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A Hilbert Calculus for Logic of Truth-Functional
Contingency*

Fei Liang Zhongxu TianB Xinyu Yang

Abstract. A statement is truth-functionally contingent, if it is neither a tautology nor a contra-
diction in classical propositional logic. The logic of truth-functional contingency, is to capture
all these contingent statements. In this paper, we introduce a sound and complete Hilbert calcu-
lus for the logic of truth-functional contingency, where every formula introduced in a deduction
is a contingent formula, and it is introduced only if it is a contingent axiom, or it follows by one
of the contingent rules of inference from contingent formulas introduced earlier in the deduction.

1 Introduction

The notion of contingency goes back to Aristotle, who develops a logic of state-
ments about contingency. ([1]) From modal logic point of view, [5] firstly defines
the contingent statement as possibly true and possibly false. The contingency logic,
in which “contingency” is considered as a modal operator, has been well studied in
[3, 4], etc. In this paper, we focus on contingency in classical propositional logic.
Here, a statement φ is contingent, if there is an assignment v and an assignment u ,
s.t. v(φ) = t and u(φ) = f . In other words, a statement is contingent if it is neither a
tautology nor a contradiction. The logic of truth-functional contingency, is to capture
all these contingent statements.

There are many works on the complementary sentential logics, such as [2, 7,
9], etc., all of which introduce different systems to capture non-tautologies in clas-
sical propositional logic. The first proper system for truth-functional contingency
was introduced in [6]. Using this system, in order to obtain a contingent formula,
we can translate a formula into its perfect disjunctive normal form by transformation
rules, and then remove all redundant variables occurring in it. T. Tiomkin introduced
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a sound, complete and cut-free calculus for contingent sequent in classical propo-
sitional logic. ([8]) However, the cut rules and extension rules in [8] mix classical
sequents with contingent sequents together. The standard Hilbert style calculus for
this logic is still missing. In this paper, we are going to introduce a Hilbert calculus
for the logic of truth-functional contingency, where every formula introduced in a de-
duction is a contingent formula, and it is introduced only if it is a contingent axiom,
or it follows by one of the contingent rules of inference from contingent formulas
introduced earlier in the deduction.

The paper is organized as follows. In the next section, we present syntax and se-
mantics of truth-functional contingency. In Section 3, we introduce a Hilbert calculus
for the logic of truth-functional contingency. In Section 4, we prove the soundness
and completeness of the calculus. Finally, we present some directions for future re-
search.

2 Preliminaries

In this section, we present syntax and semantics of truth-functional contingency
which will be used in the following sections.

Fix a denumerable set V of atomic propositions. The language is defined recur-
sively as follows:

F ∋ φ ::= p | ¬φ | (φ ⊃ φ) | (φ ∧ φ) | (φ ∨ φ)

where p ∈ V . In what follows, we will use p, q, r, . . . (with or without subscripts) to
denote any atomic proposition, and φ,ψ, χ, . . . (with or without subscripts) to denote
any formula in F . The outmost parenthesis of formulas will be omitted.

An assignment v : V → {t, f} is defined as the same as in classical logic, and it
can be uniquely extended to v̄ : F → {t, f}.

Definition 1 (Truth-functionally contingent formula) For any formula φ ∈ F , we
say φ is a truth-functionally contingent formula, abbreviated as contingent formula,
if there is an assignment v and an assignment u, s.t. v̄(φ) = t and ū(φ) = f .

In what follows, we use |=c φ if φ is a contingent formula. The logic LC of
truth-functional contingency is the set of all contingent formulas.

3 A Hilbert Calculus for LC

In this section, we will introduce a sound and complete Hilbert calculus HLC
for LC, which is inspired by [2].

Before giving the calculus, we first introduce some notations which will be used
in this section. For any formula φ, we let Var(φ) = {p | p occurs in φ}. Let the
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formula be the form of ∆ = ∆1 or ∆ = ∆1 ⊃ (∆2 ⊃ ...(∆n−1 ⊃ ∆n)...), where
∆i = pi or ∆i = ¬pi, and pi ̸= pj for i ̸= j.

Definition 2 (Hilbert calculus HLC) The Hilbert calculus HLC is defined as fol-
lows:

• Axioms:
(A1) p (A2) ¬p

• Rules: let p ̸∈ Var(φ), and Var(φ ⊃ ψ) ⊆ Var(∆),

(R1a) φ
p ⊃ φ

(R1b) φ
¬p ⊃ φ

(R2a) φ
φ ⊃ p

(R2b) φ
φ ⊃ ¬p

(R3) φ ⊃ ψ

φ ⊃ (φ ⊃ ψ)
(R4) φ ⊃ ψ ψ

(χ ⊃ φ) ⊃ ψ

(R5) ¬φ ⊃ ψ ψ

(φ ⊃ χ) ⊃ ψ
(R6) ¬φ ⊃ ψ φ ⊃ χ

φ

(R7) φ ⊃ ψ

¬¬φ ⊃ ψ
(R8) φ ⊃ (ψ ⊃ χ)

ψ ⊃ (φ ⊃ χ)

(R9) φ ⊃ (ψ ⊃ χ)

(φ ∧ ψ) ⊃ χ
(R10) ¬φ ⊃ (¬ψ ⊃ χ)

¬(φ ∨ ψ) ⊃ χ

(R11a) (φ ⊃ ¬ψ) ⊃ χ

¬(φ ∧ ψ) ⊃ χ
(R11b) (ψ ⊃ ¬φ) ⊃ χ

¬(φ ∧ ψ) ⊃ χ

(R12a) φ ⊃ ψ ψ

(χ ∨ φ) ⊃ ψ
(R12b) φ ⊃ ψ ψ

(χ ∨ φ) ⊃ ψ

(R13) φ ⊃ ∆ ¬ψ ⊃ ∆

¬(φ ⊃ ψ) ⊃ ∆

A deduction in HLC is a finite sequence φ1, . . . , φn, s.t. φi (i ∈ {1, . . . , n})
is either an axiom or a formula which is derived by applying rule(s) to its previous
formula(s) occuring in the sequence. A formula φ is a theorem in HLC if there is
a dedution φ1, . . . , φn, s.t. φ = φn. In what follows, we use ⊢c φ to mean φ is a
theorem in HLC.

We first show some theorems in HLC, which will be used in the subsequent
sections.
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Corollary 1 The following formulas are theorems in HLC. For any ∆ defined as
above:

(1) ⊢c p ⊃ ¬p;
(2) ⊢c ¬p ⊃ p;
(3) ⊢c ∆;
(4) ⊢c ∆i ⊃ ∆ for i < n;
(5) ⊢c ¬∆n ⊃ ∆;
(6) ⊢c ¬∆ ⊃ ∆.

Proof We use proof tree to show above formulas are theorems in HLC. (1) can be
shown as follows:

(A1)q
(R1a)

p ⊃ q
(R3)

p ⊃ (p ⊃ q)

(A1)q
(R1a)

p ⊃ q
(R3)

p ⊃ (p ⊃ q)
(R7)

¬¬p ⊃ (p ⊃ q)
(R13)

¬(p ⊃ ¬p) ⊃ (p ⊃ q)

q
(R1b)¬p ⊃ q

(R4)
(p ⊃ ¬p) ⊃ q

(R6)
p ⊃ ¬p

where ∆ = p ⊃ q when we apply (R13) above. We omit the proof of (2) since it
is quite similar to the proof above. (3) can be proven by applying (R1a) or (R1b) to
(A1) or (A2) many times.

(4) can be shown by the following proof tree:

(A1) or (A2)
∆n (R1a) or (R1b)

∆i ⊃ ∆n (R1a) or (R1b)
∆n−1 ⊃ (∆i ⊃ ∆n) (R8)
∆i ⊃ (∆n−1 ⊃ ∆n)

... (R8),(R1a) or (R1b)

∆i ⊃ (∆i+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...) (R3)
∆i ⊃ (∆i ⊃ (∆i+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...)) (R1a) or (R1b)

∆i−1 ⊃ (∆i ⊃ (∆i ⊃ (∆j+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...)))
(R8)

∆i ⊃ (∆i−1 ⊃ (∆i ⊃ (∆j+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...)))

... (R8),(R1a) or (R1b)

∆i ⊃ (∆1 ⊃ ... ⊃ (∆i−1 ⊃ (∆i ⊃ (∆i+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n))))...)

where ∆ = ∆1 ⊃ (... ⊃ (∆i−1 ⊃ (∆i ⊃ (∆i+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)))...)) for
i > 1, and ∆ = ∆i ⊃ (... ⊃ (∆n−1 ⊃ ∆n))...) for i = 1.

(5) can be proven as follows: If ∆n = pn, then ∆ = ∆1 ⊃ (... ⊃ (∆i−1 ⊃
(∆i ⊃ (∆i+1 ⊃ ... ⊃ (∆n−1 ⊃ pn)))...)).
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(2)¬pn ⊃ pn (R1a) or (R1b)
∆n−1 ⊃ (¬pn ⊃ pn) (R8)
¬pn ⊃ (∆n−1 ⊃ pn)

... (R8),(R1a) or (R1b)

¬pn ⊃ (∆1 ⊃ ... ⊃ (∆n−1 ⊃ pn)...)

If ∆n = ¬pn, then ∆ = ∆1 ⊃ (... ⊃ (∆i−1 ⊃ (∆i ⊃ (∆i+1 ⊃ ... ⊃ (∆n−1 ⊃
¬pn)))...)).

(1)
pn ⊃ ¬pn (R7)¬¬pn ⊃ ¬pn (R1a) or (R1b)

∆n−1 ⊃ (¬¬pn ⊃ ¬pn) (R8)
¬¬pn ⊃ (∆n−1 ⊃ ¬pn)

... (R8),(R1a) or (R1b)

¬¬pn ⊃ (∆1 ⊃ ... ⊃ (∆n−1 ⊃ ¬pn)...)

The proof of (6) is presented as follows:
(4)

∆n−1 ⊃ ∆
(5)

¬∆n ⊃ ∆
(R13)

¬(∆n−1 ⊃ ∆n) ⊃ ∆

... (R13), (4)

¬(∆3 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...) ⊃ ∆
(4)

∆2 ⊃ ∆
(R13)

¬(∆2 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...) ⊃ ∆
(4)

∆1 ⊃ ∆
(R13)

¬(∆1 ⊃ (... ⊃ (∆n−1 ⊃ ∆n)...) ⊃ ∆

where∆ = ∆1 ⊃ (... ⊃ (∆n−1 ⊃ ∆n)...). □

4 The Soundness and Completeness of HLC

In this section, we are going to show that HLC is sound and complete, that is,
⊢c φ iff |=c φ for any φ ∈ F . We call HLC is sound, if every axiom in HLC is a
contingent formula, and every rule is contingency-preserving, that is, if the premise(s)
of a rule is(are) (a) contingent formula(s) then the conclusion of the rule is also a
contingent formula. We callHLC is complete if every contingent formula is deducible
in HLC.

Lemma 1 |=c ∆.

Proof It suffices to show that there exist assignments v and u, s.t. v̄(∆) = t and
ū(∆) = f .
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Ifn = 1, then∆ = ∆1 = p or¬p. It is obvious that there exist assignments v and
u, s.t. v̄(∆) = t and ū(∆) = f . If n > 1, then ∆ = ∆1 ⊃ (... ⊃ (∆n−1 ⊃ ∆n)...).
For any 1 ≤ i ≤ n, there always exist vi and ui s.t. v̄i(∆i) = t and ūi(∆i) = f by
the construction of∆ (Definition 2). Since Var(∆i) ̸= Var(∆j) when i ̸= j, we can
define v̄ and ū as follows:

v̄(p) =

{
ū1(p) p ∈ Var(∆1),

v̄i(p) otherwise.
ū(p) =

{
v̄i(p) p ∈ Var(∆i), for 1 ≤ i < n,
ūn(p) otherwise.

It is clear that v̄(∆) = t and ū(∆) = f . □

Theorem 1 (Soundness). HLC is sound.

Proof That is to show that every theorem in HLC is a contingent formula. It is clear
that the two axioms are contingent formulas, we only need to prove that all rules are
contingency-preserving.

As to (R1a), suppose that |=c φ, then there exist v′ and u′, s.t. v̄′(φ) = t and
ū′(φ) = f . It is clear that |=c p, that is, there exist v′′ and u′′ s.t. v̄′′(p) = t and
ū′′(p) = f . Since p /∈ Var(φ), we can define v̄ and ū as follows:

v̄(pi) =

{
ū′(pi) pi ∈ Var(φ),
v̄′′(pi) otherwise.

ū(pi) =

{
v̄′(pi) pi ∈ Var(φ),
ū′′(pi) otherwise.

Hence, v̄(p ⊃ φ) = t and ū(p ⊃ φ) = f , this means |=c p ⊃ φ. We omit the proofs
of (R1b), (R2a) and (R2b), since they are quite similar to the proof above.

As to (R3), it suffices to show that if |=c φ ⊃ ψ, then there exist assignments v
and u, s.t. v̄(φ ⊃ (φ ⊃ ψ)) = t and ū(φ ⊃ (φ ⊃ ψ)) = f . Hence |=c φ ⊃ ψ, then
there exist v̄ and ū s.t. v̄(φ ⊃ ψ) = t and ū(φ ⊃ ψ) = f . We can define v̄′ and ū′ as
follows:

v̄′(pi) =

{
v̄(pi) pi ∈ Var(φ ⊃ ψ),

ū(pi) otherwise.
ū′(pi) =

{
ū(pi) pi ∈ Var(φ ⊃ ψ),

v̄(pi) otherwise.

It is clear that v̄′(φ ⊃ (φ ⊃ ψ)) = t and ū′(φ ⊃ (φ ⊃ ψ)) = f .
As to (R4), it suffices to show that if |=c φ ⊃ ψ and |=c ψ, then there exist

assignments v and u, s.t. v̄((χ ⊃ φ) ⊃ ψ) = t and ū((χ ⊃ φ) ⊃ ψ) = f . Hence
|=c φ ⊃ ψ, then there exist v̄ and ū s.t. v̄(φ ⊃ ψ) = t and ū(φ ⊃ ψ) = f , hence
|=c ψ, there exist assignments v and u, s.t. v̄′((ψ) = t and ū′(ψ) = f . We can define
v̄′′ and ū′′ as follows:

v̄′′(pi) =

{
v̄′(pi) pi ∈ Var(ψ),
ū(pi) otherwise.

ū′′(pi) =

{
ū(pi) pi ∈ Var(φ ⊃ ψ),

v̄(pi) otherwise.
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It is clear that v̄′′((χ ⊃ φ) ⊃ ψ) = t and ū′′((χ ⊃ φ) ⊃ ψ) = f .
As to (R5), it suffices to show that if |=c ¬φ ⊃ ψ and |=c ψ, then there exist

assignments v and u, s.t. v̄((φ ⊃ χ) ⊃ ψ) = t and ū((φ ⊃ φ) ⊃ ψ) = f . Hence
|=c ¬φ ⊃ ψ, then there exist v̄ and ū s.t. v̄(¬φ ⊃ ψ) = t and ū(¬φ ⊃ ψ) = f , hence
|=c ψ, there exist assignments v and u, s.t. v̄′(ψ) = t and ū′(ψ) = f . We can define
v̄′′ and ū′′ as follows:

v̄′′(pi) =

{
v̄′(pi) pi ∈ Var(ψ),
ū(pi) otherwise.

ū′′(pi) =

{
ū(pi) pi ∈ Var(¬φ ⊃ ψ),

v̄(pi) otherwise.

It is clear that v̄′′((φ ⊃ χ) ⊃ ψ) = t and ū′′((φ ⊃ χ) ⊃ ψ) = f .
As to (R6), it suffices to show that if |=c ¬φ ⊃ ψ and |=c φ ⊃ χ, then there

exist assignments v and u, s.t. v̄(φ) = t and ū(φ) = f . Hence |=c ¬φ ⊃ ψ, then
there exist v̄ and ū, s.t. v̄(¬φ ⊃ ψ) = t and ū(¬φ ⊃ ψ) = f , hence |=c φ ⊃ χ, there
exist assignments v and u, s.t. v̄′(φ ⊃ χ) = t and ū′(φ ⊃ χ) = f . We can define v̄′′
and ū′′ as follows:

v̄′′(pi) =

{
v̄′(pi) pi ∈ Var(φ ⊃ χ),

ū(pi) otherwise.
ū′′(pi) =

{
ū(pi) pi ∈ Var(¬φ ⊃ ψ),

v̄(pi) otherwise.

It is clear that v̄′′(φ) = t and ū′′(φ) = f .
As to (R7), it suffices to show that if |=c φ ⊃ ψ, then there exist assignments v

and u, s.t. v̄(¬¬φ ⊃ ψ) = t and ū(¬¬φ ⊃ ψ) = f . Hence |=c φ ⊃ ψ, then there
exist v̄ and ū s.t. v̄(φ ⊃ ψ) = t and ū(φ ⊃ ψ) = f . We can define v̄′ and ū′ as
follows:

v̄′(pi) =

{
v̄(pi) pi ∈ Var(φ ⊃ ψ),

ū(pi) otherwise.
ū′(pi) =

{
ū(pi) pi ∈ Var(φ ⊃ ψ),

v̄(pi) otherwise.

It is clear that v̄′(¬¬φ ⊃ ψ) = t and ū′(¬¬φ ⊃ ψ) = f .
As to (R8), it suffices to show that if |=c φ ⊃ (ψ ⊃ χ), then there exist as-

signments v and u, s.t. v̄(ψ ⊃ (φ ⊃ χ)) = t and ū(ψ ⊃ (φ ⊃ χ)) = f .
Hence |=c φ ⊃ (ψ ⊃ χ), then there exist v̄ and ū s.t. v̄(φ ⊃ (ψ ⊃ χ)) = t and
ū(φ ⊃ (ψ ⊃ χ)) = f . We can define v̄′ and ū′ as follows:

v̄′(pi) =

{
v̄(pi) pi ∈ Var(φ ⊃ (ψ ⊃ χ)),

ū(pi) otherwise.

ū′(pi) =

{
ū(pi) pi ∈ Var(φ ⊃ (ψ ⊃ χ)),

v̄(pi) otherwise.

It is clear that v̄′(ψ ⊃ (φ ⊃ χ)) = t and ū′(φ ⊃ (φ ⊃ χ)) = f .
As to (R9), it suffices to show that if |=c φ ⊃ (ψ ⊃ χ), then there exist as-

signments v and u, s.t. v̄((φ ∧ ψ) ⊃ χ) = t and ū((φ ∧ ψ) ⊃ χ) = f . Hence
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|=c φ ⊃ (ψ ⊃ χ), then there exist v̄ and ū s.t. v̄(φ ⊃ (ψ ⊃ χ)) = t and
ū(φ ⊃ (ψ ⊃ χ)) = f . We can define v̄′ and ū′ as follows:

v̄′(pi) =

{
v̄(pi) pi ∈ Var(φ ⊃ (ψ ⊃ χ)),

ū(pi) otherwise.

ū′(pi) =

{
ū(pi) pi ∈ Var(φ ⊃ (ψ ⊃ χ)),

v̄(pi) otherwise.

It is clear that v̄′((φ ∧ ψ) ⊃ χ) = t and ū′((φ ∧ ψ) ⊃ χ) = f .
As to (R10), if |=c ¬φ ⊃ (¬ψ ⊃ χ), then there exists v̄ such that v̄(¬φ ⊃ (¬ψ ⊃

χ)) = f , hence, v̄(φ) = f and v̄(ψ) = v̄(χ) = f , therefore v̄(¬(φ ∨ ψ) ⊃ χ) = f ;
and there exists v̄′ such that v̄′(¬φ ⊃ (¬ψ ⊃ χ)) = t, hence v̄′(φ) = t or v̄′(ψ) = t

or v̄′(χ) = t, all of these three cases ensure that v̄′(¬(φ∨ψ) ⊃ χ) = t, therefore we
have |=c ¬(φ ∨ ψ) ⊃ χ.

As to (R11a), if |=c (φ ⊃ ¬ψ) ⊃ χ, then there exists v̄ such that v̄((φ ⊃ ¬ψ) ⊃
χ) = f , hence v̄(χ) = f , and v̄(φ) = f or v̄(ψ) = f , therefore v̄(¬(φ ∧ ψ) ⊃
χ) = f ; and there exists v̄′ such that v̄′((φ ⊃ ¬ψ) ⊃ χ) = t, hence v̄′(χ) = t or
v̄′(φ) = v̄′(ψ) = t, both of these two cases ensure that v̄′(¬(φ ∧ ψ) ⊃ χ) = t,
therefore we have |=c ¬(φ ∧ ψ) ⊃ χ.

As to (R11b), if |=c (ψ ⊃ ¬φ) ⊃ χ, then there exists v̄ such that v̄((ψ ⊃ ¬φ) ⊃
χ) = f , hence v̄(χ) = f , and v̄(φ) = f or v̄(ψ) = f , therefore v̄(¬(φ ∧ ψ) ⊃
χ) = f ; and there exists v̄′ such that v̄′((ψ ⊃ ¬φ) ⊃ χ) = t, hence v̄′(χ) = t or
v̄′(ψ) = v̄′(φ) = t, both of these two cases ensure that v̄′(¬(φ ∧ ψ) ⊃ χ) = t,
therefore we have |=c ¬(φ ∧ ψ) ⊃ χ.

As to (R12a), if |=c φ ⊃ ψ and |=c ψ, then there exists v̄ such that v̄(φ ⊃ ψ) = t,
which means v̄(φ) = v̄(φ ∨ χ) = t, and v̄(ψ) = f , therefore v̄((φ ∨ χ) ⊃ ψ) = f ;
and there exists v̄′ such that v̄′(ψ) = t, which ensures v̄′((φ ∨ χ) ⊃ ψ) = t, and
finally we have |=c (φ ∨ χ) ⊃ ψ. The proof of (R12b) is quite similar to the proof
above and we omit it.

(R13) is a little more complex. Let∆ be as explained in the rule. If |=c ¬ψ ⊃ ∆,
then there exists v̄ such that v̄(¬ψ ⊃ ∆) = t, which means v̄(ψ) = t or v̄(∆) = t,
both of these two cases ensure that v̄(¬(φ ⊃ ψ) ⊃ ∆) = t. If |=c φ ⊃ ∆, then there
exists v̄′ such that v̄′(φ ⊃ ∆) = f , therefore v̄′(∆) = f and v̄′(φ) = t. Because of
the construction of∆, there exists and only exists an assignment whichmakes∆ false,
that is v̄′(∆1) = ... = v̄′(∆n−1) = t, v̄′(∆n) = f ; additionally, for |=c ¬ψ ⊃ ∆,
there exists a ū such that ū(¬ψ ⊃ ∆) = f , therefore ū(∆) = ū(¬ψ) = f . Since there
exists and only exists an assignment that makes ∆ false, we conclude that v̄′ = ū.
In this case, v̄′(¬(φ ⊃ ψ) ⊃ ∆) = f . Finally, we have |=c ¬(φ ⊃ ψ) ⊃ ∆. In
summary, the soundness holds. □
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Lemma 2 Let Var(φ) ⊆ Var(∆) and ∆ = ∆1 ⊃ (∆2 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...)

with pi ̸= pj for i ̸= j, and ∆i = pi or ∆i = ¬pi. Then, |=c φ ⊃ ∆ implies
⊢c φ ⊃ ∆.

Proof By induction on the complexity of the formula φ. If φ = pj , there are two
subcases.

Subcase 1: when j < n. If ∆j = ¬pj , for any assignment v, either pj or ¬pj is
false, so that pj ⊃ ∆ is a tautology. Hence, the assumption implies that ∆j must be
pj . Then the proof is as follows:

(A1) or (A2)
∆n (R1a)

pj ⊃ ∆n
(R1a) or (R1b)

∆n−1 ⊃ (pj ⊃ ∆n)
(R8)

pj ⊃ (∆n−1 ⊃ ∆n)

... (R8), (R1a) or (R1b)

pj ⊃ (∆j+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...)
(R3)

pj ⊃ (pj ⊃ (∆j+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...))
(R1a) or (R1b)

∆j−1 ⊃ (pj ⊃ (pj ⊃ (∆j+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...)))
(R8)

pj ⊃ (∆j−1 ⊃ (pj ⊃ (∆j+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...)))

... (R8), (R1a) or (R1b)

pj ⊃ (∆1 ⊃ ... ⊃ (∆j−1 ⊃ (pj ⊃ (∆j+1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n))))...)

Subcase 2: when j = n. If ∆n = pn, then pn ⊃ ∆ is a tautology, so that ∆n

must be ¬pn, by Corollary 1(1), we have the proof as follows:

Corollary 1(1)
pn ⊃ ¬pn (R1a) or (R1b)

∆n−1 ⊃ (pn ⊃ ¬pn) (R8)
pn ⊃ (∆n−1 ⊃ ¬pn)

... (R8), (R1a) or (R1b)

pn ⊃ (∆1 ⊃ ... ⊃ (∆n−1 ⊃ ∆n)...)

If φ = ¬ψ. By subinduction on the complexity of ψ:
If ψ = pj , the proof of it is omitted since it is quite analogous to the proof above.
If ψ = ¬χ, i.e. |=c ¬¬χ ⊃ ∆, it is clear that |=c χ ⊃ ∆, then by induction

hypothesis, ⊢c χ ⊃ ∆, then by (R6), we have ⊢c ¬¬χ ⊃ ∆.
If ψ = χ ∧ δ, i.e. |=c ¬(χ ∧ δ) ⊃ ∆, then by Lemma 1, there exists v such

that v̄(∆) = t, which makes v̄(¬χ ⊃ ∆) = v̄(¬δ ⊃ ∆) = t. And there exists u
such that ū(¬(χ ∧ δ) ⊃ ∆) = f , hence ū(∆) = f , and ū(χ) or ū(δ) is false, which
makes ū(¬χ ⊃ ∆) = f or ū(¬δ ⊃ ∆) = f . Now it is clear in this case we have
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|=c ¬χ ⊃ ∆ or |=c ¬δ ⊃ ∆. By induction hypothesis, ⊢c ¬χ ⊃ ∆ or ⊢c ¬δ ⊃ ∆.
Corollary 1(3) and ⊢c ¬χ ⊃ ∆ imply that ⊢c ¬(χ ∧ δ) ⊃ ∆ by (R5) and (R11a),
Corollary 1(3) and ⊢c ¬δ ⊃ ∆ imply that ⊢c ¬(χ ∧ δ) ⊃ ∆ by (R4) and (R11a).

If ψ = χ ∨ δ, i.e. |=c ¬(χ ∨ δ) ⊃ ∆, then by Lemma 1, there exists v such that
v̄(∆) = t, which makes v̄(¬χ ⊃ ∆) = v̄(¬δ ⊃ ∆) = t. And there exists u such that
ū(¬(χ ∨ δ) ⊃ ∆) = f , hence, ū(∆) = f , ū(χ) = f and ū(δ) = f , which makes
ū(¬χ ⊃ ∆) = f and ū(¬δ ⊃ ∆) = f . Now it is clear that we have |=c ¬χ ⊃ ∆
and |=c ¬δ ⊃ ∆. By induction hypothesis, ⊢c ¬χ ⊃ ∆ and ⊢c ¬δ ⊃ ∆. The proof
of ⊢c ¬(χ ∨ δ) ⊃ ∆ is as follows:

¬δ ⊃ ∆
Corollary1(6)

¬∆ ⊃ ∆ (R13)
¬(¬δ ⊃ ∆) ⊃ ∆ ¬χ ⊃ ∆

(R13)
¬(¬χ ⊃ (¬δ ⊃ ∆)) ⊃ ∆

¬δ ⊃ ∆ (R2a)
(¬δ ⊃ ∆) ⊃ q(q /∈ Var(∆)) (A1)q

(R4)
(¬χ ⊃ (¬δ ⊃ ∆)) ⊃ q

(R6)
¬χ ⊃ (¬δ ⊃ ∆)

(R10)
¬(χ ∨ δ) ⊃ ∆

If ψ = χ ⊃ δ, i.e. |=c ¬(χ ⊃ δ) ⊃ ∆, then by Lemma 1, there exists v such
that v̄(∆) = t, which makes v̄(χ ⊃ ∆) = v̄(¬δ ⊃ ∆) = t. And there exists u such
that ū(¬(χ ⊃ δ) ⊃ ∆) = f , hence ū(∆) = f , ū(χ) = t and ū(δ) = f , which make
ū(χ ⊃ ∆) = f and ū(¬δ ⊃ ∆) = f . Now it is clear that we have |=c χ ⊃ ∆ and
|=c ¬δ ⊃ ∆. By induction hypothesis, ⊢c χ ⊃ ∆ and ⊢c ¬δ ⊃ ∆. Then by (R13),
we have ⊢c ¬(χ ⊃ δ) ⊃ ∆.

If φ = ψ ∧ χ, i.e. |=c (ψ ∧ χ) ⊃ ∆, then by Lemma 1, there exists v such
that v̄(∆) = t, which makes v̄(ψ ⊃ ∆) = ū(χ ⊃ ∆) = t, and there exists u such
that ū((ψ ∧ χ) ⊃ ∆) = f , hence ū(∆) = f and ū(ψ) = ū(χ) = t. Therefore,
ū(ψ ⊃ ∆) = f and ū(χ ⊃ ∆) = f . Now it is clear that we have |=c ψ ⊃ ∆
and |=c χ ⊃ ∆. By induction hypothesis, ⊢c ψ ⊃ ∆ and ⊢c χ ⊃ ∆. The proof of
⊢c (ψ ⊃ χ) ⊃ ∆ is as follows:

ψ ⊃ ∆

χ ⊃ ∆
Corollary1(6)

¬∆ ⊃ ∆
(R13)

¬(χ ⊃ ∆) ⊃ ∆
(R13)

¬(ψ ⊃ (χ ⊃ ∆)) ⊃ ∆

χ ⊃ ∆
(R2a)

(χ ⊃ ∆) ⊃ q (q /∈ Var(∆)) (A1)q
(R4)

(ψ ⊃ (χ ⊃ ∆)) ⊃ q
(R6)

ψ ⊃ (χ ⊃ ∆)
(R9)

(ψ ∧ χ) ⊃ ∆

If φ = ψ ∨ χ, i.e. |=c (ψ ∨ χ) ⊃ ∆, then by Lemma 1, there exists v such that
v̄(∆) = t, which makes v̄(ψ ⊃ ∆) = v̄(χ ⊃ ∆) = t. And there exists u such that
ū((ψ ∨ χ) ⊃ ∆) = f , hence ū(∆) = f , and ū(ψ) = t or ū(χ) = t. Therefore,
ū(ψ ⊃ ∆) = f or ū(χ ⊃ ∆) = f . Now it is clear that we have |=c ψ ⊃ ∆ or
|=c χ ⊃ ∆. By induction hypothesis, ⊢c ψ ⊃ ∆ or ⊢c χ ⊃ ∆. Corollary 1(3) and
⊢c ψ ⊃ ∆ imply that ⊢c (ψ ∨ χ) ⊃ ∆ by (R12a), Corollary 1(3) and ⊢c χ ⊃ ∆ im-
ply that ⊢c (ψ ∨ χ) ⊃ ∆ by (R12b).

If φ = ψ ⊃ χ, i.e. |=c (ψ ⊃ χ) ⊃ ∆, then by Lemma 1, there exists v such that
v̄(∆) = t, which makes v̄(¬ψ ⊃ ∆) = v̄(χ ⊃ ∆) = t. And there exists u such that
ū((ψ ⊃ χ) ⊃ ∆) = f , hence ū(∆) = f , and ū(ψ) = f or ū(χ) = t. Therefore,
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ū(¬ψ ⊃ ∆) = f or ū(χ ⊃ ∆) = f . Now it is clear that we have |=c ¬ψ ⊃ ∆ or
|=c χ ⊃ ∆. By induction hypothesis, ⊢c ¬ψ ⊃ ∆ or ⊢c χ ⊃ ∆. Corollary1(3) and
⊢c ¬ψ ⊃ ∆ imply that ⊢c (ψ ⊃ χ) ⊃ ∆ by (R5), Corollary1(3) and ⊢c χ ⊃ ∆ imply
that ⊢c (ψ ⊃ χ) ⊃ ∆ by (R4). □

Theorem 2 (Completeness). HLC is complete.

Proof That is to show that every contingent formula is a theorem in HLC. The
proof strategy is as follows: we first show that |=c φ ⊃ ∆ and |=c ¬φ ⊃ ∆′ by the
assumption |=c φ, and then use Lemma 2 to show that ⊢c φ. Since |=c φ, there exist
u and w, such that ū(φ) = t and w̄(φ) = f . Assume that Var(φ) = {p1, ..., pn},
define qi:

qi =

{
pi ū(pi) = t,

¬pi ū(pi) = f.

Then ū(qi) = t for i ≤ n. Let ∆ = q1 ⊃ (q2 ⊃ ... ⊃ (qn−1 ⊃ ¬qn)...), so that
ū(∆) = f and hence ū(φ ⊃ ∆) = f .

Define ri:

ri =

{
pi w̄(pi) = t,

¬pi w̄(pi) = f.

Then w̄(qi) = t for i ≤ n. Let ∆′ = r1 ⊃ (r2 ⊃ ... ⊃ (rn−1 ⊃ ¬rn)...), so that
ū(∆′) = f and hence w̄(¬φ ⊃ ∆′) = f . By Lemma 1 and the construction of∆ and
∆′, there exists v such that v̄(∆) = t, which makes v̄(φ ⊃ ∆) = t, and v′ such that
v̄′(∆′) = t, which makes v̄(¬φ ⊃ ∆′) = t. Therefore, |=c φ ⊃ ∆ and |=c ¬φ ⊃ ∆′,
by Lemma 2, we have ⊢c φ ⊃ ∆ and ⊢c ¬φ ⊃ ∆′. Then by (R6), it is obtained that
⊢ φ. □

Corollary 2 ⊢c φ iff ⊢c ¬φ.

Proof From left to right direction, assume that ⊢c φ, then by Theorem 1, we have
|=c φ, which means there exists v such that v̄(φ) = t, i.e. v̄(¬φ) = f , and there
exists u such that ū(φ) = f , i.e. v̄(¬φ) = t, therefore, |=c ¬φ. By Theorem 2, we
have ⊢c ¬φ. If ⊢c ¬φ, by Theorem 1, we have |=c ¬φ, which means there exists
v such that v̄(¬φ) = t, i.e. v̄(φ) = f and there exists u such that ū(¬φ) = f , i.e.
v̄(φ) = t, therefore |=c φ. By Theorem 2, we have ⊢c φ. □

5 Future work

In this paper, we introduced a complete and sound Hilbert calculus for the logic
of truth-functional contingency, which captures all contingent formulas in classical
logic. The quantificational extension of the logic LC will be our next work. Inspired
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by [8], to develop a pure sequent calculus for contingent sequent without using clas-
sical sequent will be a challenge work in future. Another interesting topic is to study
the relation between contingency logic ([4]), as we introduced in Section 1, and LC
in this paper.
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一个真值函项偶然逻辑的希尔伯特演算系统

梁 飞 田中旭 B 杨新宇

摘 要

如果一个命题在经典命题逻辑中既不是一个重言式也不是一个矛盾式，则称

它是真值函项偶然的。真值函项偶然逻辑即是为了刻画所有真值函项偶然的命题。

本文将给出一个关于真值函项偶然逻辑的可靠且完全的希尔伯特演算。在此演算

中，通过演绎所得到的公式要么是偶然公理，要么是由偶然规则推出的。
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