L. Since L is
complete, there exists F ∈ FrQ(L) with F /|= ϕ. By Lemma 12, Ff ∈ FrQ′(L′) and
Ff /|= εf (ϕ). Hence εf (ϕ) /∈ L′. □

Corollary 1. Let f : Q ■→ Q′ be upward. For every ϕ ∈ Fm(Q), ϕ ∈ KQ if and
only if εf (ϕ) ∈ KQ′ .
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7 Concluding Remarks

In the present work we contribute new multimodal logics over multivalued fra-
mes. Multivalued frames over a set of values Q are taken as the semantic ontology
to interpret the corresponding multimodal language. We obtain Goldblatt-Thomason
theorems for certain classes of Q-frames. In the study of normal Q-modal logics,
we adjust the canonical model method and obtain some completeness results. The
logics of singleton frames and related Makinson’s classification theorem are estab-
lished. There are many problems that are interesting for further exploration. Here
we mention two of them: (i) throughout this paper, we considered only i.w.o sets as
organizations of agents. One could change the set of values Q into a (possibly dis-
tributive or Boolean) lattice in general, and study related problems; and (ii) try to
give a Goldblatt-Thomason theorem which characterizes the modalQ-definability of
certain classes of total Q-frames.
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逆良序集上多值框架的模态逻辑

何凡

摘 要

通过引入取值集合，将 Kripke框架推广为多值框架。本文假设取值集 Q为

逆良序的集合，与之对应的模态语言在Q上的多值框架中得到解释。本文证明了

某些Q-框架类的 Goldblatt-Thomason定理。本文还引入了正规Q-模态逻辑，并证
明了其完全性与Makinson定理。
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