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Characterizing Argumentation Frameworks
with an Extension*

Kang Xu Beishui LiaoB

Abstract. According to a given criterium, from the structure of an argumentation framework,
a set of extensions can be decided. Conversely, an extension or a set of extensions can identify
a set of argumentation frameworks. The direction from argumentation frameworks to their
semantics has been discussed a lot, but little attention has been paid to the opposite direction. In
this paper, we focus on characterizing argumentation frameworks with a given set of arguments
as an extension, and show its applications on the update of argumentation frameworks and
monotony.

1 Introduction

Formal argumentation is a very active research area in the field of knowledge
representation and reasoning, in which Dung’s abstract argumentation ([11]) has been
extensively studied in the past two and a half decades, including argumentation se-
mantics ([20, 1]), algorithms ([15, 19]), computational complexity ([14, 13]), dynam-
ics ([3, 7]), etc..

An abstract argumentation framework can be modeled as a graph (A,R), where
A represents a set of arguments and R ⊆ A × A a binary relation called “attack”.
Given such a graph, an interesting question is which sets of arguments, i.e. extensions,
can reasonably be accepted. This question is stated as semantics that is a function from
an argument graph to a set of extensions. There is a rich variety of semantics, defined
in terms of intuitions and principles ([1]), each of which represents a kind of attitude
to select acceptable arguments in practice.

Example 1. AF1 is an argumentation framework illustrated in Figure 1. Arguments
a and c are accepted simultaneously under grounded semantics wich represents a cau-
cious choice. Then {a, c} is the grounded extension of AF1. The semantics of AF1

is a mapping from AF1 to {{a, c}}.
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Figure 1: Argumentation frameworks

Conversely, from an extension or a set of extensions, a set of argumentation
frameworks can be decided.

Example 2. LetE1 = {a, c} be a set of arguments. There are infinite argumentation
frameworks that have E1 as the grounded extension. All of them can be put in a
set, denoted as AFE1

gr . AF1 and AF2 illustrated in Figure 1 are two argumentation
frameworks in AFE1

gr .

The direction from argumentation frameworks to semantics has been discussed
a lot ([20, 1, 15, 19]), but little attention has been paid to the opposite direction from
semantics to frameworks. Example 2 gives rise to a research question: Given a set
E of arguments, under grounded semantics, what kinds of conditions AFE

gr should
satisfy? It can be seen from the structures of both AF1 and AF2 that one argument
in E is unattacked, and it can be seen more from the structure of AF2 that the circle
identified by {a, d} is attacked by c in E. There should be a precise characterization
of AFE

gr that covers all of these conditions. We will discuss this problem in this
paper, and will focus on characterizing the set of argumentation frameworks with an
extension or a set of extensions.

In our previous works ([17]), we simplifed the computation of semantics of prob-
abilistic argumentation by characterizing subgraphs. After that, we introduced this
idea to “enforcement”, one question of the dynamics of argumentation frameworks.
Enforcement is to change an argumentation framework to make a set or sets of ar-
guments accepted. Baumann et al. firstly investigated whether enforcing an exten-
sion is possible in [4]. We discussed the conditions under which an enforcement
achieves ([22, 21]). In [22], we classified the change of an argumentation framework
into two directions: expansion and contraction. The expansion of an argumentation
framework is defined by adding arguments or attacks to the framework. The con-
traction of an argumentation framework is defined by deleting arguments or attacks
from the framework. We formulated methods to expand or contract argumentation
frameworks to enforce an extension under complete, grounded, preferred and stable
semantics respectively. In [21], we discussed how to update an argumentation frame-
wok to enforce an extension under complete, grounded, preferred and stable seman-
tics, where updating an argumentation framework is not to change it in one direction,
i.e., either expansion or contraction, but to form a new framework.
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The way of characterizing subgraphs in [17] sparks an idea of characterizing
argumentation frameworks from a fixed extension or a set of extensions. “Enforce-
ment” in [22] and [21] provides methods to do the characterization of frameworks.
This paper is motivated by these two points and to be an extension of [21] which
incorporates the principle behind the enforcement in [21] and the idea of character-
izing frameworks. It shows the relations between the structures of argumentation
frameworks and some semantics, making a progress on the research direction from
semantics to frameworks. Furthermore, it can be applied to the dynamics of argumen-
tation frameworks which are about the interaction between the change of frameworks
and that of semantics.

The structure of this paper is as follows. Section 2 introduces some basic notions
of abstract argumentation. Section 3 is the main part of this paper, studying the char-
acterization of argumentation frameworks with a given extension, and a given set of
extensions. Section 4 shows the applications of our work to updating argumentation
frameworks and monotony. Section 5 concludes.

2 Preliminaries

2.1 Argumentation frameworks

To make this paper self-contained, in this section, we introduce some basic no-
tions on the abstract argumentation, including argumentation frameworks and their
semantics. We consider only finite argumentation frameworks for the sake of sim-
plicity, and all presentations here are adjusted to the studies in the following sections.

Definition 1. Let U be the universe of all possible arguments. An argumentation
framework G is a tuple (A,R) where A is finite, A ⊆ U and R ⊆ A× A is a binary
relation on A.

LetB ⊆ A andRB = R∩ (B×B). (B,R∗) is a sub-framework of G ifB ⊆ A
andR∗ ⊆ RB . G ↓B= (B,RB) is the restriction of G toB, and it is a sub-framework
of G.

Given a, b ∈ A, (a, b) ∈ R means a attacks b. We write aRb instead of (a, b) ∈
R, and a��Rb instead of (a, b) /∈ R. Given B, C ⊆ A, we say BRa (respectively,
aRB) if there exists b ∈ B such that bRa (respectively, aRb), andBRC if there exist
b ∈ B and c ∈ C such that bRc.

We use aR̃b to denote the indirect relation between two arguments: aR̃b if there
exist a series of arguments x1, x2, ... xn such that aRx1, x1Rx2, ..., and xnRb.

Circles play a key role to dicide the content of an extention and the number of
extensions of an argumentation framework. It is defined as follows.
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Definition 2. Let G = (A,R) be an argumentation framework, and B ⊆ A. G ↓B
is a circle of G if and only if for any arguments a, b ∈ B, aR̃Bb and bR̃Ba. The set of
all circles of G is denoted as CIRG , and the set {B | G ↓B is a circle of G} is denoted
as SCIRG .

Example 3. LetAF3 be an argumentation framework illustrated in Figure 2. CIRAF3

= {AF3 ↓{a,b}, AF3 ↓{b}, AF3 ↓{c,d}} and SCIRAF3 = {{a, b}, {b}, {c, d}}.
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Figure 2: An argumentation framework

The notion of circle is different from that of strongly connected component of
an argumentation framework in [2].

Definition 3. Let G = (A,R) be an argumentation framework, PEG is a relation
on A and satisfies:

• for any x ∈ A, (x, x) ∈ PEG ;
• for any x, y ∈ A with x 6= y, (x, y) ∈ PEG if and only if xR̃y and yR̃x.

PEG is an equivalence relation and we call it the relation of path-equivalence. Let
a ∈ A. The equivalence class of a modulo PEG is a strongly connected component
of G. The set of strongly connected components of G is denoted as SCCSG and it is
a partition of A.

It can be seen from Definitions 2 and 3 that any cyclic graph of a strongly con-
nected component is a circle, but not vice versa. Considering AF3 in Example 3,
SCCSAF3 = {{a, b}, {c, d}, {e}, {f}} in which two subframeworks induced by
{a, b} and {c, d} depict circles of AF3.

All circles in an argumentation framework make a contribution to the consti-
tution of semantics, while the strongly connected components in a framework have
some relations to the properties of semantics ([2]).

2.2 Semantics of argumentation

Given an argumentation framework, a fundamental problem is to determinewhich
arguments can be regarded as collectively acceptable. There are mainly two ap-
proaches: extension-based approach and labelling-based approach. The idea under-
lying the extension-based approach is to identify sets of arguments, called extensions,
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that can be accepted according to a given criterion. The idea underlying the labelling-
based approach is to assign a label to each argument according to a given criterion.

The extension-based approach starts from the notions of conflict-freeness and
defense.

Definition 4. Let G = (A,R) be an argumentation framework, a, b ∈ A and
E ⊆ A.

• E is conflict-free if and only if for any a, b ∈ E, a��Rb;
• E defends a if and only if for any bRa, ERb.

The set of all arguments defended by a subset of A can be denoted by the char-
acteristic function of G. The characteristic function makes a contribution to symplify
the definitions in the extension-based approach.

Definition 5. The characteristic function of an argumentation frameworkG = (A,R)

is F : 2A −→ 2A, where for any B ⊆ A, F(B) = {a ∈ A | B defends a}.

Based on conflict-freeness and the characteristic function, a set of extensions can
be defined as follows ([6, 9, 15]).

Definition 6. Let G = (A,R) be an argumentation framework, a ∈ A and E ⊆ A.

• E is an admissible set if and only if E is conflict-free and E ⊆ F(E);
• E is a complete extension of G if and only ifE is conflict-free andE = F(E);
• E is the grounded extension of G if and only if E is the minimal complete
extension (with respect to set inclusion);

• E is a preferred extension of G if and only if E is a maximal admissible set
(with respect to set inclusion);

• E is a stable extension of G if and only if E is admissible and ER(A \ E);
• E is the ideal extension of G if and only if E is the maximal admissible exten-
sion (with respect to set inclusion) contained in all preferred extensions of G.

The labelling-based approach is defined in terms of labellings. A labelling is a
function assigning a label to each argument of an argumentation framework to indicate
its status. There are usually three labels: in, out and undec. The label in indicates
that the argument is accepted, out indicates that the argument is rejected and undec
indicates that the argument is undecided which means that it can not be decided to be
accepted or rejected ([1]).

Definition 7. Let G = (A,R) be an argumentation framework. The labelling of G
is a total function L : A 7−→ {in, out,undec}.

Let in(L) = {a ∈ A | L(a) = in}, out(L) = {a ∈ A | L(a) = out}
and undec(L) = {a ∈ A | L(a) = undec}. L is often represented as a triple



46 Studies in Logic, Vol. 14, No. 6 (2021)

(in(L), out(L),undec(L)).
Let B ⊆ A. L ↓B= (in(L) ∩ B, out(L) ∩ B,undec(L) ∩ B) is called the

restriction of L to B.

The central criterion for labelling-based approach is legality.

Definition 8. Let G = (A,R) be an argumentation framework, a ∈ A, and L be a
labelling of G.

• L(a) = in is legal if and only if for any b ∈ A, bRa implies L(b) = out;
• L(a) = out is legal if and only if there exists b ∈ A such that bRa and L(b)
= in;

• L(a) = undec is legal if and only if the above two cases are unsatisfied, i.e.

– there exists b ∈ A such that bRa and L(b) 6= out;
– for any c ∈ A, if cRa then L(c) 6= in.

Based on Definition 8, various kinds of labellings can be defined as follows.

Definition 9. Let G = (A,R) be an argumentation framework, and L be a labelling
of G.

• L is an admissible labelling if and only if arguments in in(L) and out(L) are
legally labeled by L;

• L is a complete labelling if and only if it is admissible, and arguments in
undec(L) are legally labeled by L;

• L is the grounded labelling if and only if it is complete, and in(L) is minimal
(with respect to set inclusion) among all complete labellings of G;

• L is a preferred labelling if and only if it is admissible, and in(L) is maximal
(with respect to set inclusion) among all admissible labellings of G;

• L is a stable labelling if and only if it is complete, and undec(L) = ∅;
• L is the ideal labelling if and only if it is the maximal admissible labelling that is
smaller than or equal to each preferred labelling (with respect to set inclusion).
Here, we say that a labelling L is smaller than or equal to another labelling L′

if and only if in(L) ⊆ in(L′).

In this paper, we use ad, co, pr, gr, st and id to denote admissible, complete,
preferred, grounded, stable and ideal respectively, and use σ to represent one of them,
i.e. σ ∈ {ad, co, pr, gr, st, id}. The set of all σ-extensions(sets) of G is denoted as
Eσ(G). The set of all σ-labellings on G is denoted as Lσ(G).

The relation between labellings and extensions is: for any σ-labelling of G, there
is a σ-extension(set) E such that E = in(L); for any σ-extension(set) E of G, there
is a σ-labelling such that E = in(L) ([1]). In the following part of this paper, we call
in(L) a σ-extension(set) while L is a σ-labelling.
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It is not the case for each σ in {ad, co, pr, gr, st, id} that the σ-labellings are in
one-to-one correspondence to the σ-extensions(sets) of an argumentation framework.
ad-labellings are not uniquelly identified by their in labeled part, but it does hold for
co-labellings ([12]). The following proposition indicates this unique identification for
co-labellings.

Proposition 1. Let G = (A,R) be an argumentation framework, and L1, L2 be co-
labellings of G. It holds that:

• in(L1) ⊆ in(L2) if and only if out(L1) ⊆ out(L2);
• in(L1) ⊂ in(L2) if and only if out(L1) ⊂ out(L2).

2.3 Directionality and sub-frameworks

Directionality is a property of semantics with respect to the structures of argu-
mentation frameworks. In this paper, we adopt the definition based on the labelling-
based approach in [1].

Definition 10. Let G = (A,R) be an argumentation framework, and B ⊆ A. B is
unattacked if and only if there is no argument a ∈ A \B such that aRB.

Definition 11. A semantics σ is directional if and only if for any argumentation
framework G and for any set of arguments B which is unattacked, Lσ(G) ↓B=
Lσ(G ↓B), where Lσ(G) ↓B= {L ↓B | L ∈ Lσ(G)}.

In [15], Liao et al. called G ↓B withB unattacked unconditioned sub-framework
of G, otherwise conditioned sub-framework. Furthermore, they proposed the partially
labeled sub-framework which is a combination of a conditioned sub-framework and
its outside attackers. In this paper, we stick “partially labeled” to sub-framework
G ↓B .

Definition 12. Let G = (A,R) be an argumentation framework, and B ⊆ A. A
partially labeled sub-framework of G is denoted as (G ↓B)L, where L is a labelling
covers all attackers outside G ↓B .

In Definition 12, we do not restrict the attackers outsideB to be nonempty, which
is different from [15]. The legality of labellings for a partially labeled sub-framework
needs to incorporate the labels of its external attackers if there are.

Definition 13. Let G = (A,R) be an argumentation framework, B ⊆ A, a ∈ B

and L∗ be a labelling of (G ↓B)L.

• L∗(a) = in is legal if and only if for any b ∈ A \B, bRa implies L(b) = out,
and for any c ∈ B, bRa implies L∗(c) = out;
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• L∗(a) = out is legal if and only if there exists b ∈ A \ B, such that bRa and
L(b) = in or there exists b ∈ B, such that bRa and L∗(b) = in;

• L∗(a) = undec is legal if and only if the above two cases are unsatisfied.

The definitions of ad, co, gr, pr and id-labellings of a partially labeled sub-
framework are defined as follows.

Definition 14. Let G = (A,R) be an argumentation framework, B ⊆ A and L∗ be
a labelling of (G ↓B)L.

• L∗ is an ad-labelling of (G ↓B)L if and only if all arguments in in(L∗) and
out(L∗) are legally labeled by L∗;

• L∗ is a co-labelling of (G ↓B)L if and only if it is an ad-labelling, and all
arguments in undec(L∗) are legally labeled by L∗;

• L∗ is the gr-labelling of (G ↓B)L, if and only if L∗ is a co-labelling, and in(L∗)

is minimal (with respect to set inclusion) among all co-labellings of (G ↓B)L;
• L∗ is a pr-labelling of (G ↓B)L if and only if L∗ is an ad-labelling, and in(L∗)

is maximal (with respect to set inclusion) among all ad-labellings of (G ↓B)L ;
• L∗ is an st-labelling of (G ↓B)L if and only if it is a co-labeling, and undec(L)
= ∅;

• L∗ is the id-labelling of (G ↓B)L if and only if it is the maximal ad-labelling
that is smaller than or equal to each pr-labelling of (G ↓B)L (with respect to
set inclusion).

Example 4. AF3 ↓{a,b} andAF3 ↓{e,f} are two sub-frameworks ofAF3(see Figure
2). AF3 ↓{a,b} is unconditioned, and given any labelling L, Lco((AF3 ↓{a,b})L) =

{({a}, {b}, ∅)}.
AF3 ↓{e,f} is conditioned, and is attacked outside by c and d. Suppose L1 =

({c}, {d}, ∅), L2 = ({d}, {c}, ∅), and L3 = (∅, ∅, {c, d}), then we have:

Lco((AF3 ↓{e,f})L1) = {({f}, {e}, ∅)}
Lco((AF3 ↓{e,f})L2) = {({f}, {e}, ∅)}
Lco((AF3 ↓{e,f})L3) = {(∅, ∅ {e, f})}

If a sub-framework is attacked outside by arguments that are all labeled out, then
its semantics is imprevious. The following theorem shows this condition.

Theorem 2. σ ∈ {ad, co, gr, pr, st, id}. Let G = (A,R) be an argumentation frame-
work, B,C ⊆ A, and C = {c ∈ A | c /∈ B and cRB}. If there is a labelling L on C
such that for any c ∈ C, L(c) = out, then Lσ((G ↓B)L) = Lσ(G ↓B).

It is easy to prove Theorem 2 by Definitions 13 and 14.
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3 Characterizing Argumentation Frameworks

In this section, we will discuss how to characterize σ-argumentation frameworks
with an extension. This kind of conditioned argumentation frameworks are defined
following σ-subgraphs with respect to an extension proposed in [17]. A σ-subgraph
with respect to an extension is a sub-framework that has a fixed set of arguments as
a σ-extension. For example, AF2, AF2 ↓{a,b,c}, AF2 ↓{a,d,c} and AF2 ↓{a,c} are all
gr-subgraphs of AF2 with respect to {a, c}(see Figure 1).

A σ-argumentation framework with an extension is defined as follows.

Definition 15. Let G = (A,R) be an argumentation framework. If E is a σ-
extension of G, then we call G a σ-argumentation framework with E. AF σ

E is used to
denote the set of all σ-argumentation frameworks with E.

AF1 andAF2 illustrated in Figure 1 are two gr-argumentation frameworks with
{a, c}. AF3 illustrated in Figure 2 is a co-argumentation framework with {a, c, f}.

E is the key point to the construction of G in AF σ
E . Two factors related to E

jointly make a contribution to this construction: arguments that attack E and argu-
ments that are attacked by E. In the remaining part of this paper, the following sets
related to E within any argumentation framework G = (A,R) will be frequently
used, which are previously presented in [17].

E−
G = {x ∈ A \E | xRE}, denoting the set of arguments in A that attacks E;

E+
G = {x ∈ A \E | ERx}, denoting the set of arguments in A that is attacked

by E;
E−

G \ E
+
G , denoting the set of arguments in A that attack E but is not attacked

by E;
IEG = A\(E∪E−

G ∪E
+
G ), denoting the set of arguments inAwhich is unrelated

to E (neither attacks nor is attacked by E).

E, E−
G \ E

+
G , E

+
G and IEG make a partition of A, and determine whether G is a

σ-argumentation framework with E.
The following parts of this section show the characterizations of argumenta-

tion frameworks with an extension under complete, grounded, preferred and stable
semantics.

3.1 Complete semantics

Before discussing argumentation frameworks in AF co
E , we first show how an

ad-argumentation framework with E is.
Given an argumentation framework G, if G is an ad-argumentation framework

with E, then there exists an ad-labelling L of G such that in(L) is equal to E. All ad-
sets are conflict-free, then any two arguments inE do not attack each other. According
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to Definition 9, arguments in in(L) and out(L) should be legally labeled. This implies
that all arguments in E−

G and E+
G are labeled out by L. According to Definition 8,

any argument labeled out is attacked by at least one argument labeled in. Then it can
be concluded that E attacks E−

G , i.e. E
−
G is included in E+

G .
If E−

G is included in E+
G and E is conflict-free, then it can be concluded that

(E,E+
G , I

E
G ) is an ad-labelling ofG. In this case, G is an ad-argumentation framework

with E.

Theorem 3. Let G = (A,R) be an argumentation framework, and E ⊆ A. G ∈
AF ad

E if and only if

• E��RE;
• E−

G ⊆ E
+
G .

Proof. (⇒) Suppose G ∈ AF ad
E , then there existsL ∈ Lad(G) such that in(L) = E.

Then out(L) ⊆ E+
G , since any arguments in out(L) should be legally labeled. From

Definition 4, E��RE. From Definitions 8 and 9, E−
G ⊆ out(L). Then E−

G ⊆ E
+
G .

(⇐) Suppose E��RE and E−
G ⊆ E+

G , it is sufficient to prove that there exists
L ∈ Lad(G) such that in(L) = E. Let L = (E,E+

G , A \ (E ∪ E
+
G )) be a labelling

of G. For any x ∈ E+
G , there exists y ∈ E such that yRx. Since L(y) = in, then

L(x) = out is legal. Since E−
G ⊆ E+

G , then for any x ∈ E−
G , L(x) = out. Since

E��RE, then for any x ∈ E,L(x) = in is legal. FromDefinitions 8 and 9,L ∈ Lad(G).
Thus G ∈ AF ad

E . □

From Theorem 3, that E−
G is included in E+

G and that E is conflict-free are not
only sufficient but also necessary conditions for G being an ad-argumentation frame-
work with E.

Example 5. Let E2 = {a, d}. According to Theorem 3, AF4 illustrated in Figure
3 is an ad-argumentation framework with E2.

a // b // c d (( eii // f

AF4

Figure 3: An ad-argumentation framework with E2

Now let us turn to complete semantics. Given an argumentation framework G,
where G = (A,R), if G is a co-argumentation framework with E, then there exists
a co-labelling L of G such that in(L) is equal to E. As a co-labelling is also an ad-
labelling, G is first an ad-argumentation framework with E. Then from Theorem
3, we know that E is conflict-free and E−

G is included in E+
G . From Definition 8,

out(L) is equal to E+
G . From the construction of IEG , we konw that IEG is equal to
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A \ (E ∪ E+
G ). As in(L) is equal to E and out(L) is equal to E+

G , I
E
G is just the set

of undec(L). From Definition 9, arguments in in(L) and out(L) are legally labeled
under complete semantics, and moreover, arguments in undec(L) are legally labeled.
Then from Definition 8, all arguments in IEG are attacked by IEG .

IfE is conflict-free,E−
G is included inE+

G , and all arguments in I
E
G is attacked by

IEG , then (E,E+
G , I

E
G ) makes a co-labelling of G: arguments in E are legally labeled

in since their attackers are in E+
G ; arguments in E

+
G are legally labeled out because

they are attacked by E; IEG is equal to A \ (E ∪ E+
G ) since E

−
G is included in E+

G ;
arguments in IEG are legally labeled undec because they are not attacked by E and
not all attacked by arguments labeled out. Thus G is a co-argumentation framework
with E.

On the basis of Theorem 3, a co-argumentation framework with E can be de-
scribed as follows.

Theorem 4. Let G = (A,R) be an argumentation framework, and E ⊆ A. G ∈
AF co

E if and only if

• E��RE;
• E−

G ⊆ E
+
G ;

• for any x ∈ IEG , IEG Rx.

Proof. (⇒) Suppose G ∈ AF co
E , then there exists L ∈ Lco(G) such that in(L) = E.

Since a co-labelling is also an ad-labelling, then G ∈ AF ad
E . Then E��RE and E−

G ⊆
E+

G . Then I
E
G = A\(E∪E+

G ). From Definition 8, out(L) ⊆ E+
G . If there is x ∈ E

+
G

such that L(x) 6= out, then if L(x) = in, then x ∈ E, a contradiction; if L(x) =

undec, then E��Rx, a contradiction. Then out(L) = E+
G , and then undec(L) = IEG .

Suppose there exists x ∈ IEG such that IEG��Rx, then either x is unattacked or x is only
attacked byE∪E+

G . If x is unattacked, thenL(x) = undec is illegal, a contradiction.
If x is attacked by E ∪E+

G , and since L(x) = undec, then x only can be attacked by
E+

G . Then L(x) = undec is illegal, a contradiction. Thus, for any x ∈ IEG , IEG Rx.
(⇐) Suppose E��RE, E−

G ⊆ E+
G and for any x ∈ IEG , IEG Rx, it is sufficient to

prove that there exists L ∈ Lco(G) such that in(L) = E. Let L = (E,E+
G , A \ (E ∪

E+
G )) be a labelling of G. From E��RE and E−

G ⊆ E+
G , we know that G ∈ AF ad

E ,
and then arguments in E and E+

G are legally labeled. Since E−
G ⊆ E+

G , then I
E
G =

A\ (E ∪E+
G ). Since for any x ∈ IEG , IEG Rx, then for any x ∈ A\ (E ∪E

+
G ), x is not

attacked by in(L), and is not only attacked by out(L). Then L(x) = undec is legal.
Then for any x ∈ A \ (E ∪ E+

G ), L ∈ Lco(G). Thus G ∈ AF co
E . □

Comparing with Theorem 3, Theorem 4 adds a new condition on IEG which
makes sure that all arguments unrelated to E are legally labeled undec. Theorem
4 provides sufficient and necessary conditions for G being a co-argumentation frame-
work with E.
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Example 6. E2 = {a, d}, and AF4 in figure 3 is an ad-argumentation framework
with E2. IE2

AF4
= {c, f}. According to Theorem 4, all arguments in {c, f} should

be attacked by {c, f}. Thus AF4 is not in AF co
E . Both AF 1

5 and AF 2
5 illustrated in

Figure 4 are co-argumentation frameworks with E2.

a // b // c YY d (( eii // f WW

AF 1
5

f

xx ��
a // b // c

99

e
))
dhh

AF 2
5

Figure 4: co-argumentation frameworks with E2

3.2 Grounded semantics

If G is a gr-argumentation framework with E, then there is a gr-labelling of G,
say L, such that in(L) is equal to E. As the gr-labelling is also complete, G first is
a co-argumentation framework with E. Then we know that E is conflict-free, E−

G is
included in E+

G , and I
E
G is self-attacked. As the grounded extension is the minimal

complete extension, G should have no other co-extension that is properly included in
E. This implies that the sub-framework G ↓E∪E+

G
should not have arguments that can

be labeled undec, i.e. (E,E+
G , ∅) is the gr-labeling of G ↓E∪E+

G
.

Suppose G is a co-argumentation framework with E, and (E,E+
G , ∅) is the gr-

labelling of G ↓E∪E+
G
, then (E,E+

G , I
E
G ) is a co-labelling of G, and there is no smaller

co-extension of G than E. Then (E,E+
G , I

E
G ) becomes the gr-labelling of G, and G is

a gr-argumentation framework with E.
In [19], Modgil and Caminada provided an algorithm to compute the gr-labelling

of an argumentation framework. The algorithm started by assigning in to all argu-
ments that are unattacked, and then iteratively assign out to any argument that is at-
tacked by an argument which has been assigned in, and in to those arguments whose
attackers are all assigned out. The iteration continues until no more new arguments
can be assigned in or out, then all the arguments left are assigned undec. In this pro-
cess of assignment, for any circle, if it is unattacked or attacked only by arguments
assigned out, then all arguments in it can only be decided to be undec. But if it is
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attacked by arguments assigned in, then some arguments in this circle can be decided
to be in or out.

Example 7. AF 1
6 and AF 2

6 are argumentation frameworks with circles (see Figure
5). The assigning process of grounded semantics for AF 1

6 is: a(in) → b(out) →
c(undec). The assigning process of grounded semantics for AF 2

6 is: a(in)→ b(out)
→ c(in).

a // b // c YY a // b (( chh

AF 1
6 AF 2

6

Figure 5: Argumentation frameworks with circles

The algorithm of computing gr-labelling provides a simpleway to checkwhether
(E,E+

G , ∅) is the gr-labelling of G ↓E∪E+
G
, that is: whether all circles in G ↓E∪E+

G
are attacked outside by E. If all circles in G ↓E∪E+

G
are attacked outside by E, then

(E,E+
G , ∅) is the gr-labelling of G ↓E∪E+

G
. If not, then arguments of some circles in

G ↓E∪E+
G
are labeled undec, which makes (E,E+

G , ∅) not the minimal co-labelling
of G ↓E∪E+

G
.

Consider argumentation frameworks in Figure 5, in the case of E1 = {a, c},
both E1 ∪ E1

+
AF 1

6
and E1 ∪ E1

+
AF 2

6
are equal to {a, b, c}. AF 2

6 ↓{b,c} is a circle and
it is attacked outside by a in E1, and AF 2

6 has ({a, c}, {b}, ∅) as its gr-labelling.
AF 1

6 ↓{c} is a circle. AF 1
6 ↓{c} is attacked by c, but c is not outside AF 1

6 ↓{c}, i.e. c
is not in E \ {c}. AF 1

6 has ({a}, {b}, {c}) as its gr-labelling.
Based on Theorem 4 and the algorithm of computing gr-labellings, a gr-argu-

mentation framework with E can be described as follows.

Theorem 5. Let G = (A,R) be an argumentation framework, and E ⊆ A. G ∈
AF gr

E if and only if

• E��RE;
• E−

G ⊆ E
+
G ;

• for any x ∈ IEG , IEG Rx.
• for any C ∈ SCIRG↓

E∪E+
G
, (E \ C)RC.

Proof. (⇒) Suppose G ∈ AF gr
E , then there existsL ∈ Lgr(G) such that in(L) = E.

Since a gr-labelling is also a co-labelling, then G ∈ AF co
E . Then E��RE, E−

G ⊆ E+
G

and for any x ∈ IEG , IEG Rx. From the proof of Theorem 4, we know that out(L) =
E+

G and undec(L) = IEG . L ↓E∪E+
G
is the gr-labelling of G ↓E∪E+

G
, since if not, L

will not be the gr-labelling of G. Suppose there exists V ∈ SCIRG↓
E∪E+

G
such that
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(E \ V )��RV , then either V is unattacked, or V is attacked by E+
G \ V . In each case,

there is another co-labelling, say L′, of G ↓E∪E+
G
such that in(L′) ⊂ in(L ↓E∪E+

G
),

contradicting that L ↓E∪E+
G
is the gr-labelling of G ↓E∪E+

G
. Thus, for any C ∈

SCIRG↓
E∪E+

G
, (E \ C)RC.

(⇐) Suppose the four conditions are satisfied, it is sufficient to prove that there
exists L ∈ Lgr(G) such that in(L) = E. Let L = (E,E+

G , A \ (E ∪ E
+
G )) be

a labelling of G. E��RE, E−
G ⊆ E+

G and that for any x ∈ IEG , I
E
G Rx implies that

G ∈ AF co
E . Then L is a co-labelling of G. From Definitions 8 and 9, L ↓E∪E+

G
is

a co-labelling of G ↓E∪E+
G
. Suppose L′ ∈ Lgr(G) and L′ 6= L, then in(L′) ⊂ E.

Then from Proposition 1, out(L′) ⊂ out(L). Then there exists U ⊆ E ∪ (E+
G ) such

that for any x ∈ U , L′(x) = undec. The algorithm of computing gr-labelling in [19]
indicates that at least one circle is included in U . Then there is V ∈ SCIRG↓

E∪E+
G

such that for any y ∈ V −
G↓

E∪E+
G

, L′(y) = out. Then (E \ V )��RV , contradicting that

for any C ∈ SCIRG↓
E∪E+

G
, (E \ C)RC. Then L is the gr-labelling of G. Thus G is

a gr-argumentation framework with E. □

Theorem 5 adds a new condition on circles in G ↓E∪E+
G
to Theorem 4 to make

{E,E+
G , I

E
G } from a co-labelling to be the gr-labelling of G. It provides sufficient

and necessary conditions for G being a gr-argumentation framework with E.

Example 8. E2 = {a, d} andAF 1
5 andAF 2

5 illustrated in Figure 4 are co-argumen-
tation frameworks withE2. AF 1

5 ↓{d,e} is a circle and {d, e}
−
AF 1

5
is empty. According

to Theorem 5, AF 1
5 is not a gr-argumentation framework with E2. AF 2

5 ↓{d,e} is a
circle and {d, e}−

AF 2
5
= {f}. f is obviously not inE2\{d, e}. According to Theorem

5, AF 2
5 is not a gr-argumentation framework with E2.
The argumentation framework AF7 presented in Figure 6 is in accord with The-

orem 5 in which AF7 ↓{d,e} is attacked by a. AF7 is a gr-argumentation framework
with E2.

a //

,,

b // c YY d

		
e

II

// f WW

AF7

Figure 6: A gr-argumentation framework with E2
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3.3 Preferred semantics

Given an argumentation framework G, if G is a pr-argumentation framework
with E, then there exists a pr-labelling of G, say L, such that in(L) is equal to E. As
a pr-labelling is also admissible, G first is an ad-argumentation framework with E.
Then we know that E−

G is included in E+
G , and then out(L) is equal to E

+
G . Further-

more, IEG is equal to AG \ (E ∪ E+
G ). As any pr-extension of G is a maximal ad-set,

then there are no more arguments in IEG that can be labeled in by all ad-labellings of
G. Confining it to the sub-framework G ↓IEG , there is only one ad-labelling of G ↓IEG
which is (∅, ∅, IEG ).

If G is an ad-argumentation framework with E, then (E,E+
G , I

E
G ) is an ad-

labelling of G. With another premise that (∅, ∅, IEG ) is the only ad-labelling of G ↓IEG ,
E makes a maximal ad-set of G. Then that (E,E+

G , I
E
G ) is also a pr-labelling of G,

and G is a pr-argumentation framework with E.
The following theorem shows how to characterize argumentation frameworks in

AF pr
E .

Theorem 6. Let G = (A,R) be an argumentation framework, and E ⊆ A. G ∈
AF pr

E if and only if

• E��RE.
• E−

G ⊆ E
+
G .

• Lad(G ↓IEG ) = {(∅, ∅, I
E
G )}.

Proof. (⇒) Suppose G ∈ AF pr
E , then there existsL ∈ Lpr(G) such that in(L) = E.

Since a pr-labelling is an ad-labelling, then G is an ad-argumentation framework with
E. Then E−

G ⊆ E+
G , E��RE and IEG = A \ (E+

G ∪ E). Then for any y ∈ (IEG )−G ,
y ∈ E+

G . Suppose there exists L1 ∈ Lad(G ↓IEG ) such that in(L1) 6= ∅, then from
Definitions 8 and 9, L′ = L ↓E∪E+

G
∪L1 is an ad-labelling of G. Then in(L′) ⊃

in(L), contradicting that L is a pr-labelling of G. Thus, Lad(G ↓IEG ) = {(∅, ∅, I
E
G )}.

(⇐) Suppose E��RE, E−
G ⊆ E

+
G , and Lad(G ↓IEG ) = {(∅, ∅, I

E
G )}, it is sufficient

to prove that there existsL ∈ Lpr(G) such that in(L) = E. LetL = (E,E+
G , A\(E∪

E+
G )) be a labelling of G. Since E��RE and E−

G ⊆ E
+
G , then G is an ad-argumentation

framework withE. ThenL is an ad-labelling of G. Then IEG = A\(E∪E+
G ), and I

E
G

is only be attacked outside by E+
G . From Proposition 2, Lad(G ↓IEG ) = Lad((G ↓IEG

)L). Since Lad(G ↓IEG ) = {(∅, ∅, I
E
G )}, then there is no more argument in IEG that can

be labeled in or out. Then L is a pr-labelling of G. Thus G is a pr-argumentation
framework with E. □

Theorem 6 provides sufficient and necessary conditions for G being a pr-argu-
mentation framework with E. Unlike that of complete and grounded semantics, we
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can not judge whether an argumentation framework is in AF pr
E only by its structure.

The only way we know now to check whether Lad(G ↓IEG ) is {(∅, ∅, I
E
G )} is to com-

pute Lad(G ↓IEG ).

Example 9. E2 = {a, d}. AF4 shows in Figure 3 is an ad-argumentation frame-
work but not a pr-argumentation framework with E2, since c and f are not labeled
undec in AF4 ↓{c,f}. AF 1

5 illustrated in Figure 4 is a pr-argumentation framework
with E2, and we can see that its sub-framework AF 1

5 ↓{c,f} has no arguments ac-
cepted. Either c or f is accepted in AF 2

5 ↓{c,f}, thus AF 2
5 illustrated in Figure 4 is

not a pr-argumentation framework with E2.

3.4 Stable semantics

Given an argumentation framework G, if G is an st-argumentation framework
with E, then there exists an st-labelling L of G such that in(L) is equal to E. As an
st-labelling is also an ad-labelling, G first is an ad-argumentation framework withE.
Then from Theorem 3,E��RE andE−

G is included inE+
G . Then out(L) is equal toE

+
G ,

and undec(L) is equal to IEG . The speciality of an st-labelling is that no arguments
are labeled undec. This makes undec(L) be empty, i.e. IEG is an empty set.

If G is an ad-argumentation framework with E and IEG is empty, it is easy to see
that (E,E+

G , I
E
G ) is not only an ad-labelling but also an st-labelling of G.

Based on Theorem 3, argumentation frameworks in AF st
E are constructed as

follows.

Theorem7. LetG = (A,R) be an argumentation framework, andE ⊆ A. G ∈ AF st
E

if and only if

• E��RE;
• E−

G ⊆ E
+
G ;

• IEG = ∅.

Proof. (⇒) Suppose G ∈ AF st
E , then there exists L ∈ Lst(G) such that in(L) = E.

Since an st-labelling is also an ad-lebelling, thenG is an ad-argumentation framework
with E, and undec(L) = ∅. Then E��RE and E−

G ⊆ E+
G . Then out(L) = E+

G and
undec(L) = IEG . Since undec(L) = ∅, then IEG = ∅.

(⇐) Suppose E��RE, E−
G ⊆ E+

G , and I
E
G = ∅, it is sufficient to prove that there

existsL ∈ Lst(G) such that in(L) = E. LetL = (E,E+
G , A\(E∪E

+
G )) be a labelling

of G. Since E��RE and E−
G ⊆ E+

G , then G is an ad-argumentation framework with
E, and A \ (E ∪ E+

G ) = IEG . Then L is an ad-labelling of G. Since IEG = ∅, then
A \ (E ∪ E+

G ) = ∅. Then L is an st-labelling of G. Thus G is an st-argumentation
framework with E. □
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Theorem 7 provides sufficient and necessary conditions for G being an st-argu-
mentation framework with E.

Example 10. E2 = {a, d}. AF4 in Figure 3 is an ad-argumentation frameworkwith
E2. One of the ad-labellings of AF4 is ({a, d}, {b, e}, {c, f}). Since IEAF4

= {c, f},
then from Theorem 7, AF4 is not an st-argumentation framework with E2. AF 1

8 and
AF 2

8 illustrated in Figure 7 are qualified argumentation frameworks in AF st
E2
.

a // b d (( eii

f

a // b // c d

OO

oo (( eii

AF 1
8

AF 2
8

Figure 7: st-argumentation frameworks with E2

We call all above theorems for the characterizations of argumentation frame-
works in AF σ

E chracterizing theorems, where σ ∈ {ad, co, gr, pr, st}.

3.5 Properties of σ-argumentation frameworks with E

There is a series of inclusion relations between admissible sets, complete, ground-
ed, preferred, stable and ideal extensions of an argumentation framework. They ac-
tually indicate a kind of ordering on these semantics if we treat “admissible” also as
a kind of semantics.

Definition 16. Let σ and τ be two kinds of semantics, and v be a relation between
them. σ v τ if and only if for any argumentation framework G, for any E ∈ Eσ(G),
E ∈ Eτ (G).

The fact that every stable extension is also a preferred extension was first stated
in [18]. All other relations between admissible sets, complete, grounded and preferred
extensions have originally been stated in [11]. Meanwhile, as proved in [8], an ideal
extension is also a complete extension. All these indicates that v is an odering on
admissible, complete, grounded, preferred, stable and ideal semantics:

st v pr v co v ad;
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gr v co v ad;
id v co v ad.

Given a set of arguments E, this odering implies inclusion relations between
corresponding sets of argumentation frameworks with E.

Theorem 8. Let E be a set of arguments. Then we know that:

• AF st
E ⊆ AF

pr
E ⊆ AF co

E ⊆ AF ad
E

• AF gr
E ⊆ AF co

E ⊆ AF ad
E

• AF id
E ⊆ AF co

E ⊆ AF ad
E

The definitions of AF σ
E and v makes a clear clue to prove Theorem 8.

At last, we extend the chatacterization of σ-argumentation frameworks with a
single extension to a set of extensions.

Theorem 9. Let G = (A,R) be an argumentation framework, and B = {B | B ⊆
A}. B ⊆ Eσ(G) if and only if G ∈

⋂
{AF σ

E | E ∈ B}.

Theorem 9 can be proved directly from the definition of AF σ
E .

4 Applications

In this section, we will discuss two applications of our work in Section 3 on the
dynamics of argumentation frameworks. One application is updating an argumenta-
tion framework to enforce an extension. The other one is monotony.

4.1 Updating an argumentation framework to enfroce an extension

Updating an argumentation framework is to change the set of arguments and the
attack relation of this tuple. In [16], Liao et al. treated it as an operation between
an arguementation framework and a set of arguments and attacks. In this paper, we
adopt the perspective that updating an argumentation framework is adding arguments
or attacks to it, or deleting arguments or attacks from it, and after revising, it still
becomes an argumentation framework.

Definition 17. Let G = (A,R) be an argumentation framework. The update of G
is an argumentation framework G′ = (A′, R′), and G′ satisfies

• A′ = (A \B) ∪ C where B ⊆ A and C ∩ (A \B) = ∅;
• R′ = (R \ R1) ∪ R2 where R1 and R2 are two binary relations, (A × B) ∪
(B ×B) ∪ (B ×A) ⊆ R1 and R2 ⊆ A′ ×A′.

Updating an argumentation framework to enforce an extension, say E, means
updating an argumentation framework in such a way thatE becomes one of its exten-
sions. In [4], Baunman et al. have found the sufficient conditions for expanding an
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argumentation framework, i.e. adding arguments or attaks to it, to enforce an exten-
sion. In this paper, each characterizing theorem in Section 3 provides a way to update
an argumentation framework, either expanding or restricting, to enforce a σ-extension
where σ ∈ {co, gr, pr, st}.

Theorems 4, 5 and 7 show direct ways to update an argumentation framework to
enforce a complete, grounded and stable extension, respectively.

Example 11. ConsiderAF1 in Figure 1. LetE3 = {a}. E3 is an ad-set but not a co,
gr or st-extension ofAF1. AF 1

1 andAF 2
1 are the updated argumentation frameworks

of AF1 that have E3 as a co-extension (see Figure 8). AF 1
1 is constructed by adding

(b, a) and (c, c) to AF1. IE3

AF 1
1
= {c}, and it is self-attacked. AF 2

1 is constructed by

deleting c, (b, c) and (c, b) fromAF1, and add (b, a) to it. IE3

AF 2
1
= ∅, and it absolutely

satisfies Theorem 4. From Theorem 7, E3 is also an st-extension of AF 2
1 .

The circle AF 1
1 ↓{a,b} is not attacked by E3 \ {a, b}, then from Theorem 5,

E3 is not the gr-extension of AF 1
1 . AF 3

1 has E3 as the gr-extension which is con-
structed by delete (b, a) from AF 1

1 (see Figure 8). After updating, there is no circle
in G ↓E3∪E3

+

AF3
1

, and it absolutly satisfies Theorem 5.

a 66 b
uu

66 cvv
YY a 66 b

uu
a // b 66 cvv

YY

AF 1
1 AF 2

1 AF 3
1

Figure 8: The update of AF1 to enforce E3

Theorem 6 shows an indirect way to update an argumentation framework to en-
force a preferred extension.

Example 12. E3 = {a}, and E3 is not a pr-extension but an ad-set of AF2 (see
Figure 1). AF 1

2 is an updated argumentation framework of AF2 to enforce E3 as a
pr-extension (see Figure 9). AF 1

2 is formed by adding e, (e, c), (b, e) to AF2, where
IE3

AF 1
2
= {b, c, e} and there is no arguments in it can be labeled in.

Examples 11 and 12 show how to update an argumentation framework to enforce
an extension. The general rules of these updates under complete, grounded, stable and
preferred semantics are displayed in [21], and each rule corresponds to a characteriz-
ing theorem of the same semantics in Section 3. The ways to update argumentation
frameworks in Examples 11 and 12 conform to the rules in [21], while the resulted
frameworks satisfy the characterizing theorems.
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Figure 9: The update of AF2 to enforce E3

4.2 Monotony

Monotony is an important conception in mathematics and logic. In abstract ar-
gumentation, monotony is a kind of property of the update from an argumentation
framework, say G, to the other one, say G′, that represents the monotonic change of
accepted arguments. In [10], Cayrol et al. proposed monotony, credulous monotony
and skeptical monotony. Monotony indicates each extension of G is included in at
least one extension of G′. Credulous monotony indicates the union of the extensions
of G is included in the union of the extensions of G′. Skeptical monotony indicates
the intersection of extensions of G is included in the intersection of extensions of G′.
In [5], monotony is classified as expansive monotony and restrictive monotony. The
update from G to G′ is expansive monotony if every argument accepted in G is still
accepted in G′, i.e. no accepted argument is lost or there is an expansion of accept-
ability. The update from G to G′ is restrictive monotony if every argument accepted
in G′ was already accepted in G, i.e. no new acceptable arguments appear or there
is a restriction of acceptability. In [4], monotony means that arguments accepted in
the original argumentation framework survive, and the number of extensions can not
decrease after updating.

In this paper we discuss some relations between the σ-argumentation frame-
works with an extension and the monotonies proposed in [5]. The definition of mono-
tonies is defined as follows.

Definition 18. Let G = (A,R) and G′ = (A′, R′) be argumentation frameworks.

• The update from G to G′ is expansive σ-monotony if and only if for any σ-
extension E of G, there is a σ-extension E′ of G′ such that E ⊆ E′.

• The update from G to G′ is restrictive σ-monotony if and only if for any σ-
extension E of G, there is a σ-extension E′ of G′ such that E ⊇ E′.

The σ-argumentation framework with an extension can be used to show the con-
ditions for monotony.

From Definition 6, we know that ⊆ is an ordering on the set of co-extensions of
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an argumentation framework. If all the maximal co-extensions, i.e. all pr-extensions
of the original argumentation framework G survive in the updated argumentation
framework G′, then all co-extensions survive. Then the expansive monotony under
complete and preferred semantics are satisfied. Since both the gr-extension and the
id-extension are unique in a framework, then the expansivemonotony under grounded
and ideal semantics are satisfied if the corresponding gr and id-extensions survives.

The following theorem uses the set of σ-argumentation frameworks with an ex-
tension to show some sufficient conditions for expansive monotony.

Theorem 10. Let G = (A,R) and G′ = (A′, R′) be argumentation frameworks.

• If G′ ∈
⋂
{AF ad

E |E ∈ Epr(G)}, then the update from G to G′ is expansive co
and pr-monotony.

• If G′ ∈ AF gr
E where E ∈ Eid(G), then the update from G to G′ is expansive gr

and id-monotony.

Proof.

• Suppose G′ ∈
⋂
{AF ad

E |E ∈ Epr(G)}, then any pr-extension E of G is an ad-
set of G′. For any co-extension E1 of G, there is a pr-extension E2 of G such
that E1 ⊆ E2. Since E2 is an ad-set of G′, then there must be a co-extension
E3 of G′ such that E2 ⊆ E3. Thus the update from G to G′ is expansive co-
monotony.
The pr-extension is also a co-extension, then the update from G to G′ is also
expansive pr-monotony.

• Suppose G′ ∈ AF gr
E and E ∈ Eid(G), then the id-extension E of G is the

gr-extension of G′. Since the gr-extension is included in the id-extension of
an argumentation framework, then E includes the gr-extension of G. Thus
the update from G to G′ is expansive gr-monotony. E is also included in the
id-extension of G′. Thus the update from G to G′ is expansive id-monotony.□

Example 13. Consider AF9 in Figure 10. Epr(AF9) = {E4, E5} where E4 =

{a, c, j} and E5 = {a, i}. AF 1
9 is an argumentation framework illustrated in Figure

11. E4 and E5 are also ad-sets of AF 1
9 . According to Theorem 10, the update from

AF9 toAF 1
9 is expansive co and pr-monotony, while {a, d, j, d}, {a, d, j, e}, {a, i, d}

and {a, i, e} are co and pr-extensions of AF 1
9 .

Egr(AF9) = Eid(AF9) = {E3} where E3 = {a}. AF 2
9 illustrated in Figure 12

has E3 as the gr-extension. According to Theorem 10, the update from AF9 to AF 2
9

is expansive gr and id-monotony, and we can see from Figure 12 that {a, e} is the
id-extension of AF 2

9 .

G is the original argumentation framework, and G′ is the updated framework.
If the minimal co-extention, i.e. the gr-extension of G is restricted in G′, then all
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Figure 10: An argumentation framework
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Figure 11: An updated argumentation framework of AF9
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Figure 12: An updated argumentation framework of AF9

co-extensions are restricted in G′. The minimal gr, pr and id-extensions of an argu-
mentation framework are themselves. The restrictive monotony under grounded, pre-
ferred and ideal semantics are satisfied if the corresponding gr, pr and id-extensions
are restricted in G′.

The following theorem uses the set of σ-argumentation frameworks with an ex-
tension to show some sufficient conditions for restrictive monotony.

Theorem 11. Let G = (A,R) and G′ = (A′, R′) be argumentation frameworks.

• If E is the gr-extension of G and G′ ∈ AF co
E , then the update from G to G′ is

restrictive co and gr-monotony.
• If E is the id-extension of G and G′ ∈ AF pr

E , then the update from G to G′ is
restrictive pr and id-monotony.
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Proof.

• Suppose E is the gr-extension of G and G′ ∈ AF co
E , then E is a co-extension

of G′. Since gr-extension is the minimal co-extension of an argumentation
framework, then the update from G to G′ is restrictive co-monotony. More
over, there must be a gr-extension E′ of G′ such that E′ ⊆ E, then the update
from G to G′ is also restrictive gr-monotony.

• SupposeE is the id-extension of G and G′ ∈ AF pr
E , thenE is a pr-extension of

G′ and it is included in any pr-extension of G. From E is a pr-extension of G′
we know that the id-extension E′ of G′ is included in E. Then the update from
G to G′ is restrictive id-monotony. From E is included in any pr-extension
of G we know that there is a pr-extension E′′ of G such that E ⊆ E′′. Since
G′ ∈ AF pr

E , then the update from G to G′ is restrictive pr-monotony. □

Example 14. Consider AF9 illustrated in Figure 10 and E3 = {a}. E3 is the gr
and the id-extension of AF9, and it is also a co-extension and a pr-extension of AF 3

9

illustrated in Figure 13. According to Theorem 11, the update from AF9 to AF 3
9 is

restrictive co, gr, pr and id-monotony: E4 = {a, c, j} and E5 = {a, i} are co and
pr-extensions of AF9; ∅ is the gr and the id-extension of AF 3

9 .

f
��

aoo (( b //ii c

��
i // j

]]

AF 3
9

Figure 13: An updated argumentation framework of AF9

5 Conclusion

Given an argumentation framework, a set of extensions are generated from its
structure. Reversely, given an extension, or a set of extensions, a set of argumentation
frameworks can be decided. In this paper, we study how to characterize argumentation
frameworks from an extension.

The main part of this paper is Section 3, in which we define, and characterize
the argumentation framework, say G, with a set of arguments, say E, as an extension.
A series of characterizing theorems are proposed. The characterizations of G under
complete, grounded and stable semantics are in the syntax level, but the characteriza-
tion of G under preferred semantics is decided partially by computing the admissible
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labelling of a related sub-framework G ↓IEG . The last part of Section 3 shows the
relations between the sets of argumentation frameworks with an extension under dif-
ferent semantics, and that how to characterize an argumentation framework with more
than one extension. In [17], we characterize subgraphs of an argumentation frame-
work with an extension under admissible, complete, stable, preferred and grounded
semantics1. In this paper, we adjust the characterizations to whole argumentation
frameworks. The most significant improvement of this paper is that we found a way
to characterize the argumentation framework G without computing the semantics of
G ↓E∪E+

G
under grounded semantics, while in [17], the counterpart of G ↓E∪E+

G
needs

to be checked whether has E as the grounded extention. Section 3 is a groundwork
for [22] and [21]. All results related to revising/updating argumentation frameworks
in [22] and [21] conform to the characterizing theorems.

Section 4 shows some applications of the work in Section 3. The first applica-
tion is updating an argumentation framework to enforce an extension. We discuss
this problem followed from Baumann et al. ([4]), and this part of application is not a
new idea but a review of [21]. The second application is monotony which is a prop-
erty of updating argumentation frameworks. The monotony is introduced followed
from [5], and is separated as expansive monotony and restrictive monotony. There
are some relations between the set of σ-arguementation frameworks with an exten-
sion and monotony, and the set of σ-arguementation frameworks with an extension
is used in this paper to show some conditions for monotony. Comparing [4] and [5],
where updating an arugmentation framework is just adding or deleting one argument
and the related attacks ([5]), or extending it ([4]), we combine our work on charac-
terizing theorems to the updating process and provide a discretionary way to update
a framework for both enforcement and monotony.

Two conceptions are provided in this paper to help characterizing the σ-argue-
mentation framework with an extension. The first is circle. The circles in an argu-
mentation framework are the key points to the constitution of semantics. It is used
to characterize the gr-arguementation framework with an extension. The second one
is partially labeled sub-framework. It is a variation of the concept of the same name
in [15], and it is used to prove the characterization of pr-arguementation framework
with an extension. Furthermore, the partially labeled sub-framework itself is a useful
idea to study the merging of argumentation frameworks.

To conclude, there are three defects of our work. The first is on the characteri-
zation of pr-argumentation frameworks with an extension, where computing seman-
tics of sub-frameworks makes the process of constructing a requested argumentation
framework complicated. The second is that the argumentation framework generated
from the characterizing theorems may have one or more extensions undesired. We
can not get a one-to-one match between the argumentation frameworks and a set of

1“Admissible” is a kind of semantics in [17].
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extensions. The third is that we do not get the characterizing theorems under some
other kinds of semantics such as ideal and semi-stable. All of these problems will be
worth discussing in the future.
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根据外延构建论辩框架的研究

徐康 廖备水 B

摘 要

抽象论辩的研究可以分为两个方向，一是依据论辩框架的结构，求取论辩语

义；一是依据论辩语义，构建论辩框架。第一个方向目前已经得到了广泛的关注

和研究，但是很少学者关注第二个研究方向。本文着手于论辩框架的构建及其应

用：给定一个论证集合，找寻以此集合为外延的论辩框架，描述他们的结构特征，

而后，将研究结果应用于抽象论辩的动态性中。
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