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A Unified Framework for Common Knowledge of
Rationality with Sets of Probabilities*

Hailin Liu

Abstract. The notion of imprecise probability can be viewed as a generalization of the tra­
ditional notion of probability. Several theories and models of imprecise probability have been
suggested in the literature as more appropriate representations of uncertainty in the context of
single­agent decision making. In this paper I investigate the question of how suchmodels can be
incorporated into the traditional game­theoretic framework. In the spirit of rationalizability, I
present three new solution concepts called Γ­maximin rationalizability,E­rationalizability and
maximally rationalizability. They are intended to capture the idea that each player models the
other players as decision makers who all employ Γ­maximin, E­admissibility or maximality as
their decision rules. Some properties of these solution concepts such as existence conditions
and the relationships with rationalizability are studied.

1 Introduction

The theory of subjective expected utility (axiomatized by [17]) has become a
widely­accepted normative theory for dealing with single­agent decision making un­
der uncertainty. However, the assumption about the representation of uncertainty in
this framework has often been criticized for being overly restrictive. In particular,
Ellsberg ([5]) has argued that uncertainty, as opposed to risk, cannot be adequately
represented by a single personal probability distribution. Inspired by this challenge,
various alternative theories of decision making under uncertainty have been devel­
oped in the literature, e.g., Gilboa and Schmeidler’s multiple priors model ([7]) and
Schmeidler’s Choquet expected utility model ([19]). In addition, there has been a vast
amount of literature on alternative approaches to representing uncertainty in decision
problems, such as upper and lower probabilities, sets of probability measures, belief
functions, and so on (see [22] for a detailed discussion of the models of imprecise
probabilities).
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The Ellsberg paradox arises in single­agent decision making situations where
uncertainty regarding some exogenous event is involved. Nevertheless, one would
expect that similar situations of uncertainty could arise in multi­agent, interactive sce­
narios, where the considerations underlying uncertainty for each player are the other
players’ strategy choices, rather than the state of nature. This naturally suggests a
new line of research, which is to incorporate some model of uncertainty using impre­
cise probabilities into traditional game­theoretic frameworks. New conceptual issues
arise in this approach to game under uncertainty, e.g., how should solution concepts
be defined given the new decision theoretic foundations. In recent years, there has
been a growing literature on applying the aforementioned theories of imprecise prob­
abilities in the context of games, which can be divided roughly into two categories
depending on theway of addressing these conceptual issues. On the one hand there are
those that investigate the consequences of allowing players’ beliefs to be represented
by imprecise probabilities in the framework of Nash equilibrium or its refinements.
Dow and Werlang ([3]) introduce an equilibrium concept for two­player normal form
games in which players’ beliefs about the opponents’ strategy choices are represented
by non­additive probabilities and players are Choquet expected utility maximizers.
Eichberger and Kelsey ([4]) extend Dow and Werlang’s equilibrium concept to nor­
mal form games with n­players and discuss some nice properties of this concept. By
using the multiple priors model to represent players’ uncertainty, Klibanoff ([9]) and
Lo ([13]) provide two equilibrium­type solution concepts for normal form games with
any finite number of players. Unlike these researchers, Liu and Xiong ([12]) present
a different solution concept called robust equilibrium by extending the framework of
the so­called linear tracing procedure ([8]), to accommodate games with uncertainty
where players’ initial beliefs are modeled by a set of probability measures rather than
a common prior. This concept can be viewed as a refinement of Nash equilibrium.

On the other hand, several studies have attempted to generalize the concept of
rationalizability ([2, 16]) in normal form games to accommodate notions of ratio­
nality other than subjective expected utility maximization. In addition to the idea
of equilibrium with uncertainty aversion, another significant innovation introduced
by Klibanoff ([9]) is the characterization of common knowledge of rationality un­
der uncertainty for normal form games where each player attempts to maximize the
minimum expected utility. Epstein ([6]) also considers normal form games and de­
velops a general framework for discussing the implications of common knowledge of
rationality in which the definition of rationality can accommodate different kinds of
preference structures including the multiple priors model.

The approach to game theory with uncertainty I present in this paper is very
much in the same spirit as Klibanoff’s and Epstein’s approaches, which embraces the
essential idea of rationalizability, namely, to assume that each player models the op­
ponents as the same kind of rational decision maker under uncertainty. As noted in
previous literature, rationalizability captures the idea that each player attempts to de­
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duce their opponents’ rational behavior from the structure of the game by modeling
her opponents as expected utility maximizers, where players’ uncertainty about their
opponents’ strategy choices are fully described by a single probability distribution.
This paper explores the possibility of adapting this standard assumption by using a
set of probability distributions to model uncertainty in normal form games. However,
even in single­agent decision theory, there is no generally accepted criterion for de­
cision making under uncertainty when uncertainty is depicted by a set of probability
distributions. In view of this, this paper develops a general theoretical framework to
analyze the implications of rationality and common knowledge of rationality in the
sense that each player employs the same decision rule to choose the best strategy with
respect to a set of probability distributions. In particular, I consider here three general­
ized decision rules named Γ­maximin ([1, 7]), E­admissibility ([10]), and maximality
([22]). According to the first rule, a decision maker should choose an option that
maximizes the minimum expected utility with respect to a set of probability distribu­
tions. And the second one constrains the decision maker’s admissible choices to those
options that maximizes expected utility for some probability in the set of probabili­
ties. In contrast, the third rule demands the decision maker to choose those options
that are not strictly preferred by any other available choices. In analogy with ratio­
nalizability, I put forward three distinct but related game­theoretic solution concepts
under uncertainty, in which each player is required to model the other players as the
same kind of decision makers who use either Γ­maximin, E­admissibility or maxi­
mality to make decisions. This gives rise to the three solution concepts that we shall
call Γ­maximin rationalizability, E­rationalizability and maximally rationalizability
respectively. Just as Γ­maximin, E­admissibility and maximality are extensions of
expected utility maximization, Γ­maximin rationalizability, E­rationalizability and
maximally rationalizability all turn out to be generalizations of rationalizability. Ex­
ample 1 in Section 4 illustrates the distinction among these solution concepts.

The main contribution of this paper is in providing a general game­theoretic
framework which enables us to discuss how different decision rules can be incorpo­
rated into the framework of rationalizabiity in normal form games when uncertainty
is depicted by a non­trivial set of probability distributions. This framework can be
easily adapted to accommodate some other decision rules discussed in decision the­
ory such as Maximality ([22]). Although it turns out that the concept of Γ­maximin
rationalizability coincides with Klibanoff’s and Epstein’s iterative definitions of ratio­
nalizability with uncertainty aversion (they used different terms for this concept), the
current approach to rationalizability under uncertainty can be regarded as complemen­
tary work to their theories, since it provides an alternative way of characterizing the
same solution concept. By applying this new definition, it is easier to check whether
a strategy of a player is Γ­maximin rationalizable (or uncertainty aversion rational­
izable). In a similar way, I define the concepts of E­rationalizability and maximally
rationalizability, which, to my knowledge, has not been explored in any previous
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study.
The rest of this paper proceeds as follows: Section 2 presents a brief review

of the solution concept rationalizability, and discusses some of its properties. Sec­
tion 3 motivates the idea of using imprecise probabilities to represent uncertainty
in games. I then propose two solution concepts called Γ­maximin rationalizability
and E­rationalizability, which extend the framework of rationalizability to contexts
where a set of probabilities is used to represent uncertainty. Section 4 studies some
properties of these solution concepts, and also includes an example to illustrate their
difference. Section 6 concludes the paper and suggests possible future work.

2 Rationalizability

In contrast with the concept of Nash equilibrium where each player’s belief is
required to coincide with her opponents’ strategies, the concept of rationalizability,
proposed independently by [2] and [16], imposes a weaker requirement on players’
beliefs. More precisely, it only demands players to obey the requirement of Bayesian
rationality and common beliefs in Bayesian rationality. It attempts to account for
rational behavior as the consequence of common knowledge of the game structure
and the rationality of players, without imposing any further constraints on players’
strategy choices.

Let us begin with some formal notations and definitions. Throughout this paper,
we consider a finite normal or strategic form game G ≡ ⟨I, {Si}, {ui}⟩i∈I , where
I = {1, 2, . . . , n} is a finite set of players, Si denotes a finite set of pure strategies
(or actions) available to player i, and ui : S → R denotes player i’s payoff function.
We shall denote the set of player i’s mixed strategies by ∆i, which can be regarded
as the set of all probability distribution over Si. For each mixed strategy δi ∈ ∆i, let
δi(si) denote the probability assigned to si. Recall that a strategy profile is a Nash
equilibrium if no player can benefit by merely changing her strategy while the other
players keep theirs unchanged. More precisely, a mixed strategy profile δ∗ ∈ ∆ is a
(mixed strategy) Nash equilibrium if for each player i, ui(δ∗i , δ∗−i) ≥ ui(δi, δ

∗
−i) for

every mixed strategy δi of player i. An alternative way to characterize the notion of
Nash equilibrium is to define it in term of best response. We say that a strategy δi ∈ ∆i

is a best response to δ−i for player i if ui(δi, δ−i) ≥ ui(δ′i, δ−i) for all δ′i ∈ ∆i. Thus
a strategy profile is a Nash equilibrium if each player’s strategy is a best response to
the other players’ strategies. For an arbitrary setX of strategies, we denote by H (X)

the convex hull of the setX , namely, the smallest closed convex set containingX .
It is well known that the concept of rationalizability attempts to characterize ra­

tional strategic behavior that are consistent with the assumption that both the structure
of the game and the rationality of the players are common knowledge to them. To be
more specific, rationalizability in normal form games is defined based on the follow­
ing assumptions:
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• A1: Each player employs a subjective personal probability to express her be­
lief about the other players’ strategy choice, which cannot conflict with any
information available to her.

• A2: Each player attempts to maximize expected utility with respect to her sub­
jective probability regarding her opponents’ strategy choices.

• A3: The structure of the game, including the strategy space and payoff func­
tions, and the fact that each player satisfies the above two assumptions are com­
mon knowledge.

Informally speaking, we can examine a player’s rationality by checking whether
the actions chosen by that player are “rational” or not. We say that an action of a
player is rational if there exists some belief regulated by the assumptions given above
such that it is a best response to that belief. Thus, a strategy δi of player i is rational­
izable if she can justify her choice by explaining that (i) δi is rational, (ii) there exists
some belief µi such that δi maximizes her own expected utility with respect to µi,
and µi assigns positive probability only to rational actions of her opponents, and (iii)
there are beliefs of her opponents that make those actions rational and assign positive
probability only to her rational actions, and so on. This suggests an intuitive way of
defining rationalizability without invoking the iterative process originally suggested
by [16]. In order to present this formal definition, we have to make the notion of a
belief and what we mean by a strategy being rational explicitly.

Definition 1. In a strategic form game G, a belief of player i ∈ I , denoted by µi,
about the other players’ strategy choices is a probability distribution over the set of
the other players’ strategies S−i ≡

∏
j ̸=i Sj .

Here we should draw a clear distinction between the concepts of belief andmixed
strategy. A belief about player i has the same mathematical form as a mixed strategy
of player i, which is normally found in the literature. However, the interpretations
of both concepts are different (see [15] for a comprehensive discussion on the inter­
pretations of mixed strategies). A mixed strategy of player i is usually viewed as an
explicit randomization over her pure strategies in Si. If player i chooses to play a
mixed strategy, she commits herself to carry out the deliberate randomization. The
main criticism of this interpretation of mixed strategy is that for each player there are
usually infinitely many mixed strategies that yield her the same expected payoff as
her mixed strategy equilibrium does, given her opponents’ equilibrium behavior. But
we are here concerned with a different solution concept called rationalizability. Thus,
interpreting mixed strategies as objects of deliberate choice is appropriate within the
current framework. On the other hand, a belief about player i is a probability distribu­
tion on the set of player i’s mixed strategies, which represents another player’s view
about player i’s strategy choice. It should not be confused with a randomization that
is actually carried out by player i. In that sense, we can say that players’ mixed strate­
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gies should be understood as the objects of the beliefs about players’ strategy choices,
and the probability distribution given by a belief about player i merely represents the
likelihood that another player assigns to player i’s mixed strategies.

Nevertheless, an essential feature of this formulation of belief is that it allows
a player to believe that the other players choose their strategies according to certain
correlated randomization devices, since a belief µi of player i is a probability measure
over S−i and thus is an element of the set H (S−i). Note that a belief µi of player i is
not necessarily a product of independent probability distributions on each of the set
Sj of actions for j ∈ N \ {i}. That is, a belief µi of player i need not be identified as
an element of the set of mixed strategies of her opponents S−i. In addition, it is not
difficult to see that the set S−i is strictly smaller than the set H (S−i) in games with
more than 2 players. Hence we have deliberately used a different notation µi for a
belief in the current framework in order to distinguish it from a mixed strategy δ−i.

It is assumed that each player always chooses an action to maximize her own
expected payoff with respect to some belief about the opponents’ strategies. A strat­
egy being rational can then be defined precisely in terms of maximization of expected
utility.

Definition 2. A strategy δi of player i in a strategic form game G is a rational
strategy if there exists a belief µi of player i such that δi maximizes player i’s expected
utility, that is, ui(δi, µi) ≥ ui(δ

′
i, µi) for all δ′i ∈ ∆i. In this case, we say that δi is a

best response to the belief µi.

The key idea of the following characterization is to define an action (or pure
strategy) to be rationalizable by considering each player’s introspective process of
justifying her own strategy choice, based on the analysis of her opponents’ similar
reasoning about their rational behavior.

Definition 3. In a strategic form game G, an action si ∈ Si of player i is rational­
izable if for each player j ∈ I , there exists a set Zj ⊆ Sj of actions such that: (i)
si ∈ Zi, and (ii) every action sj in Zj is a best response to some belief µj of player j
whose support is a subset of Z−j .

Recall that the support of a belief µi is defined as the set of pure strategies to
which µi assigns positive probabilities. The second condition above thus says that
each player’s actions can be justifiable by some belief about the other players’ strate­
gies, which is based on those actions of her opponents that can be justifiable in the
same way. As a matter of fact, this is implied by the assumption of common knowl­
edge of the rationality of the players, which is the the essential part of the concept of
rationalizability.

Whenever a new solution concept is put forward, a primary theoretical question
is whether the proposed concept can give rise to at least one solution for games in



74 Studies in Logic, Vol. 14, No. 6 (2021)

general. Regarding the concept of rationalizability, the answer to this question is
positive.

Proposition 2.1 (Pearce, [16]). For finite normal form games, the set of rationalizable
strategies is always nonempty and contains at least one pure strategy for each player.

We have considered above how to define the concept of rationalizability by using
the notion of belief and the rationality of the players. As a matter of fact, the set of
rationalizable actions can be further characterized for finite strategic games in terms
of the familiar idea of dominance relations. As we shall see, this characterization
for rationalizability gives rise to an operationalizable method for finding the set of
rationalizable actions for finite games. Recall that the concept of rationalizability
basically captures the idea that as a rational decision maker each player can only
choose those strategies that are best responses to some beliefs regarding the other
players’ strategies. In other words, a rational player should not adopt a strategy that
is not a best response to any belief about her opponents’ strategy choices. In the
game­theoretic terminology, such a strategy is called a never­best response strategy.
Thus one can see that the concept of rationalizability is closely related to the notion
of never­best response strategy as defined below.

Definition 4. In a normal form game G, an action si of player i is a never­best
response if it is not a best response to any belief of player i, that is, for every belief
µi of player i there exists a strategy δi ∈ ∆i such that ui(δi, µi) > ui(si, µi).

In other words, there is no belief µi of player i about her opponents’ strategies
with respect to which a never­best response action si maximizes her own expected
payoff. This coincides exactly with the central idea of rationalizability, namely that
the players are rational in the sense of maximizing expected utility. As mentioned
above, each player should rule out the actions that are not best response to any belief,
namely, never­best response actions.

Let us now turn to the familiar notion of strict dominance which will play a
crucial role in the characterization of rationalizable actions, as we shall see below.

Definition 5. In a normal form gameG, an action si of player i is strictly dominated
if there exists a strategy δi ∈ ∆i such that ui(δi, s−i) > ui(si, s−i) for all s−i ∈ S−i.

In words, whatever the other players do, player i can benefit from playing some
other strategy rather than a strictly dominated strategy. Clearly, a rational player
would never use a strictly dominated strategy. Otherwise the player’s choice violates
the assumption of rationality in the sense of maximizing expected utility. At this point
one may wonder whether the notion of never­best response is equivalent to the con­
ception of strictly dominated action. It turns out that one can establish the equivalence
between these two notions within the current framework.
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Lemma 2.2 (Pearce, [16]). In a strategic form game G, an action s∗i of player i is a
never­best response if and only if s∗i is strictly dominated.

Suggested by the above lemma, we can show that the set of rationalizable actions
can be obtained by iteratively deleting strictly dominated actions until we arrive at the
stage where no more strictly dominated action can be further eliminated. Let us first
formally define the process of iterated elimination of strictly dominated actions.

Definition 6. Consider a normal form game G. Set S0
i ≡ Si for each i ∈ I . Then,

for each i ∈ I and for each k ≥ 1, the set Sk
i is recursively defined as follows:

Sk
i :=

{
si ∈ Sk−1

i | ∄ δi ∈ H (Sk−1
i )

such that ui(δi, s−i) > ui(si, s−i),∀ s−i ∈ Sk−1
−i

}
.

And define S∞
i :=

∏∞
k=1 S

k
i . The set S∞

i is the set of player i’s actions that survives
iterative elimination of strictly dominated actions.

Observe that after a finite numbers of steps the process of iterated elimination of
strictly dominated actions will certainly halt in the sense that there is no action that
can be further eliminated, since we restrict our attention to finite games. Moreover,
one can show that the procedure of iterated elimination of strictly dominated actions
does not depend on the order that we proceed the elimination, that is, it always yields
the same surviving set of actions for each player.

With the aid of this procedure, we can thus easily identify the set of rationaliz­
able actions for each player in finite games, which thus provides a nice algorithm for
finding rationalizable actions.

Proposition 2.3 (Pearce, [16]). For any finite normal game G, the set of profiles of
rationalizable actions coincides with the set of profiles that survives the process of
iterated elimination of strictly dominated actions.

3 Rationalizability with Sets of Probabilities

Following the tradition of decision making under uncertainty, the concept of
rationalizability assumes that each player’s belief regarding the other players’ strate­
gies is represented by a single personal probability measure. However, there are
many convincing arguments for supporting imprecision in beliefs ­ even in the con­
text of single­agent decision problems (see [5, 22]). A number of alternative models
to subjective expected utility theory have been proposed, which advocate the use of
imprecise probabilities for dealing with uncertainty in decision problems (see, for in­
stance, [7, 10, 22]). It is thus natural to incorporate these ideas into the traditional
game­theoretic framework. Based on the rules of Γ­maximin, E­admissibility and
maximality, we present here a generalized game­theoretic framework as an initial at­
tempt to examine howmodeling uncertainty with imprecise probabilities may provide
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insight into traditional game theory. In analogy with the concept of rationalizability,
we propose three new game­theoretic solution concepts that are designed to capture
the idea that each player models all the other players as rational decision makers who
respects the criterion of Γ­maximin, E­admissibility or maximality.

An immediate question that is crucial to this investigation is: which model of im­
precise probabilities should be assumed as representation of players’ beliefs in strate­
gic situations? There are a variety of mathematical models proposed in the literature
to represent uncertainty in single­agent decision problems. For instance, lower previ­
sions, upper and lower probabilities, sets of probabilities, non­additive probabilities,
and belief functions (see [22]). Among these widely­discussed models of imprecise
probabilities, a plausible method is to use a convex set of probability distributions,
also called a credal set ([11]), to represent a decision maker’s beliefs when confronted
with uncertainty. A great advantage of this approach is that it allows us to deal with
any state of insufficiencies in our information, including complete ignorance, in a
unified way. Here we adopt this representation of uncertainty as the intended model
for the players’ beliefs regarding the other players’ strategy choices. In order to dis­
tinguish it from the previous way of modeling beliefs, we will hereafter refer to a
belief as a conjecture. Slightly modifying the formulation of belief in the framework
of rationalizability, we define a conjecture of a player as follows:

Definition 7. In a strategic form game G, a conjecture of player i, denoted by Ci,
about the other players’ strategy choices is a (nonempty) convex set of probability
measures over the opponents’ actions S−i.

Note that this way of representing players’ beliefs is a natural generalization of
using a single probability distribution, as discussed earlier in the context of rationaliz­
ability. Moreover, this representation of beliefs admits the possibility of a correlated
conjecture in the sense that, a player’s conjecture may contain a probability distribu­
tion that cannot be obtained by independent mixtures over her opponents’ strategies,
for the elements of a conjecture are probability measures defined over S−i.

One can interpret each member in a player’s conjecture as the frequency of the
strategy choices by her opponents, each of which is randomly drawn from a large
population. More precisely, each player thinks that each of her opponents stands for
a large set of players and has the same set of feasible choice. In this context, the
probability distributions in player i’s conjecture are viewed as the frequencies with
which themembers of the setS−i are used by those large populations. In light of this, a
probability distribution in a conjecture of a player has a completely different meaning
from a mixed strategy, even though they may look the same from a mathematical
point of view.

Under the preceding interpretation, it is reasonable to consider the cases where
the set of strategies for some player is not convex, but players’ conjectures are required
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to be convex. We understand that it is standard practice in game theory to consider the
mixed extensions of games, that is, to include all the mixed strategies. Nevertheless,
we may want to model circumstances where only the pure strategies are available
to the players, which can be suitably described in the current framework with our
interpretation.

In the context of single­agent decision making, several decision rules such as Γ­
maximin ([1, 7]), E­admissibility ([10]), and maximality ([22]) have been discussed
in the literature of imprecise probabilities (for a detailed comparison between these
criteria see [18, 20, 21]). There is, however, no general agreement among decision
theorists as to which is the right rule for judging rational decisions when uncertainty
is expressed by a convex set of probability functions. Among these suggested crite­
ria, the rule of Γ­maximin generalizes the principle of maximizing expected utility by
simply taking the lower expected utility, thereby inducing a complete order on the de­
cision set. More precisely, according to Γ­maximin, a rational decision maker should
choose an option to maximize the minimum expected value with respect to a convex
set of probabilities. This rule for decisionmaking under uncertainty seems suitable for
describing decision makers who are uncertainty averse, as it always takes the worst
possible expected value as the base for maximization. Nevertheless, it has already
been noted in [20] that the rule of Γ­maximin fails to distinguish between open and
closed, convex and non­convex sets of probabilities, since choices based on this deci­
sion rule essentially reduces to binary comparisons which share the same supporting
hyperplanes. It thus implies that the properties of closure and convexity concerning
players’ conjectures regarding their opponents’ strategy choices are indistinguishable
by Γ­maximin rationalizability.

The other decision criterion that we shall discuss below is often calledE­admis­
sibility, which was implicitly mentioned in [17] and extensively advocated by Issac
Levi ([10]). According to this decision rule, an option isE­admissible if it maximizes
expected utility relative to some probability distribution in the convex set of proba­
bilities. In contrast with Γ­maximin, E­admissibility does not generate an order of
options, but it does avoid the above­mentioned limitation, since it cannot be charac­
terized by pairwise comparisons. As shown in the context of decision making, these
two rules are not equivalent in the sense that they may recommend different sets of
admissible options. Thus it is not surprising that the game­theoretic solution concepts
defined based on these rules are not equivalent either, as illustrated by an example in
the next section.

Another distinct way of extending the expected utility criterion is to require the
set of optimal decisions to be those options that are not strictly preferred by any other
available options. This generalization is commonly known as maximality ([22]) in
the literature. More precisely, we say that an option is maximal relative to a set of
possible choices if there does not exist any other available choice that has greater
expected utility than it does for every probability distribution in the convex set of
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probabilities.
Under strategic situations, players are usually assumed to be uncertain about the

other players’ strategy behavior, and can only attempt to deduce their opponents’ ra­
tional actions from the structure of the game and available information about their
opponents’ preferences. In most games, it is impossible for players to ascertain their
opponents’ actual behavior. Due to the insufficient information about preferences
and irreducible strategic considerations, any level of uncertainty revealed by the im­
precision in the set of probabilities may occur in situations of strategic interaction.
Since Γ­maximin, E­admissibility and maximality have been often discussed in the
literature of decision theory, it is therefore interesting to study the cases where all the
players would use the rule Γ­maximin, E­admissibility or maximality to choose their
strategies in games. By analogy to the framework of rationalizability, we need to be
explicit about what we mean by a strategy being rational under uncertainty.

Definition 8. In a strategic form game G, a strategy δi of player i is Γ­rational
under uncertainty if there exists a conjecture Ci of player i such that δi maximizes
player i’s minimum expected utility with respect to Ci. In this case, we say that δi is
a Γ­maximin admissible strategy relative to the conjecture Ci.

Likewise, we can define a notion called E­admissible strategy in a game where
players are assumed to use E­admissibility as the criterion for strategy choices.

Definition 9. In a strategic form game G, a strategy δi of player i is E­rational
under uncertainty if there exists a conjecture Ci of player i such that δi maximizes
player i’s expected utility for some probability in Ci. In this case, we say that δi is an
E­admissible strategy relative to the conjecture Ci.

Finally, in a similar fashion we can obtain a notion of maximally admissible
strategy when considering maximality as the decision rule in games.

Definition 10. In a strategic form game G, a strategy δi of player i is maximally­
rational under uncertainty if there exists a conjecture Ci of player i such that, there
is no other strategy δ′i ∈ ∆ having greater expected utility than δi does for each
probability in Ci. In this case, we say that δi is a maximally admissible strategy
relative to the conjecture Ci.

Recall that the key idea of the concept of rationalizability is that each player re­
gards the other other players as expected utility maximizers. It requires not only that
players are rational in the sense of maximizing expected utility with respect some
belief, but also that players’ beliefs should be consistent with their opponents being
rational in a similar way. The solution concept introduced below extends this idea to
contexts, where each player is assumed to model the other players as decision mak­
ers who employ Γ­maximin, E­admissibility or maximality as the decision rule with
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respect to uncertainty. More specifically, we present a new solution concept that is
meant to capture the idea that players are required to consider only those strategies
that are rational under uncertainty, and that are supported by conjectures that do not
contradict with their opponents being rational under uncertainty.

Now we need to specify the condition for a player’s conjecture being consistent
with her opponents’ rationality in the senses of Definition 8 and Definition 9 rather
than in a traditional decision­theoretic sense. A natural suggestion is to require that
each element of the conjecture assigns positive probability only to those actions of
her opponents that are rational under uncertainty. Putting these ideas together, we can
formally define the new solution concept called Γ­maximin rationalizability.

Definition 11. In a strategic form game G, an action si ∈ Si of player i is Γ­
maximin rationalizable if for each player j ∈ I , there exists a set Aj ⊆ Sj of actions
such that: (i) si ∈ Ai, and (ii) every action sj in Aj is Γ­maximin admissible relative
to some conjecture Cj of player j such that the support of each element of Cj is a
subset of A−j .

According to the above definition, one only needs to find a set of acts and a
conjecture for each player in order to check whether a strategy is Γ­maximin ra­
tionalizable or not. Unlike the above formulation, Klibanoff ([9]) has provided an
alternative characterization of rationalizability with uncertainty aversion (see the def­
inition before Theorem 4), which is defined as an iterative reduction process on the
strategies. We shall see that his definition turns out to be equivalent to the concept
of Γ­maximin rationalizability defined above. As noted in [14], there are two distinct
ways of defining rationalizability: one depends upon an iterated elimination proce­
dure and the other does not. In the light of this, it seems fair to say that Klibanoff’s
characterization and the above formulation follow exactly the two different ways to
generalize rationalizability in normal form games to accommodate uncertainty aver­
sion, although they actually correspond to the same solution concept.

Analogously, the other solution concept that we call E­rationalizability can be
formally defined as follows.

Definition 12. In a strategic form game G, an action si ∈ Si of player i is E­
rationalizable if for each player j ∈ I , there exists a set Aj ⊆ Sj of actions such that:
(i) si ∈ Ai, and (ii) every action sj in Aj is E­admissible relative to some conjecture
Cj of player j such that the support of each element of Cj is a subset of A−j .

Similarly, we can formally define a notion called maximally rationalizability as
follows.

Definition 13. In a strategic form gameG, an action si ∈ Si of player i is maximally
rationalizable if for each player j ∈ I , there exists a set Aj ⊆ Sj of actions such that:
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(i) si ∈ Ai, and (ii) every action sj in Aj is maximally admissible relative to some
conjecture Cj of player j such that the support of each element of Cj is a subset of
A−j .

4 Properties of New Solution Concepts

The aim of this section is to establish some properties of the solution concepts Γ­
maximin rationalizability,E­rationalizability, andmaximally rationalizability. Among
other things, we will see that, Γ­maximin rationalizability can reasonably embrace a
broader class of strategy profiles as outcomes under certain circumstances in compari­
son with rationalizability, whereasE­rationalizability andmaximally rationalizability
can be distinguished from Γ­maximin rationalizability based on the ideas originated
in decision theory. In addition, we will characterize the condition under which these
three solution concepts coincide.

4.1 General results

Aswe have noted, all these three decision rules, namely, Γ­maximin,E­admissi­
bility and maximality, can be regarded as simple extensions of the principle of max­
imizing expected utility to contexts where uncertainty is modeled by a set of prob­
ability measures. It is obvious that these generalized rules lead to the same recom­
mendations as the criterion of expected utility maximization provided that the set of
probability measures is a singleton set. This enables us to show that the concepts of
Γ­maximin rationalizability, E­admissibility and maximality do generalize the tradi­
tional notion of rationalizability to contexts where a set of probabilities is employed
to represent uncertainty in games.

Proposition 4.1. For any strategic form game G and each player i, if an action s∗i
of player i is rationalizable, then it is Γ­maximin rationalizable. This holds for E­
rationalizability and maximally rationalizability as well.

Proof. Suppose that s∗i ∈ Si is rationalizable. According to Definition 3, we have
that there exists a set Zj of actions for each player j ∈ I such that both conditions
specified in the definition are satisfied. Set Aj ≡ Zj for every player j. It immedi­
ately follows that s∗i ∈ Ai. And it is clear that every action in Aj is both Γ­maximin
admissible, E­admissible and maximally admissible relative to some conjecture of
player j by considering the set containing only one probability distribution overA−j ,
as in this case Γ­maximin, E­admissibility and maximality are all equivalent to the
principle of expected utilitymaximization. We can thus conclude that s∗i isΓ­maximin
rationalizable, E­rationalizable, and maximally rationalizable as well. □

According to Proposition 2.1, the set of rationalizable actions of each player is
nonempty for any finite normal form games. By applying this result, we can easily



Hailin Liu / A Unified Framework for Common Knowledge of Rationality with Sets of Probabilities 81

establish the existences of Γ­maximin rationalizable,E­rationalizable and maximally
rationalizable action in strategic games.

Corollary 4.2. For any strategic form game, there always exists at least one Γ­
maximin rationalizable action for each player i. This holds for E­rationalizable and
maximally rationalizable action as well.

4.2 Comparisons

At this point, the reader may wonder whether the sets of Γ­maximin rational­
izable and E­rationalizable actions are in fact identical to the set of rationalizable
actions. It has already noted in [6] that the concepts of Γ­maximin rationalizability
and rationalizability are not equivalent when the analysis is restricted to only pure
strategies. He also includes a generic game (see the game of Figure 1 in [6]) that is
designed to illustrate the difference. Yet he offers no explicit demonstration of such
a difference.

It has been pointed out in [20] that an option that is Γ­maximin (or maximally)
admissible may not be Bayes admissible. Inspired by this result, I show by the fol­
lowing example that the solution concepts defined based onΓ­maximin or maximality
may induce a larger set of solutions compared to rationalizability. It also serves the
purpose of illustrating how these newly proposed solution concepts work.

Example 1. Consider the 3 × 2 game shown in Figure 1. Unlike the usual setting
which includes mixed strategies, we assume here that both players’ feasible options
are pure strategies only, that is, explicit randomization is excluded; no non­trivial
mixed strategy is available to any player.

L R

U 10, 1 0, 2

M 4, 10 4, 1

D 0, 1 10, 2

Figure 1: A normal form game

It is easy to verify that only the pure strategies D and R are rationalizable for
player 1 and 2 respectively. The previous argument basically relies on the fact that
player 1’s actionM is strictly dominatedwhenmixed strategies are taken into account.
As a matter of fact, in this game the set of rationalizable action is the same, regardless
of whether we allow explicit randomization or not. To see this, note that the actionM
is a never­best response, and thus does not belong to the support of any belief of her
opponent. Therefore, the restriction imposed on the feasible options of the players
does not alter the set of rationalizable actions for both players.
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Nevertheless, I claim that all the actions of both players are Γ­maximin rational­
izable in the sense of Definition 11. The crucial part for establishing the claim is to
see that the actionM of player 1 is actually Γ­maximin rationalizable, even though
it is not rationalizable. This can be shown by considering the following construction:
(i) let the sets of actions for both players be specified as follows: A1 = {U,M} and
A2 = {L,R}, and (ii) assume that player 1’s and player 2’s conjecture is depicted
respectively by the following convex sets: C1 =

{
P1(·) : {L,R} → [0, 1] | P1(·) is a

probability and 0.2 ≤ P1(R) ≤ 0.6
}
and C2 =

{
P2(·) : {U,M,D} → [0, 1] | P2(·)

is a probability, P2(D) = 0, and 0.45 ≤ P2(U) ≤ 0.95
}
.

Under the specifications above, it is obvious that the first condition in Defini­
tion 11 is directly satisfied, since the action M belongs to the set A1 specified for
player 1. And it can be seen from Figure 2 and Figure 3 that the second condition is
also satisfied, since player 1’s lower expected payoff given by the actions U andM is
the same with respect to the setC1, and the actions L andR also yield the same lower
expected payoff to player 2 with respect to the set C2. We can thus say that every
action in A1 and A2 is Γ­maximin admissible relative to the conjectures C1 and C2

respectively. In addition, note that every probability distribution inC1 andC2 assigns
positive probability only to those action in A2 and A1 respectively. We can therefore
conclude that the actionM is Γ­maximin rationalizable. OnceM can be Γ­maximin
rationalized, it is then straightforward to verify that the other actions of both players
are Γ­maximin rationalizable as well.

Probability assigned to R

u1

0 1

M

DU

10

4

0.60.2

C
−1

Figure 2: Expected utility to player 1
P2(U)

u2

0 1

R

L

10

0.950.45

C
−2

Figure 3: Expected utility to player 2

Furthermore, it is not difficult to see that all the actions of both players are max­
imally rationalizable as well, since all the three actions of player 1 are maximally
rationalizable by considering the conjecture set consisting of all the probability dis­
tributions over {L,R}.

The above example illustrates that the set of Γ­maximin and maximally ratio­
nalizable actions may differ from the set of rationalizable actions in some cases. In
particular, the former two solution concepts admit the action M as a candidate for
the outcome of the game, which is ruled out by the concept of rationalizability. Intu­
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itively, if player 1 is completely ignorant about player 2’s strategy choices, it seems
quite reasonable for player 1 to select M , as it has the highest security level. And
M is not strictly preferred by the other two available actions for player 1. Thus one
may say that the concept of Γ­maximin rationalizability and maximally rationalizable
does capture our intuition in some games.

The result suggested by the above example is not surprising, since the concept of
Γ­maximin rationalizability in fact employs a richer representation of uncertainty than
that assumed by rationalizability. More precisely, Γ­maximin rationalizability allows
each player to model her opponents as Γ­maximin decision makers under uncertainty,
which in fact includes the expected utility model considered by rationalizability as a
special case. Hence, the concept ofΓ­maximin rationalizability gives rise to a broader
class of solutions under certain circumstances.

Nevertheless, it has been shown in [20] that the criterion of E­admissibility ac­
tually behaves rather differently from the rule of Γ­maximin and maximality in the
context of individual decisionmaking. It is therefore natural to expect that the solution
concept of E­rationalizability would not be equivalent to the notions of Γ­maximin
rationalizability and maximally rationalizability in the game­theoretic context. In or­
der to see this, consider again the game in Example 1. It is easy to see that player
1’s option M is not E­admissible for any probability distribution over L,R. Based
on this fact, we can then conclude that M is not E­rationalizable, which is both Γ­
maximin rationalizable and maximally rationalizable as established above. There­
fore, E­rationalizability are not generally equivalent to Γ­maximin rationalizability
and maximality in the sense that they may lead to rather different sets of admissible
actions for players. It is worthwhile pointing out that E­rationalizability prescribes
the same set of admissible actions as the one recommended by rationalizability in this
example. It is not difficult to show that this holds for all finite normal form games.
In this sense, the concept of E­rationalizability has a more intimate relationship with
the traditional notion of rationalizability compared toΓ­maximin rationalizability and
maximally rationalizability.

Furthermore, there is another subtle difference between E­rationalizability and
Γ­maximin rationalizability, which is based on some idea in decision theory. As men­
tioned before, in the context of individual decision making, Γ­maximin fails to distin­
guish among different convex sets of probabilities, while E­admissibility is capable
of distinguishing between any two closed convex sets of probabilities. Putting this
into a game­theoretic context, we can show that E­rationalizability and Γ­maximin
rationalizability may lead to different sets of admissible options for a player given
the same conjecture about opponents’ strategy choices. In other words, even though
the player holds the same belief model of the other players, E­rationalizability may
recommend a different set of admissible options from the other suggested by Γ­
maximin rationalizability. To see this, consider Example 1 again. Suppose that
player 1’s belief about player 2’s strategy choice is represented by the conjecture
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C1 =
{
P1(·) : {L,R} → [0, 1] | P1(·) is a probability and 0.4 < P1(R) ≤ 0.6

}
. Un­

der this belief model, bothM andD have the same infimum of expectation, and thus
they are Γ­maximin admissible. However, only D is E­admissible, since D strictly
dominates M with respect to C1. In this case, E­rationalizability and Γ­maximin
rationalizability give rather different recommendations to player 1.

So far, we have shown how the notion of imprecise probabilities sheds light
on the traditional game­theoretic framework, by illustrating the difference among Γ­
maximin rationalizability, maximally rationalizability and rationalizability, and fur­
ther by examining the distinction between E­rationalizability and Γ­maximin ratio­
nalizability. However, it is also interesting to investigate when these solution con­
cepts turn out to be equivalent. In other words, we want to give the conditions under
which these newly developed solution concepts would reduce to the traditional notion
of rationalizability given that we represent uncertainty by a closed and convex set of
probabilities.

Some basic notation and definitions are necessary for the following discussion.
We are concerned here with finite decision problems where uncertainty is modeled
by a closed convex set of probability functions. We let Ω denote a finite state space
and let O denote a finite set of outcomes. An option (or act) f is a mapping from
the state space Ω to the set of outcomes O. Let A be a set of options available to the
decision maker. As before, we will use the notation H (A) to denote the convex hull
of A . For sake of simplicity, we assume that the decision maker’s values for outcomes
are determinate and are represented by a cardinal utility function.

Definition 14. Let A be a set of options and let P be a convex set of probability
distributions on the underlying state space Ω. An option f ∈ A is Bayes admissible
with respect to P if there exists P ∈ P such that f maximizes the expected utility
under P, that is, EP(f) ≥ EP(g) for all g ∈ A .

The above criterion recommends selecting those options in A that maximizes
expected utility for at least one P ∈ P , which corresponds exactly to the idea of E­
admissibility. We can now present the classic result (see Corollary 3.9.6 in [22] and
Theorem 1 in [18]) in decision theory, which plays a crucial role in establishing the
central result of this section.

Proposition 4.3. If the option set A is convex, then every option that is maximal
admissible with respect to a closed convex set P of probability distributions is Bayes
admissible with respect to P . That is, if f ∈ A is not Bayes admissible, then there
exists some g ∈ A different from f such that EP(g) > EP(f) for all P ∈ P .

We can now characterize the condition under which the concepts of Γ­maximin
rationalizability,E­rationalizability andmaximally rationalizability are indeed equiv­
alent to rationalizability.
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Proposition 4.4. For any strategic form gameG, if each player’s choice set is convex
and each player’s conjecture regarding her opponents’ choices is represented by a
closed convex set of probabilities, then the set of Γ­maximin rationalizable actions is
equal to the set of rationalizable actions. This holds for E­rationalizability as well.

Proof. (⇐): It follows directly from Proposition 4.1.
(⇒): Consider an arbitrary player i ∈ I . Suppose that si is not rationaliz­

able. Then it follows from Proposition 2.3 that si is strictly dominated, which, by
Lemma 2.2, implies that si is a never­best response. It thus follows that si is not a
Bayes admissible action, since it is not a best response to any belief of player i. Note
that each player’s choice set is assumed to be convex. Hence, by Proposition 4.3,
we have that si is not maximal admissible, that is, there exists some δi in player i’s
choice set such that player i’s expected payoff to δi is strictly greater than her ex­
pected payoff to si with respect to any correlated belief regarding the other players’
strategic behaviors. Accordingly, si is not Γ­maximin admissible relative to any con­
jecture, as any conjecture of player i is a subset of the set of correlated beliefs about
her opponents’ strategy choices. We can therefore conclude that the action si is not
Γ­maximin rationalizable, as required.

The result concerningE­rationalizability and maximally rationalizability can be
established in a similar fashion. □

Klibanoff ([9]) also establishes the equivalence between Γ­maximin (or uncer­
tainty aversion) rationalizability and iterated strict dominance (see Theorem 4), whose
proof depends heavily on the equivalence of the iterative definitions of uncertainty
aversion rationalizability and rationalizability. By contrast, the proof I present here
uses essentially Proposition 4.3, and thus has a decision­theoretic flavor. To some
extent, the above proof makes explicit why such an equivalence holds by providing
an alternative justification based on an important result in decision theory.

The above result implies that Γ­maximin rationalizability,E­admissibility, max­
imally rationalizability and rationalizability all recommend the same set of strategies
for each player as rational decisions for games, provided that players are allowed to
consider the convex extensions of their choice sets. And it is quite standard in game
theory to examine all the mixtures of the pure strategies. In view of this, we may
say that the current framework provides a more general theoretical foundation for the
concept of rationalizability. That is, the solutions suggested by rationalizability can
be supported by a more general decision theory based on weaker assumptions. In that
sense, rationalizability is a quite robust solution concept, which is implied merely
by the assumption of common knowledge of players being Γ­maximin rational, E­
rational or maximally rational.
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5 Discussion

In the preceding section, we established several central results concerning Γ­
maximin rationalizability, a concept which is based on the traditional solution con­
cept of rationalizability. Recall that the concept of rationalizability can be fully char­
acterized by the procedure of iterated elimination of strictly dominated actions, which
furnishes us with an algorithm for finding rationalizable actions. A related question
is whether there is any efficient procedure for identifying the set of Γ­maximin ratio­
nalizable actions for each player. Of course, we are concerned with the more general
case where it is not assumed that each player’s choice set is convex, as we have al­
ready proved that Γ­maximin rationalizability coincides with rationalizability when
the choice sets for the players are convex. So far we have not found the correspond­
ing algorithm for the concept of Γ­maximin rationalizability. This section is mainly
devoted to some discussions regarding the analogous algorithm.

Recall that the concept of Γ­maximin rationalizability may lead to a different set
of solutions than the notion of rationalizability, as we have shown through an example
in the previous section. In that example, all actions of both players, including the
action M , are Γ­maximin rationalizable, despite the fact that the action M is not a
best response to any precise belief regarding the other player’s strategy and thus is
not rationalizable. An interesting point is that all of these Γ­maximin rationalizable
actions are not strictly dominated by any action available to the players, for it is
assumed that both players can only select from the pure strategies. In light of this, a
natural conjecture for the algorithm for Γ­maximin rationalizability is to restrict the
application of strict dominance to the players’ choice sets. More specifically, the set
of Γ­maximin rationalizable actions is identical to the set of actions that survive the
process of iterated elimination of strict dominated actions restricted to players’ choice
sets. In analogy with the regular notion of strict dominance, we can define the concept
of restricted strict dominance as follows.

Definition 15. Consider a normal form game G. Let Ai ⊆ ∆i denote the set of
strategies available to player i. An action si of player i is restricted strictly dominated
in Ai if it is strictly dominated by some strategy in Ai, that is, there exists a strategy
δi ∈ Ai such that ui(δi, δ−i) > ui(si, δ−i) for all δ−i ∈ H (A−i).

By utilizing this restricted version of strict dominance, the conjecture mentioned
above can then be formulated as follows.

Conjecture 5.1. For a normal form gameG with each player i’s choice set denoted
by Ai, an action si ∈ Ai is Γ­maximin rationalizable if and only if it is not restricted
strictly dominated in Ai.

Unfortunately, it turns out that the equivalence between the concept ofΓ­maximin
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rationalizability and the notion of restricted strict dominance does not hold in general.
The following slight modification of the game in Figure 1 refutes the conjecture for­
mulated above. Likewise, the game shown in Figure 4 has two players denoted by
player 1 and 2 as before. We assume that each player can only select from their pure
strategies, that is, no randomized mixture is available for both players.

L R

U 10, 1 0, 2

M 5, 10 5, 1

D 0, 1 10, 2

E 2, 1 6, 2

Figure 4: A Counterexample

Probability assigned to R

u1

0 1

M

DU

10

5
E

Figure 5: EU for the Counterexample

We claim that in this game player 1’s actions U , M , and D are Γ­maximin ra­
tionalizable, and player 2’s actions L and R are Γ­maximin rationalizable. To see
this, note that these actions are those strategies that survive the process of iterated
elimination of strictly dominated actions formulated in Definition 6, and thus are
rationalizable actions, which implies, by Proposition 4.1, that they are Γ­maximin ra­
tionalizable. To rebut the above conjecture, let us consider player 1’s action E. On
the one hand, we can verify that the action E of player 1 is not Γ­maximin rational­
izable, as there is no conjecture C1 of player 1 such that the action E is Γ­maximin
admissible relative to C1. On the other hand, it is not difficult to see that the actionE
is not restricted strictly dominated with respect to player 1’s choice set {U,M,D,E}.
Hence, there is an action of a player that is not restricted strictly dominated, but is not
Γ­maximin rationalizable in the sense of Definition 11. This contradicts the equiva­
lence result stated above.

Now let us reconsider the definition ofΓ­maximin rationalizability. For an action
si of player i to be Γ­maximin rationalizable, it is necessary to identify a convex set
Ci of probability distributions over the other players’ strategies, such that si is Γ­
maximin admissible relative to Ci. It is then logically possible to check whether an
action si is Γ­maximin rationalizable, by examining all the possible convex sets of
probabilities over her opponents’ strategy choices. Of course, this method seems
unfeasible, for it may require us to check infinitely many convex sets. It would be
nice if we could impose some constraints on those convex sets so as to narrow the
scope of the examination. A possible method is to consider only those convex sets
that include some “critical” probabilities as their boundaries. Let us make clear what
we mean by “critical probabilities”.
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Definition 16. Consider a normal form game G. Let Ai ⊆ ∆i denote the set of
strategies available to player i. A probability distribution P on H (A−i) is critical for
player i if it assigns probability 0 to some pure strategy profile s−1 ∈ A−i, or some
of the strategies in Ai yield player i the same expected payoff with respect to P.

Observe that there are only 6 critical probability distributions for player 1 in the
game shown in Figure 5. With the aid of the above definition, we can now formulate
the idea just mentioned precisely as follows.

Conjecture 5.2. For a normal form gameG with each player i’s choice set denoted
byAi, an action si ∈ Ai isΓ­maximin rationalizable if and only if there exists a convex
set Ci of probability distributions on H (A−i) such that its boundaries are some of the
critical probability distributions and si is Γ­maximin admissible relative to Ci.

It is not difficult to verify that this conjecture is indeed correct for the game in
Figure 5, as there are only 15 convex sets that use some of the 6 critical probabilities as
boundaries. Nevertheless, whether the above conjecture holds in general needs further
investigation. If this can be proved to be true, then we have a relatively efficient way
for finding Γ­maximin rationalizable actions in games, since to identify the critical
probability distribution only requires us to solve some linear equations.

6 Concluding Remarks

A variety of mathematical models have been discussed in the literature to deal
with decisionmaking under uncertainty in single­agent decision problems. In contrast
with canonical Bayesian decision theory, which uses just one probability function to
represent a decision maker’s uncertainty, these models use imprecise probabilities,
such as a nontrivial set of probability functions, to represent uncertainty. Based on
this idea, I have developed in this paper a general theoretical framework for analyzing
how different decision rules can be incorporated into the framework of normal­form
rationalizability when uncertainty is represented by imprecise probabilities.

More precisely, I extended the notion of rationalizability to the case where play­
ers’ conjectures about opponents’ strategy choices are represented by a convex set
of probability measures, instead of a unique probability function. In the spirit of
rationalizability, I introduced a solution concept called Γ­maximin rationalizability,
which captures the idea that each player models the other players as Γ­maximin de­
cision makers with respect to sets of probabilities representing uncertainty; similarly,
I also defined another solution concept named E­rationalizability and maximally ra­
tionalizability. It is easy to see that all of these three new solution concepts include
the concept of rationalizability as a special case when the set of probability measures
contains only a single probability function. In addition, I have shown by an exam­
ple that these concepts are not equivalent. I have also identified the conditions under
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which these solution concepts coincide with each other.
One natural project for future work is to apply some other decision rules like

maximality to interactive situations, in a way similar to the framework developed in
this paper. And it also seems natural to extend the current framework to the context
of extensive form games in which sequential decisions are involved. In this way, one
can develop a general theory of games under uncertainty.

References

[1] J. O. Berger, 1985, Statistical Decision Theory and Bayesian Analysis, New York:
Springer­Verlag.

[2] D. Bernheim, 1984, “Rationalizable strategic behavior”, Econometrica, 52(4): 1007–
1028.

[3] J. Dow and S.Werlang, 1994, “Nash equilibrium under knightian uncertainty: Breaking
down backward induction”, Journal of Economic Theory, 64(2): 305–324.

[4] J. Eichberger and D. Kelsey, 2000, “Non­additive beliefs and strategic equilibria”,
Games and Economic Behavior, 30(2): 183–215.

[5] D. Ellsberg, 1961, “Risk, ambiguity and the savage axioms”, The Quarterly Journal
of Economics, 75(4): 643–669.

[6] L. Epstein, 1997, “Preference, rationalizability and equilibrium”, Journal of Economic
Theory, 73(1): 1–29.

[7] I. Gilboa and D. Schmeidler, 1989, “Maxmin expected utility with non­unique prior”,
Journal of Mathematical Economics, 18(2): 141–153.

[8] J. C. Harsanyi and R. Selten, 1988, A General Theory of Equilibrium Selection in
Games, Cambridge, MA: MIT Press.

[9] P. Klibanoff, 1994, “Uncertainty, Decision and Normal Form Games”, mimeo.
[10] I. Levi, 1974, “On indeterminate probabilities”, The Journal of Philosophy, 71(13):

391–418.
[11] I. Levi, 1974, The Enterprise of Knowledge, Cambridge, MA: MIT Press.
[12] H. Liu andW.Xiong, 2017, “On the implications of integrating linear tracing procedure

with imprecise probabilities”, International Journal of Approximate Reasoning, 80:
123–136.

[13] K. C. Lo, 1996, “Equilibrium in beliefs under uncertainty”, Journal of Economic The­
ory, 71(2): 443–484.

[14] M. J. Osborne, 2004, An Introduction to Game Theory, Oxford, NY: Oxford University
Press.

[15] M. J. Osborne and A. Rubinstein, 1994, A Course in Game Theory, Cambridge, MA:
MIT Press.

[16] D. Pearce, 1984, “Rationalizable strategic behavior and the problem of perfection”,
Econometrica, 52(4): 1029–1050.

[17] L. J. Savage, 1954, The Foundations of Statistics, New York: Wiley.



90 Studies in Logic, Vol. 14, No. 6 (2021)

[18] M. J. Schervish, T. Seidenfeld, J. B. Kadane and I. Levi, 2003, “Extensions of ex­
pected utility theory and some limitations of pairwise comparisons”, in J. M. Bernard,
T. Seidenfeld and M. Zaffalon (eds.), Proceedings of 3rd International Symposium on
Imprecise Probabilities and Their Applications, pp. 496–510, Waterloo: Carleton Sci­
entific.

[19] D. Schmeidler, 1989, “Subjective probability and expected utility without additivity”,
Econometrica, 57(3): 571–587.

[20] T. Seidenfeld, 2004, “A contrast between two decision rules for use with (convex) sets
of probabilities”, Synthese, 140(1/2): 69–88.

[21] M. Troffaes, 2007, “Decision making under uncertainty using imprecise probabilities”,
International Journal of Approximate Reasoning, 45: 17–29.

[22] P. Walley, 1991, Statistical Reasoning with Imprecise Probabilities, New York: Chap­
man and Hall.



Hailin Liu / A Unified Framework for Common Knowledge of Rationality with Sets of Probabilities 91

一个具有概率集的理性公共知识的统一框架

刘海林

摘 要

非精确概率的概念可视为经典概率的一种泛化。诸多非精确概率的理论和模

型已被提出，以更恰当地表达单主体决策情形下的不确定性。在本文中，我集中

探讨了如何能将这些（非精确）理论模型纳入传统的博弈论框架之中。本着可理

性化的精神要义，我提出了三个新的博弈解概念，分别是极大极小可理性化、E­可
理性化和极大可理性化。它们意在表达以下一种理念，即每个参与者都将其他参

与者建模为使用极大极小、E­可接受性或极大性作为决策规则的决策者。本文还
探究了这些博弈解概念的存在条件，以及与可理性化概念的关系等性质。
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