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Sahlqvist Correspondence for Instantial
Neighbourhood Logic*

Zhiguang Zhao

Abstract. In the present paper, we investigate the Sahlqvist-type correspondence theory for
instantial neighbourhood logic (INL), which can talk about existential information about the
neighbourhoods of a given world and is a mixture between relational semantics and neigh-
bourhood semantics. The increased expressivity and its ability to talk about certain relational
patterns of the neighbourhood function makes it possible to ask what kind of properties can this
language define on the frame level, whether the “Sahlqvist” fragment of instantial neighbour-
hood logic could be larger than the rather small KW-fragment. (H. Hansen, 2003) We have two
proofs of the correspondence results, the first proof is obtained by using standard translation
and minimal valuation techniques directly, the second proof follows M. Gehrke et al. (2005)
and H. Hansen (2003), where we use bimodal translation method to reduce the correspondence
problem in instantial neighbourhood logic to normal bimodal logics in classical Kripke seman-
tics. We give some remarks and future directions at the end of the paper.

1 Introduction

Recently, a variant of neighbourhood semantics for modal logics was given, un-
der the name of instantial neighbourhood logic (INL), where existential information
about the neighbourhoods of a given world can be added. ([5, 13, 2, 3, 4, 14, 15])
This semantics is a mixture between relational semantics and neighbourhood seman-
tics, and its expressive power is strictly stronger than neighbourhood semantics.

In this semantics, the (n+1)-ary modality O(t)1, ..., 1y,; @) is true at a world w
if and only if there exists a neighbourhood S € N (w) such that ¢ is true everywhere
in S, and each 1); is true at w; € S for some w;. This language has a natural interpre-
tation as a logic of computation in open systems: O(t1, . . ., ¥y; ¢) can be interpreted
as “in the system, the agent has an action to enforce the condition  while simulta-
neously allowing possible outcomes satisfying each of the conditions ¢y, ..., 1,”;
this language can describe not only what properties can be guaranteed by an agent’s
action, but also exactly what possible outcomes may be achieved from this action (see
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Instantial neighbourhood logic is first introduced in [4], where the authors de-
fines the notion of bisimulation for instantial neighbourhood logic, gives a complete
axiomatic system, and determines its precise SAT complexity; in [13], the canoni-
cal rules are defined for instantial neighbourhood logic; in [2], the game-theoretic
aspects of instantial neighbourhood logic is studied; in [3], a propositional dynamic
logic IPDL is obtained by combining instantial neighbourhood logic with proposi-
tional dynamic logic (PDL), its sound and complete axiomatic system is given as
well as its finite model property and decidability; in [5], the duality theory for in-
stantial neighbourhood logic is developed via coalgebraic method; in [14], a tableau
system for instantial neighbourhood logic is given which can be used for mechanical
proof and countermodel search; in [15], a cut-free sequent calculus and a constructive
proof of its Lyndon interpolation theorem is given. However, the Sahlqvist-type cor-
respondence theory is still unexplored, which is the theme of this paper; in addition,
the increased expressivity makes it possible to ask what kind of properties can this
language define on the frame level, whether the “Sahlqvist” fragment of instantial
neighbourhood logic could be larger than the rather small KW-fragment in [10] in
monotone modal logic.

In this paper, we define the Sahlqvist formulas in the instantial neighbourhood
modal language, and give two different proofs of correspondence results. The first
proofis given by standard translation and minimal valuation techniques as in [6, Sec-
tion 3.6], while the second proof uses bimodal translation method in monotone modal
logic and neighbourhood semantics ([10, 11, 12, 1]) to show that every Sahlqvist for-
mula in the instantial neighbourhood modal language can be translated into a bimodal
Sahlqvist formula in Kripke semantics, and hence has a first-order correspondent. The
first proofis standard and it reveals how the instantial neighbourhood semantics have
the relational pattern, and the second proof is simpler and easier to understand.

The structure of the paper is as follows: in Section 2, we give a brief sketch on
the preliminaries of instantial neighbourhood logic, including its syntax and neigh-
bourhood semantics. In Section 3, we define the standard translation of instantial
neighbourhood logic into a two-sorted first-order language. In Section 4, we define
Sahlqvist formulas in instantial neighbourhood logic, and prove the Sahlqvist corre-
spondence theorem via standard translation and minimal valuation. In Section 5, we
discuss the translation of instantial neighbourhood logic into normal bimodal logic,
and prove Sahlqvist correspondence theorem via this bimodal translation. In Section
6, we give some examples. We give some remarks and further directions in Section 7.

2 Preliminaries on Instantial Neighbourhood Logic

In this section, we collect some preliminaries on instantial neighbourhood logic,
which can be found in [4].
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Syntax. The formulas of instantial neighbourhood logic are defined as follows:

pu=p| L|T|2@|leiApa|p1Ver|Onler,...0n0)

where p € Prop is a propositional variable, O,, is an (n+1)-ary modality for each
n € N. —, <> can be defined in the standard way. An occurence of p is said to be
positive (resp. negative) in ¢ if p is under the scope of an even (resp. odd) number of
negations. A formula ¢ is positive (resp. negative) if all occurences of propositional
variables in ¢ are positive (resp. negative).

Semantics. For the semantics of instantial neighbourhood logic, we use neighbour-
hood frames to interpret the instantial neighbourhood modality, one and the same
neighbourhood function for all the (n+1)-ary modalities for all n € N.

Definition 1 (Neighbourhood frames and models) A neighbourhood frame is a pair
F = (W,N) where W # & is the set of worlds, N : W — P(P(W)) is a map
called a neighbourhood function (notice that there is no restriction on what additional
properties IV should satisfy, e.g. w € X forall X € N(w), or upward-closedness:
X € N(w) and X C Y implies Y € N(w)), where P(W) is the powerset of W.
A valuation on W isamap V' : Prop — P(W). A triple M = (W, N, V) is called
a neighbourhood model or a neighbourhood model based on (W, N) if (W, N) is a
neighbourhood frame and V is a valuation on it.

The semantic clauses for the Boolean part is standard. For the instantial neigh-
bourhood modality O, the satisfaction relation is defined as follows:

M, w Ik O, (p1,. .., @n; @) iff there is S € N (w) such that for all s € S we have
M, s |- ¢ and forall e = 1,...,n there is an s; € .S such that M s; I ;.

Semantic properties of instantial neighbourhood modalities. It is easy to see the
following lemma, which states that the (n+1)-ary instantial neighbourhood modality
0,, is monotone in every coordinate, and is completely additive (and hence monotone)
in the first n coordinates (even if the neighbourhood function is not upward-closed).
This observation is useful in the algebraic correspondence analysis in instantial neigh-
bourhood logic.

Lemma 1

1. Forany F = (W, N), any w € W and any valuations V1, V5 : Prop — P(W)
such that V1 (p) C Va(p), Vi(p:) C Va(p;) foralli =1,...,n,

1fF7 ‘/1,111 I- Dn(pla s 7pn’p): then ]Fv VQ,’U) I Dn(pla s 7pn7p)s
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2. Forany F = (W, N), any w € W and any valuation V' : Prop — P(W), fix
ani € {1,...,n}and av € W, and define V;,, : Prop — P (W) such that
Viw(pj) = V(pj;) for j # i, and V; ,,(p;) = {v}. Then the following holds:

F,V,wl-O,(p1,...,pi,--.,pn;p) iff there exists a v € V(p;) such that
F, Vi, w IF Op(p1, -« Pis- -+, Pus p)-

Algebraically, if we view the (n+1)-ary modality O,, as an (n+1)-ary func-
tion OA : A"l — A, then O%(ay, ..., a,;a) is completely additive (i.e. preserve
arbitrary joins) in the first n coordinate, and monotone in the last coordinate. This
observation is useful in the algebraic correspondence analysis (see Section 7).

Getting standard neighbourhood semantics and Kripke semantics from INL.
As we have already seen in [4], instantial neighbourhood logic can express standard
monotone neighbourhood modalities by just taking n = 0, i.e.,

M, w Ik Opg iff there is S € N (w) such that for all s € S we have M, s I .

Indeed, from the definition of N we can define some induced (n+1)-ary rela-
tions, and instantial neighbourhood logic can reason about these relational structures.
Here we take binary relation and the binary modality O; as an example:

We can define the following binary relation R 1 based on the neighbourhood
function V:

Ry twv iff thereexistsan X € N(w)suchthatv € X iff v e |JN(w).
Then it is easy to see that
M, w IF Oy (¢1; T) iff there exists a v such that Ry Twv and M, v IF ;.

Therefore, instantial neighbourhood logic can talk about certain relational struc-
tures behind the neighbourhood function. Indeed, we will expand on this phenomenon
later on (see Section 4.2) when we analyze when instantial neighbourhood logic be-
come “normal”.

3 Standard Translation of Instantial Neighbourhood Logic

3.1 Two-sorted first-order language £, and standard translation

Given the INL language, we consider the corresponding two sorted first-order
language £, which is going to be interpreted in a two-sorted domain W, x W. For
a more detailed treatment, see [10, 7]. This language is used in the treatment of the
standard translation for neighbourhood semantics. The major pattern of this language
is that we treat worlds and subsets of worlds as two different sorts, which makes it
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different from standard first-order language. In addition, allowing quantification over

subsets of worlds makes the language have some flavor of second-order logic, but here

we treat those subsets of worlds as first-order objects in the second domain W.
This language has the following ingredients:

1. world variables x,y, z, . . ., to be interpreted as possible worlds in the world
domain W,;

2. subset variables X, Y, Z, ..., to be interpreted as objects in the subset domain
W={X|XCW,};!

3. abinary relation symbol R, to be interpreted as the reverse membership rela-
tion R® C W, x W,, such that R® Xz iff z € X

4. a binary relation symbol Ry, to be interpreted as the neighbourhood relation
RN C W, x W such that RNz X iff X € N(x);

5. unary predicate symbols P;, P,..., to be interpreted as subsets of the world
domain W,,.

We also consider the following second-order language £ which is obtained by
adding second-order quantifiers VP,V Ps,...over the world domain W,,. Existen-
tial second-order quantifiers 3P, 3P5, ... are interpreted in the standard way. No-
tice that here the second-order variables P;,...are different from the subset variables
X,Y, Z, ..., since the former are interpreted as subsets of W, and the latter are in-
terpreted as objects in W.

Now we define the standard translation ST, () as follows:

Definition 2 (Standard translation) For any INL formula ¢ and any world symbol
x, the standard translation ST () of ¢ at x is defined as follows:

. ST( ) := Pux;
. )=z # x;
) =

T

T (L
T.( =z =ux;
* STy(—p) = ~STy(y);

To(o AY) == STu(p) A STu(¥);

Tp(p V) = STu(p) V STu(¥);

. STx( n(@1,- -, 00 @) = AX(RyaX AVy(Rs Xy — STy(p))A
Fy1 (R Xy A STy1(901)) oo A Jyn(Rs Xyn A STyn(@n)))-

For any neighbourhood frame F = (W, N), it is natural to define the following
corresponding two-sorted Kripke frame F2 = (W, P(W), R>, RY), where

"Notice that here the subset variables are treated as first-order variables in the subset domain W,
rather than second-order variables in the world domain W,,. Indeed, when talking about standard trans-
lation in neighbourhood semantics, it is not possible to avoid talking about subsets of the domain, since
the elements in N (w) are subsets of W. Therefore, we follow the tradition in monotone modal logic
[10, p.34] to call this two-sorted language first-order.
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1. R? CP(W)x W suchthatforanyz € Wand X € P(W), RPXziffx € X
2. RN C W x P(W) such that forany x € W and X € P(W), RNz X iff
X € N(z).

Given a two-sorted Kripke frame F? = (W, P(W), R>, R"), a valuation V is
defined as amap V' : Prop — P(WW). Notice that here the P(V) in the definition
of V is understood as the powerset of the first domain, rather than the second domain
itself.

For this standard translation, it is easy to see the following correctness result:

Theorem 3. For any neighbourhood frame F = (W, N), any valuation V on F, any
w € W, any INL formula ¢,

(F,V,w) Ik iff F2VE ST, (¢)w].

4 Sahlqvist Correspondence Theorem in Instantial Neighbourhood Logic
via Standard Translation

In this section, we will define the Sahlqvist formulas in instantial neighbour-
hood logic and prove the correspondence theorem via standard translation and mini-
mal valuation method. First we recall the definition of Sahlqvist formulas in normal
modal logic. Then we identify the special situations where the instantial neighourhood
modalities “behave well”, i.e. have good quantifier patterns in the standard transla-
tion. Finally, we define INL-Sahlqvist formulas step by step in the style of [6, Section
3.6], and prove the correspondence theorem. The reason why we still have a proof
by standard translation and minimal valuation method is that it helps to recognize the
“relational” pattern in this neighbourhood-type semantics.

4.1 Sahlqvist formulas in normal modal logic

In this subsection we recall the syntactic definition of Sahlqvist formulas in nor-
mal modal logic (see [6, Section 3.6, Definition 3.51]).

Definition 4 (Sahlqvist formulas in normal modal logic) A boxed atom is a formula
of the O;, ...0O;, p, where O;,,...,0; are (not necessarily distinct) boxes. In the
case where n = (, the boxed atom is just p.

A Sahlqvist antecedent ¢ is a formula built up from L, T, boxed atoms, and
negative formulas, using A, V and existential modal operators < (unary diamond) and
A (polyadic diamond). A Sahlgvist implication is an implication ¢ — 1 in which
is positive and ¢ is a Sahlqvist antecedent.

A Sahlqgvist formula is a formula that is built up from Sahlqvist implications by
applying boxes and conjunctions, and by applying disjunctions only between formulas
that do not share any proposition variables.
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As we can see from the definition above, the Sahlqvist antecedents are built
up by L, T,p,0;, ... 0;, p and negative formulas using A, V, O, AL If we consider
the standard translations of Sahlqvist antecedents, the inner part is translated into
universal quantifiers, and the outer part are translated into existential quantifiers.

4.2 Special cases where the instantial neighbourhood modalities become “nor-
mal”

As is mentioned in [4, Section 7] and as we can see in the definition of the stan-
dard translation, the quantifier pattern of O, (1, . .., ©n; @) is similar to the case of
monotone modal logic ([10]) which has an 3V pattern. As a result, even with two lay-
ers of INL modalities the complexity goes beyond the Sahlqvist fragment. However,
we can still consider some special situations where we can reduce the modality to an
n-ary normal diamond or a unary normal box.

n-ary normal diamond. We first consider the case O, (1, . . ., ©n; ©) Where @ is
a pure formula without any propositional variables, i.e., all propositional variables
are substituted by L or T. In this case ST (y) is a first-order formula a,(x) with-
out any unary predicate symbols Py, P> - - -. Therefore, in the shape of the standard
translation of O, (¢1, ..., ¥n; @), the universal quantifier Vy is not touched during
the computation of minimal valuation, since there is no unary predicate symbol there.
Indeed, we can consider the following equivalent form of ST,.(0,, (1, - - ., ©n;@)):

STy (Op(e1,---son; @) =3XTyr ... Jyn(RyzX A RsXy1 A ... A Rs XypA
Vy(Rs Xy = ap(y)) A (STy, (1) A ... A STy, (#n)))

Now ST, (0, (¢1,---,%n; ¢)) is essentially in a form similar to ST, (<) in
the normal modal logic case; indeed, when we compute the minimal valuation here,
RyxX AN Rs Xy A ... N Rs Xy, NVy(RsXy — a,(y)) can be recognized as an
entirety and stay untouched during the process. Indeed, here we can use the formula
IX(RyeX NRsXyi A ... A Rs Xy, AVy(Rs Xy — ap(y))) to define an (n+1)-
ary relation symbol R, ,xy1 ... y,, and we denote the semantic counterpart of this
relation also by R,, ,, then it is easy to see that

M, w IF Oy (1, .. ., @n; @) iff there exist vq, . . ., v, such that R, ,wvy ... v, and
M, v; IF ; for 1 < i < n.

This is exactly how the n-ary A modality is defined in standard modal logic
settings. From now onwards we can denote O, (1, . . ., ¢n; ) by Ap (01, -+ -, ¢n)
where ¢ is pure.
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Unary Normal Box. As we can see from above, in O,(p1,...,¢n; ), we can
replace propositional variables in ¢ by L and T to obtain n-ary normal diamond
modalities. By using the composition with negations, we can get the unary normal
box modality, i.e. we can have a modality

Vip(p1) = 2A1p(mp1) = 201 (mp1; ¢).
Now we can consider the standard translation of Vlw(apl):

STy (Vip(e1) < —STu(O1(—p159))
— ﬂﬂXﬂyl (RNJZX A\ RBXyl A\ STy1 (—wl)
AY(Rs Xy — ap(y)))
< VXVy~(RnyzX AN Rs Xy A STy, (—e1)
AVY(Rs Xy — ay(y)))
< VXVy(RyzX AN RsXy1 AVy(Rs Xy
= ap(y)) = STy, (¢1)),

where Vy(RsXy — a,(y)) does not contain unary predicate symbols Py, P, - - -
Now we can see that ST,(V1 (1)) has a form similar to ST, (0) where O is a
normal unary box, by taking Ryx X A Rs Xy AVy(Rs Xy — a,(y)) as an entirety.

4.3 The definition of INL-Sahlqvist formulas in instantial neighbourhood logic

Now we can define the INL-Sahlqvist formulas in instantial neighbourhood logic
step by step in the style of [6, Section 3.6]. The basic proof structure is similar to the
basic modal logic setting, namely we first rewrite the standard translation of the modal
formula into a specific shape, and then read off the minimal valuation directly from
the shape, while here the manipulation of quantifiers is more complicated and needs
to take more care.

4.3.1 Very simple INL-Sahlqvist implications
Definition 5 (Very simple INL-Sahlqvist implications) A very simple INL-Sahlqvist
antecedent o is defined as follows:

pu=p|LIT[oA@|Ang(er,--.,0n) [ Onler,. .. onip)

where p € Prop is a propositional variable, § is a pure formula without propo-
sitional variables. A very simple INL-Sahlgvist implication is an implication ¢ —
where 1 is positive , and ¢ is a very simple INL-Sahlqvist antecedent.

For very simple INL-Sahlqvist implications, we allow n-ary normal diamonds
A, ¢ in the construction of ¢, while for the (n+1)-ary modality O,,, we only allow
propositional variables to occur in the (n+1)-th coordinate.
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We can show that very simple INL-Sahlqvist implications have first-order cor-
respondents:

Theorem 6. For any given very simple INL-Sahlqvist implication ¢ — 1), there is
a two-sorted first-order local correspondent o(x) such that for any neighbourhood
frameF = (W, N), any w € W,

Fowle—v¢ iff F2Ealz)w].

Proof The proof strategy is similar to [6, Theorem 3.42, Theorem 3.49], with some
differences in treating O, (¢1, - - -, ©n; P)-

We first start with the two-sorted second-order translation of ¢ — 1), namely
VP ... YP Nz (ST, (p) — STy(v)), where ST, (¢), STy(1)) are the two-sorted
first-order standard translations of ¢, 1.

For any very simple INL-Sahlqvist antecedent ¢, we consider the shape of 3 =
ST, (p) defined inductively,

Bu=Pr|le#z|rz=x]|BAB|3X Ty ... Jyn(RNveXARs X1 A. . AR XynA

Vy(Rs Xy — ag(y))ASTy, (01)A. . .ASTy, (¢n)) | 3X3y1 ... Fyn(RNe X ARs Xy
A...ANRsXyn AVy(RsXy — Py) A STy, (p1) A... AST,, (on))
Now we can denote RyxX A R5 Xy1 A ... AN Ry Xy, as Ry, Xzy ...y, and
R_19X for Vy(Rs Xy — ap(y)), and thus get
fu=Px|xz#z|z=x|BAS]
X3y .. Iy (ReXayr ... yn AR_1 g X NSTy, (1) Ao . ANSTy, (¢n)) |
AX3yr ...y (R Xayr ... yn AVY(Rs Xy — Py) ANSTy, (p1) A... ANSTy, (¢n))

By using the equivalences
Jyd(y) Ay <> Jy(d(y) A y) (where y does not occur in )

and
AX6(X) ANy <> IX(d(X) A~y) (where X does not occur in ),

It is easy to see that the two-sorted first-order formula 5 = ST (¢) is equivalent
to a formula of the form 3X 35 (RELYX =¥ A ATProp), where:

« RELY%X®7 is a (possibly empty) conjunction of formulas of the form
R, Xzy1...ypor R_19X;

» ATProp is a conjunction of formulas of the form Vy(Rs Xy — Py)
or Pw orw = w or w # w.
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Therefore, by using the equivalences
(3yd(y) — 7v) « Yy(d(y) — =) (where y does not occur in )
and
(3X0(X) — ) > VX (d(X) — ) (where X does not occur in y),
it is immediate that VP, ...VP,Vx(ST,(¢) — ST, (v)) is equivalent to
VP, ...VP,VXVzVg§(REL?¥*¥ A ATProp — POS),2

where REL?X %Y and ATProp are given as above, and POS is the standard translation
ST ().

Now we can use similar strategy as in [6, Theorem 3.42, Theorem 3.49]. To make
it easier for later parts in the paper, we still mention how the minimal valuation and
the resulting first-order correspondent formula look like. Without loss of generality
we suppose that for any unary predicate P that occurs in the POS also occurs in AT;
otherwise we can substitute P by Au.u # wu for P to eliminate P (see [6, Theorem
3.42]).

Now consider a unary predicate symbol P occuring in ATProp, and Pz, ...,
Pzx,,Vy(Rs X1y — Py), ..., Yy(Rs X,y — Py) are all occurences of P in ATProp.
By taking o(P) to be

AMu=x1V..Vu=z,V R XuV...VRsXu,
we get the minimal valuation. The resulting first-order correspondent formula is
VXV2VH(RELYN %Y — [o(P) /Py, . .., o(P})/ P ]POS). O

From the proof above, we can see that the part corresponding to A, g(¢1, - .., ¥n)
is essentially treated in the same way as an n-ary diamond in the normal modal logic
setting, and O, (1, . .., @n; p) is treated as A(Opp A ... A O, A Op) where A is
an (n+1)-ary normal diamond, < is a unary normal diamond and O is a unary nor-
mal box, therefore we can guarantee the compositional structure of quantifiers in the
antecedent to be 3V as a whole.

4.3.2 Simple INL-Sahlqvist implications

Similar to simple Sahlqvist implications in basic modal logic, here we can define
simple INL-Sahlqvist implications:

2Notice that the quantifiers VP, ...VP, are second-order quantifiers over the world domain, and
VX are first-order quantifiers over the subset domain.
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Definition 7 (Simple INL-Sahlqvist implications) A pseudo-boxed atom ( is de-
fined as follows:

Cu=p| LITICACIVi(C)
where 6 is a pure formula without propositional variables. Based on this, a simple
INL-Sahlgvist antecedent o is defined as follows:
pu=CloAe | Angler,. . on) [ Onler, .. oni ()

where 6 is a pure formula without propositional variables and ¢ is a pseudo-boxed
atom. A simple INL-Sahlgvist implication is an implication ¢ — 1 where v is posi-
tive, and ¢ is a simple INL-Sahlqvist antecedent.

Theorem 8. For any given simple INL-Sahlqvist implication ¢ — 1), there is a two-
sorted first-order local correspondent a(x) such that for any neighbourhood frame
F=(W,N),anyw € W,

Fowlk o — 1 iff F2E alz)|w)].

Proof We use similar proof strategy as [6, Theorem 3.49]. The part that we need
to take care of is the way to compute the minimal valuation. Now without loss of
generality (by renaming quantified variables) we have the following shape of § =
ST, (¢) defined inductively for any pseudo-boxed atom (:

fu=Px|xz#z|z=x|BANS]

VXVy1 (RyeX A Rs Xy AVy(Rs Xy — ap(y)) — STy, (€)).

The shape of 5 = ST, () is defined inductively for any simple Sahlqvist an-
tecedent (:

Bu=ST,(Q)| BAL|3IXTy1 ... Fyn(RyaX A RsXy1 A ... AN R5s XynA

Vy(Rs Xy — ag(y)) ANSTy (p1) A... ANSTy, (¢n)) | 3X Y1 ... Iy (R XA
RsXyi N ... AN RsXyn ANVY(Rs Xy — STy(C)) AN STy, (01) A ... ANSTy, (n))

Now we use the abbreviation R, X xy; ...y, for Rye X AR XyiA. . AR5 Xy,
and R_; 9 X for Vy(RsXy — ay(y)) (note that the only possible free variable in
ap(y) is y), then by the equivalence (IXa — ) <> VX(a — f3), the shape of
B = ST,(C) can be given as follows:

u=Pr|lo#x|z=x|BAL | Vyi(IX(RiXzyi ANR_19X) = STy, (())

The shape of 5 = ST, (¢) can be given as follows:



12 Studies in Logic, Vol. 14, No. 3 (2021)

B = ST(C) | BAB
AX3yr ..y (R Xayr ... yn AR_1 g X NSTy, (1) Ao .. ANSTy, (on)) |
AX 3y ..y (R Xy . .. yn AVY(Rs Xy — ST, (C))ASTy, (e1)A. . . ASTy, (on)).

Now we denote X (R1 Xxy1 A R_19X) as R_5 gxy1, and we get the shape of
pseudo-boxed atom 3 = ST,(() as follows:

Bu=Pr|lo#x|z=a|BAB|Vyi(R_geryr — STy (C)),

Now using the following equivalences:

(p = Vz(¥(2) = 7)) < Vz(p Ap(z) — ) (Where z does not occur in );
(= (W —=7) < (@AY —7);
(b= @A) & (e =¢)Alp—=7));
Vz(1(2) Ay(2)) < (V2p(z) AV2y(2));
For any pseudo-boxed atom (, the first-order formula ST, (¢) is equivalent to

a conjunction of two-sorted first-order formulas of the form Vg(REL?*¥ — AT) or
Pz or x # x or x = x, where:

L]

« REL?*¥isa (possibly empty) conjunction of formulas of the form R_ gyz;
* AT is a formula of the form Pw or w = w or w # w where w is bound by Vy
(here we do not need to take the conjunction because of Vz(¢)(2) A v(z)) +

(V24(2) AV2Y(2))).

It is easy to see that REL%*¥ does not contain any unary predicate symbol P;.
By the equivalence (Fxp(z) — ) <> Va(p(x) — 1) where ¢ does not contain x,

we can transform Vj(REL?®¥ — AT) into Vy(37’REL?*Y — AT(y)), where AT(y)
is Pyory=yory #y. -

We can introduce a new binary relation symbol Ryxy which is 37’ REL?®Y,
Then 3 = ST, () is a conjunction of formulas of the form Vy(Rzzy — AT(y)) or
Prorx #xorx =ux.

Now we somehow come back to the situation of the basic normal modal logic
case, where IR is a real relation symbol. The shape of 5 = ST () for simple INL-
Sahlqvist antecedent ¢ can be recursively defined as follows:

Bu=Vy(Rgzy — AT(y)) | Pr |z #x|x=2|BAB|
XTIy (R Xyt yn AR g X NSTy, (1) Ao ANSTy, (on)) |
AXFyr .. Iy (R Xy . .. yn AVY(Rs Xy — ST, (C))ASTy, (91)A. . .ASTy, (on))

Since ST,(¢) is a conjunction of formulas of the form Vz(Rzyz — AT(z)) or
y =y ory # yor Py, we have
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Vy(Rs Xy — N, Vzi(Rg yzi — AT(2)
N\ Vy(Rs Xy — Vzi(Rg yzi — AT(2;)
N VyVzi(Rs Xy — (Rgyz — AT(z;)
N V2 (Fy(Rs Xy A Ry yzi) — AT(2;)

rTe

So Yy(Rs Xy — STy(()) is equivalent to a conjunction of formulas of the
form Vz;(Jy(Rs Xy A Rgiyzi) — AT(z;))) or Vy(Rs Xy — y = y) (ie. T) or
Vy(Rs Xy — y # y) or Vy(Rs Xy — Py).

Now the situation is similar to the very simple INL-Sahlqvist implication case.
We can see how the minimal valuation is computed:

+ forthe Vy(Rzzy — AT(y)) part, when AT (y) is Py, its corresponding minimal
valuation is Au.Rzru; when AT(y) is y = y or y # y, we can replace AT(y)
by T or L, respectively;

+ for the x # x part, it is equivalent to L ;

» for the x = z part, it is equivalent to T;

» for the Px part, its corresponding minimal valuation is Au.x = u;

* for the Vz;(Jy(R> Xy A R yzi) — AT(z;)) part, when AT(2;) is Pz, its
corresponding minimal valuation is Au.3y(RsXy A Rj yu); when AT(2;) is
zi = z; Or z; # z;, we can replace AT(y) by T or L, respectively;

+ for the Vy(Rs Xy — Py) part, its corresponding minimal valuation is
Au.Rs Xu.

Now for each propositional variable p;, we take the minimal valuation to be
the union of all the corresponding minimal valuations where there an occurence of
P;. By essentially the same argument as in [6, Theorem 3.49], we get the first-order
correspondent of o — ). (I

4.3.3 INL-Sahlqvist implications

In the present section, we add negated formulas and disjunctions in the an-
tecedent part, which is analogous to the first half of [6, Definition 3.51].

Definition 9 (INL-Sahlqvist implications) An INL-Sahlgvist antecedent ¢ is de-
fined as follows:

pu=C|ylene | Ve | Apa(@rs .- @n) | Onlet, - 03 Q) | Baler, - 0n3)

where 6 is a pure formula without propositional variables, ( is a pseudo-boxed atom
and ~y is a negative formula. An INL-Sahlgvist implication is an implication ¢ — 1)
where 1 is positive, and ¢ is an INL-Sahlqvist antecedent.
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Theorem 10. For any given INL-Sahlgvist implication @ — 1), there is a two-sorted
first-order local correspondent o(x) such that for any neighbourhood frame F =
(W,N), anyw € W,

Fowle—v iff F2Ealz)w).

Proof We use similar proof strategy as [6, Theorem 3.54]. The part that we need to
take care of is the way to compute the minimal valuation. Now for each INL-Sahlqvist
antecedent ¢, we consider the shape of § = ST, (¢):

B = STe(C) | STe(v) | BAB| BV B]3X3y1 ... Fyn(RyzX A Rs Xyi A

o ANRs Xy, ANVYy(Rs Xy — ap(y)) AN STy, (1) Ao . ANSTy, (0n)) |
3X3yi ... Jyp(Rnve X ARs Xyt A ... A Rs Xy, AVy(Rs Xy — ST,(C))
ANSTy, (1) N ... NSTy, (pn)) | 3X Ty ... Jyn(RyaeX A Rs Xy A
o NRs Xy, ANVy(Rs Xy — STy(v)) ANSTy, (e1) A ... ASTy, (¢n))

where 6 is a pure formula without propositional variables, ¢ is a pseudo-boxed atom
and + is a negative formula.

We use the abbreviation R, X zy1, ...y, for Ry X A RsXy1 A ... A Rs Xy,
and R_ 9 X for Vy(Rs Xy — ap(y)), we can rewrite the shape of 5 = ST, () as
follows:

B 1= STo(C) | STo() | BAB|BV B
AX Iy .. Iy (R Xayr, .. yn AR_1 g X AN STy, (01) A ... ASTy, (0n)) |
AX3yr ...y (R Xy, . .. yn AVY(Rs Xy — STy (Q))ASTy, (p1)A. . .ASTy, (¢n)) |
X3y ... Iy (Ru Xzyr, ... yn AVY(Rs Xy — ST, (v))ASTy, (p1)A. . .ASTy, (on))

where 6 is a pure formula without propositional variables, ¢ is a pseudo-boxed atom
and ~ is a negative formula.

Using the equivalence Jyd(y) A v < Jy(d(y) A v) (where y does not occur
in~), Jy(aV p) < JyaV Iys, (aV B) Ay < (aAy) V(B A7), itis easy to
see that the first-order formula 3 = STF(¢) is equivalent to a formula of the form
\/; 3X,;3y;(REL "% A PS-BOXED-AT; A NEG;), where:

. RELlX“x’yi is a (possibly empty) conjunction of formulas of the form
R, Xzy1...ynand R_1 9 X;

+ PS-BOXED-AT; is a conjunction of formulas of the form ST}, (¢) and
Vy(Rs Xy — ST, (¢)) where ( is a pseudo-boxed atom;
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* NEG; is a conjunction of formulas of the form ST, () and Vy(Rs Xy —
ST,(v)) where  is a negative formula.

Now let us consider the standard translation of INL-Sahlqvist implication ¢ —
1 where ¢ is an INL-Sahlqvist antecedent and ¢ is a positive formula. For g =
STE(p — 1)), we have the following equivalence:

>

\/; 3X,;35;(REL; *"¥i A PS-BOXED-AT; A NEG;) — ST, (¢))
& A\,(3X;37,(REL; Y A PS-BOXED-AT; A NEG;) — ST(1)))
& A, VX vy, (REL; “*% A PS-BOXED-AT; A NEG; — ST, (1))
& A, VXvg;(REL; “% A PS-BOXED-AT; — —=NEG; V STy (v)))

s

By X‘N

Now it is easy to see that -NEG; V ST, (v) is equivalent to a first-order formula
which is positive in all unary predicates. We can now use essentially the same proof
strategy as Theorem 8. (Il

As we can see from the proofs above, the key point is the quantifier pattern of the
two-sorted standard translation of the modalities, i.e. the outer part of the structure of
an INL-Sahlqvist antecedent are translated into existential quantifiers, and the inner
part is translated into universal quantifiers.

4.3.4 INL-Sahlqvist formulas

In the present section, we build Sahlqvist formulas from Sahlqvist implications
by applying V1 ¢(-) (where 6 is pure), A and V, which is analogous to the second half
of [6, Definition 3.51].

Definition 11 (INL-Sahlqvist formulas) An INL-Sahlqgvist formula ¢ is defined as
follows:
=0 | Vig(e) oA | Ve

where g is an INL-Sahlqvist implication, 6 is a pure formula without propositional
variables, Vo is a disjunction such that the two s share no propositional variable.

Theorem 12. For any given INL-Sahlgvist formula ¢, there is a two-sorted first-order
local correspondent a(x) such that for any neighbourhood frame F = (W, N), any
we W,

F,wl- ¢ iff F?Ea(z)w).

Proof Similar to [6, Lemma 3.53]. U
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5 Bimodal Translation of Instantial Neighbourhood Logic

In the present section we give the second proof of Sahlqvist correspondence the-
orem, by using a bimodal translation into a normal bimodal language. The method-
ology is similar to [10, 7], but with slight differences.

5.1 Normal bimodal language and two-sorted Kripke frame

In this subsection, we introduce the normal bimodal language and two-sorted
Kripke frame. For a more detailed treatment, see [10, 7].

As we can see in Section 3, for any given neighbourhood frame F = (W, N),
there is an associated two-sorted Kripke frame F? = (W, P(W), R?, RY), where

1. R? C P(W)x W suchthatforany x € Wand X € P(W), R Xziffz € X;
2. RN C W x P(W) such that for any z € W and X € P(W), RNz X iff
X € N(x).

In this kind of semantic structures, we can define the following two-sorted nor-
mal bimodal language:

pu=p|L|T|-p|leAp|oVe|ONd
0:=C50|-010N0|0VEO

where ¢ is a formula of the world type and will be interpreted in the first domain, and
6 is a formula of the subset type and will be interpreted in the second domain. We can
also define O and O in the standard way.

Given a two-sorted Kripke frame F? = (W, P(W), R®, RY), a valuation V is
defined as a map V : Prop — P (W), where propositional variables are interpreted
as subsets of the first domain. The satisfaction relation IF is defined as follows, for
any w € W and any X in P(W) (here we omit the Boolean connectives):

s F2,V,wlF piffw € V(p);
« F2,V,w I OnOiff thereis an X € P (W) such that RNwX and F2,V, X IF 6;
« F2.V, X IF O5¢iff there is a w € W such that R® Xw and F?, V, w I+ ¢.

5.2 Bimodal translation

Now we are ready to define the translation 7 from the INL language to the two-
sorted normal bimodal language:

Definition 13 (Bimodal translation) Given any INL formula ¢, the bimodal trans-
lation 7(¢) is defined as follows:

* 7(p) =p;
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e7(l)=1

e 7(T)=T

* 7(0p) = (),

. T =T7(¢1) A 7(p2);

o1V p2) =T(p1) V 7(p2);
* T(p1 = p2) = T(p1) = T(p2);
* T(On(@1s- 5005 90)) = ON(OoT(P1) Ao AOsT(0n) A DOs7(90)).

o
\1

(
(
(
(1A902)
(
(
(=

It is easy to see the following correctness result:

Theorem 14. For any neighbourhood frame F = (W, N), any valuation V on F, any
w € W, any INL formula o,

(F,V,w)IF ¢ iff F2V,wl-7(p).

5.3 Sahlqvist correspondence theorem via bimodal translation

To discuss the Sahlqvist correspondence theorem via bimodal translation, we
first discuss how the Sahlqvist fragment in normal bimodal logic looks like.

First of all, we have the following observation that for V1 ¢({) where 6 is pure, its
bimodal translation is On (O57(¢) V =057(0)), i.e. On(O57(8) — O57(¢)). This
formula is not a box itself applied to 7({), but its standard translation into first-order
logic is

VXVy (RyveX A Rs Xy AVy(Rs Xy — ag(y)) — ST,,(C)),

which means that we can treat Ryx X A Rs Xy1 AVy(Rs Xy — ap(y)) as an entirety
and therefore we can treat O (0O57(0) — O57(()) like a boxed formula. From here
onwards we will also call formulas of the shape Oy (O57(0) — Os57(¢)) boxed
atoms if 7(¢) is a boxed atom.

Now, similar to the normal modal logic case, we can define the bimodal Sahlqvist
antecedents in the normal bimodal logic built up by boxed atoms and negative for-
mulas in the inner part generated by A, Vv, &5, On, where the formulas are of the
right type, and therefore bimodal Sahlqvist implications are defined in the standard
way. A bimodal Sahlqvist formula is built up from bimodal Sahlqvist implications
by applying boxes, On(O57(8) — Os(+)), A and V where 6 is pure and V is only
applied to formulas which share no propositional variable.

Theorem 15. For any bimodal Sahlqvist formula ¢, there is a two-sorted first-order
local correspondent a(x) such that for any neighbourhood frame F = (W, N), any
weWw,

F,wl- ¢ iff F?Ea(z)w.
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Proof By adaptation of the proofs of Theorem 3.42, 3.49, 3.54 and Lemma 3.53 in
[6] to the bimodal setting. [l

Now we can prove Sahlqvist correspondence theorem by using bimodal transla-
tion:

Theorem 16. For any INL-Sahlgvist implication ¢ — 1, T(@ — 1) is a Sahlqvist
implication in the normal bimodal language.

Proof As we know, the shape of an INL-Sahlqvist antecedent is given as follows:
Cu=p|L[T[CAC]Vi(C)

pu=Clylene | oVe | Ane(ets---,0n) | Ou(@1, 903 0) | Onler, - 9n37),

where 6 is a pure INL formula without propositional variables, ( is a pseudo-boxed
atom, and ~ is a negative formula. Therefore, the bimodal translations of 7({) and
7(¢) have the following shape:

T(Q)u=p [ L[ T[7()AT(C) [ ~On(C57(C) AB57(0))
() =7 [T [eneleVel
ON(CsT(p1) Ao . AOST(9n) ADOs7(0)) |
ON(Oa7(p1) Ao AO3T () AD57(C)) |

ON(OsT(p1) Ao AOsT(0n) AO57(7))

Now we analyze the shape above. For the bimodal translation of a pseudo-boxed
atom ( in the INL language, =< n ($5—7(()AO57(0)) is equivalent to O (D57 (¢)V
—057(0)). since # is a pure formula without propositional variables, 7(¢) can be
treated as a conjunction of boxed atoms in the bimodal language.

Now we examine 7(¢). It is built up by 7(¢) (a conjunction of boxed atoms)
and 7() (a negative formula), generated by A,V and the three special shapes of
T(On(@1, - . ., n; ©)) where ¢ are pure formulas without propositional variables (the
6 case), pseudo-boxed atoms (the ¢ case) or negative formulas (the y case). It is easy
to see that 7(¢) is built up by pure formulas®, boxed atoms and negative formulas
in the bimodal language, generated by <5, Oy, A, V, thus of the shape of Sahlqvist
antecedent in the bimodal language. Therefore, 7(¢ — 1)) is a Sahlqvist implication
in the normal bimodal language. O

3Indeed, pure formulas are both negative and positive formulas in every propositional variable p,
since their values are constants and p does not occur in them.
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Theorem 17. For any INL-Sahlgvist formula ¢, its bimodal translation 7(p) is a
bimodal Sahlqvist formula.

Proof We prove by induction. For the basic case and the A and V case, it is easy.
For the V; ¢(() case where 6 is pure and ¢ is an INL-Sahlqvist formula, by induction
hypothesis, 7({) is a bimodal Sahlqvist formula. By our definition, Oy (O57(0) —
O57(()) is also a bimodal Sahlqvist formula. O

Theorem 18. For any INL-Sahlgvist formula p, there is a two-sorted first-order local
correspondent o(x) such that for any neighbourhood frame F = (W, N), any w €
W,

F,wl- ¢ iff F?Ea(z)w).

Proof By Theorem 15 and Theorem 17. |

6 Examples

In this section, we give some examples of INL-Sahlqvist implications.

Example 19 Consider the formula Oy (p; T) — —0O;(—p; T), its standard transla-
tion is
STp(O1(p; T) = ~01(=p; T))
= STp(Ou(p; T)) = STp(=01(=p; T))
= 3JX(RnyzX A Jyi1(RsXy1 A STy, (p))) = ~3IX(RyeX
A3y2(Rs Xy1 A 25T, (p)))
= Eyl(RLTxyl A Pyl) — Vyg(Rl,Txyg — PyQ)
= Vyl(RLTa:yl N Py1 — Vyg(RLT:cyg — Pyg))

the minimal valuation for P is Az.z = y;, therefore the local first-order corre-
spondent of Oy (p; T) — =0y (—p; T) is
Vy1(Ry Tay — Vyp (R 1oy — y2 = 11)),

1.e.,
<1
3=y Ry T2y,

1.e.,
UN@) <1,
i.e., N(x) is of one of the following form:

2,{2}, {{yi} {2, {y}}-

Example20 Consider the formula O¢ (01 (p; T); T) — O1(p; T), its standard trans-
lation is
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ST (O1(C1(p; T); T) — Ou(p; T))
Jy1 (Ri, oy A Jyo(Ri1y1y2 A Py2) — Jys(Ry ays A Pys)
Vi Vyo (R Toyr A Ry 1y1y2 A Py — Jys(Ry tays A Pys))

the minimal valuation is A\z.z = y», therefore the local first-order correspondent of
O (O1(p; T); T) = Balp; T) is

Vi1 Vyo (R Toyr A RiTy1ye — Jys(Ri T2y Ays = 42)),

1.e.,
V1 Yy2 (R tzyr A R Ty1y2 — RiT12y2),

ie.,

vy € [JN (@), [JN(m) € [N ().

As we can see from the examples, instantial neighbourhood logic can talk about
the “relational part” of the neighbourhood function, this is one of the reason to inves-
tigate the correspondence theory of instantial neighbourhood logic.

7 Discussions and Further Directions

In this paper, we give two different proofs of the Sahlqvist correspondence theo-
rem for instantial neighbourhood logic, the first one by standard translation and min-
imal valuation, and the second one by reduction using the bimodal translation into a
normal bimodal language. We give some remarks and further directions here.

Algebraic correspondence method using the algorithm ALBA. In [8], Sahlqvist
and inductive formulas (an extension of Sahlqvist formulas, see [9] for further details)
are defined based on duality-theoretic and order-algebraic insights. The Ackermann
lemma based algorithm ALBA is given, which effectively computes first-order corre-
spondents of input formulas/inequalities, and succeed on the Sahlqvist and inductive
formulas/inequalities. In this approach, Sahlqvist and inductive formulas are defined
in terms of the order-theoretic properties of the algebraic interpretations of the log-
ical connectives. Indeed, in the dual complex algebra A of Kripke frame, the good
properties of the connectives are the following:

* Unary < is interpreted as a map O : A — A, which preserves arbitrary
joins, i.e. O4(\/ a) = \/ ©*a and O* L = 1. Similarly, n-ary diamonds are
interpreted as maps which preserve arbitrary joins in every coordinate.

« Unary O is interpreted as a map O* : A — A, which preserves arbitrary meets,
ie. O4(A\a) = AO% and OAT = T. Preserving arbitrary meets guarantees
the map 04 . A — A to have a left adjoint ¢~ . A — A such that ¢a <
biff a < OA.
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As we have seen from Section 2, the algebraic interpretation of O, (1, . . ., ¢©n;
) preserves arbitrary joins in the first n coordinates, and is monotone in the last co-
ordinate. Therefore, we can adapt the ALBA method to the instantial neighbourhood
logic case. In addition to this, we can also define INL-inductive formulas based on
the algebraic properties of the instantial neighbourhood connectives, to extend INL-
Sahlqvist formulas to INL-inductive formulas as well as to the language of instantial
neighbourhood logic with fixpoint operators.

Completeness and canonicity. Other issues that we do not study in the present
paper include completeness of logics axiomatized by INL-Sahlqvist formulas and
canonicity. For the proof of completeness, we need to establish the validity of INL-
Sahlqvist formulas on their corresponding canonical frames, where canonicity and
persistence might play a role (see [6, Chapter 5]).
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