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Undecidability Results of Modal Definability in
Extended Modal Languages*

Zhiguang Zhao

Abstract. In the present paper, we apply the methodology in Balbiani and Tinchev(2016)
to show that for the modal language with universal modality LU , tense language LT , hybrid
languages LH , LH(@), Chagrova’s theorem holds that the modal/tense/hybrid definability of
first­order sentences with respect to certain classes of frames is undecidable, by using similar
techniques as stable classes of Kripke frames.

1 Introduction

In the model theory of modal logic, the modal definability problem of first­order
formulas can be stated as follows: given a first­order formulaα, for the class of Kripke
frames it defines, whether there is a modal formula φ that defines the same class of
Kripke frames. The celebrated Goldblatt­Thomason Theorem ([16]) states that given
an elementary class of Kripke frames, it is modally definable if and only if it is closed
under taking disjoint unions, generated subframes and bounded morphic images and
reflects ultrafilter extensions. However, this theorem does not provide an algorithm
to check if a given first­order formula is modally definable. As is shown by Chagrova
in [10], this problem is undecidable.1

The problem of modal definability is further studied in [1–4, 12–15]. In [2], it
is shown that modal definability for the class of all partitions is PSPACE­complete.
In [3], it is further shown that modal definability in the modal language extended
with universal modality for the class of all partitions is PSPACE­complete. In [12,
14], it is shown that for the modal language and the modal language with universal
modality, the modal definability problem for the class of KD45­frames is PSPACE­
complete. In [4], by applying the stable class technique, it is shown that with respect
to certain frame classes, the modal definability problem of first­order sentences is
undecidable, which is also an alternative proof of Chagrova’s result. In [1], by using
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similar techniques, it is shown that with respect to the class of all Euclidean frames,
the modal definability problem is undecidable.

The basic idea of the stable class technique can be described as follows: Given
a class C of Kripke frames, by showing that the class C is stable, the problem of
checking whether a first­order sentence α is valid in C (C­validity problem) can be
reduced to the modal definability problem of α in C (C­modal definability problem).
Therefore, if the first­order theory of C is undecidable, then the modal definability of
first­order sentences in C is undecidable.

In the present paper, what we are going to investigate is to what extent can we
apply the same technique to get similar undecidability results, if we extend the modal
language by adding converse modality, nominals, the @­operator, universal modal­
ity, etc. Indeed, in the proof that C­validity problem can be reduced to C­modal de­
finability problem, the only parts that uses properties of the modal language are the
following: (a). the modal language contains a formula like ⊥ such that it is valid on
no Kripke frames in C; (b). the relation F ⪯LM

F′ that F′ validates more (or the same)
modal formulas than F. If we revise the definition of the ⪯LM

relation by replacing
modal formulas by tense/hybrid/…formulas, then we can get similar notions of sta­
bility in the extended modal languages, without changing the proof of the reducibility
mentioned above. Therefore, once we have revised the definitions of stability ac­
cording to the extended modal language, we can use the same technique to construct
the witnesses of stability. What one needs to take care is that by adding expressivity
to the modal language, the validity of extended modal formulas are preserved under
less kinds of frame constructions, e.g. for tense logic, the notion of p­morphic im­
age should be revised accordingly, and for the language with universal modality, the
validity is not preserved under taking disjoint union or generated subframe anymore.
Therefore, we need to take care of choosing appropriate frame F′ to make sure that
F ⪯L F′ holds for the extended modal language L in consideration.

The structure of the paper is as follows: Section 2 presents preliminaries on the
extended modal languages and first­order language concerned in the paper. Section
3 sketches the stable class methodology as well as giving new undecidability results
for the class of serial frames in the basic modal language. Section 4 gives the proofs
that LU ­, LT ­, LH ­ and LH(@)­definability for certain classes of Kripke frames are
undecidable. Section 5 gives conclusions and further directions of research.

2 Preliminaries

In this section, we collect preliminary definitions and propositions for modal
logic, tense logic and hybrid logic. For more details, see [4–6].
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2.1 Extended modal languages

Syntax Given a set of propositional variables Prop, a set of nominals Nom, the
syntax for modal logic LM , modal logic with universal modality LU , tense logic
LT , hybrid logic LH , hybrid logic with @­operator LH(@) (we call these languages
(extended) modal languages) are defined as follows:

LM : φ ::= p | ⊥ | ⊤ | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | 2φ | 3φ

where p ∈ Prop.
LU is obtained by adding the clauses Uφ and Eφ to LM ;
LT is obtained by adding the clauses ■φ and♢φ to LM ;
LH is obtained by adding the clause i to LM where i ∈ Nom;
LH(@) is obtained by adding the clause @iφ to LH .

Semantics Given the (extended) modal languages, they are interpreted on Kripke
frames F = (W,R) where W ̸= ∅, R ⊆ W × W . A Kripke model is a tuple
M = (W,R, V ) where (W,R) is a Kripke frame and V : Prop ∪ Nom → P (W ) is
an assignment such that V (i) is a singleton for all nominals i ∈ Nom.

Given a Kripke model M = (W,R, V ), the satisfaction relation is defined as
follows:

M, w ⊩ p iff w ∈ V (p);
M, w ⊩ i iff V (i) = {w};
M, w ⊩ ⊥ : never;
M, w ⊩ ⊤ : always;
M, w ⊩ ¬φ iff M, w ⊮ φ;
M, w ⊩ φ ∧ ψ iff M, w ⊩ φ andM, w ⊩ ψ;
M, w ⊩ φ ∨ ψ iff M, w ⊩ φ orM, w ⊩ ψ;
M, w ⊩ φ→ ψ iff M, w ⊮ φ orM, w ⊩ ψ;
M, w ⊩ 2φ iff for all v ∈W , if Rwv thenM, v ⊩ φ;
M, w ⊩ 3φ iff there exists v ∈W such that Rwv andM, v ⊩ φ;
M, w ⊩ Uφ iff for all v ∈W ,M, v ⊩ φ;
M, w ⊩ Eφ iff there exists v ∈W such thatM, v ⊩ φ;
M, w ⊩ ■φ iff for all v ∈W , if Rvw thenM, v ⊩ φ;
M, w ⊩ ♢φ iff there exists v ∈W such that Rvw andM, v ⊩ φ;
M, w ⊩ @iφ iff M, V (i) ⊩ φ.

A formula φ is true in a model M (notation: M ⊩ φ), if M ⊩ φ for all v ∈ W .
φ is valid in a frame F (notation: F ⊩ φ), if φ is true in all models based on F. φ is
valid in a frame class C (notation: C ⊩ φ), if φ is valid in all frames in C. A frame
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F is L­weaker than a frame F′ (notation F ⪯L F′), if for all L­formulas φ, if F ⊩ φ
then F′ ⊩ φ.

2.2 Frame constructions and validity preservation

In the stable class techniques, the⪯L relation is an important technical tool, and it
can be shown by proving that certain frame constructions preserve L­validity. Notice
that here we only talk about frame constructions rather than model constructions, we
do not need to revise the definitions of the frame constructions for hybrid logic.

Definition 1 (Generated subframe). Given two Kripke frames F = (W,R) and
F′ = (W ′, R′), we say that F′ is a generated subframe of F if W ′ ⊆ W , R′ =

R ∩ (W ′ ×W ′), and for all w ∈W ′ and v ∈W such that Rwv, we have v ∈W ′.

Definition 2 (Disjoint union). Given Kripke frames Fi = (Wi, Ri) (i ∈ I) with
disjoint domains, their disjoint union

⊎
i Fi = (W,R) is defined asW :=

∪
i∈I Wi,

R :=
∪

i∈I Ri.

Definition 3 (Bounded morphic image). Given two Kripke frames F = (W,R) and
F′ = (W ′, R′), we say that F′ is a bounded morphic image of F if there is a surjective
map f :W →W ′ such that the following conditions hold:

• for all w, v ∈W , if Rwv then R′f(w)f(v);
• for all w ∈W , v′ ∈W ′, if R′f(w)v′ then there exists a v ∈W such that Rwv
and f(v) = v′.

Definition 4 (Tense generated subframe). Given two Kripke frames F = (W,R)

and F′ = (W ′, R′), we say that F′ is a tense generated subframe of F if

• W ′ ⊆W ;
• R′ = R ∩ (W ′ ×W ′);
• for all w ∈W ′ and v ∈W such that Rwv, we have v ∈W ′;
• for all w ∈W ′ and v ∈W such that Rvw, we have v ∈W ′.

Definition 5 (Tense boundedmorphic image). Given twoKripke framesF = (W,R)

and F′ = (W ′, R′), we say that F′ is a tense bounded morphic image of F if there is
a surjective map f :W →W ′ such that the following conditions hold:

• for all w, v ∈W , if Rwv then R′f(w)f(v);
• for all w ∈W , v′ ∈W ′, if R′f(w)v′ then there exists a v ∈W such that Rwv
and f(v) = v′;

• for all w ∈W , v′ ∈W ′, if R′v′f(w) then there exists a v ∈W such that Rvw
and f(v) = v′.
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It is easy to see that the modal language LM is preserved under taking the first
three kinds of frame constructions defined above:

Proposition 1.

• Given two Kripke frames F and F′, if F′ is a generated subframe of F, then for
any LM ­formula φ, if F ⊩ φ, then F′ ⊩ φ (i.e., F ⪯LM

F′);
• Given a class of frames {Fi | i ∈ I}, for any LM ­formula φ, if Fi ⊩ φ for all
i ∈ I , then

⊎
i Fi ⊩ φ;

• Given two Kripke frames F and F′, if F′ is a bounded morphic image of F, then
for any LM ­formula φ, if F ⊩ φ, then F′ ⊩ φ (i.e., F ⪯LM

F′).

We can obtain similar results for extended modal languages:

Proposition 2.

• For the modal language with universal modality LU , its validity is preserved
under taking bounded morphic images;

• For the tense logic language LT , its validity is preserved under taking tense
generated subframes, disjoint unions and tense bounded morphic images;

• For the hybrid logic languages LH and LH(@), their validities are preserved
under taking generated subframes.

2.3 First­order language

In this subsection we give the necessary notations and definitions in first­order
logic and relativization. We follow the presentations in [4].

Syntax Given a set of individual variables Var, the first­order language L1 is de­
fined as follows:

α ::= Rxy | x = y | ¬α | α ∧ β | α ∨ β | α→ β | ∀xα | ∃xα

We use x to denote a list of individual variables x1, . . . , xn, and use α(x) to
indicate that all free individual variables are among x. When a first­order formula α
does not contain free variables, we call it a sentence.

Truth Given a frame F = (W,R), the satisfaction relation between first­order for­
mula α(x) and F with respect to a list s of worlds in F (notation: F ⊨ α(x)[s]) is
defined as follows:
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F ⊨ Rxixj [s] iff Rsisj ;
F ⊨ xi = xj [s] iff si = sj ;
F ⊨ (¬α)[s] iff F ⊭ α[s];
F ⊨ (α ∧ β)[s] iff F ⊨ α[s] and F ⊨ β[s];
F ⊨ (α ∨ β)[s] iff F ⊨ α[s] or F ⊨ β[s];
F ⊨ (α→ β)[s] iff F ⊨ α[s] implies F ⊨ β[s];
F ⊨ ∀xα(x, x)[s] iff for all s ∈W , F ⊨ α(x, x)[s, s];
F ⊨ ∃xα(x, x)[s] iff there exists s ∈W such that F ⊨ α(x, x)[s, s].

A first­order formula α(x) is valid in F (notation: F ⊨ α(x)), if α(x) is satisfied
in F with respect to all s in F. A first­order formula α is said to be valid in a class C
of frames (notation C ⊨ α), if α is valid in all frames in C. The first­order theory of
the frame class C is Th(C) := {φ | φ is a first­order sentence and C ⊨ φ}.

Relativization The relativization γαx of a first­order formula γ with respect to an­
other first­order formula α and an individual variable x is defined as follows:

(Rst)αx := Rst;
(s = t)αx := s = t;
(¬γ)αx := ¬γ;
(γ ∧ δ)αx := (γ)αx ∧ (δ)αx ;
(γ ∨ δ)αx := (γ)αx ∨ (δ)αx ;
(γ → δ)αx := (γ)αx → (δ)αx ;
(∀yγ)αx := ∀y(α[x/y]→ (γ)αx);
(∃yγ)αx := ∃y(α[x/y] ∧ (γ)αx).

where α[x/y] is obtained by replacing all free occurrence of x in α by y. When
writing γαx , we assume that individual variables occurring in α and γ are disjoint.

Definition 6. Given two frames F = (W,R) and F′ = (W ′, R′), if there is a first­
order formula α(x, x) and a list s ∈W such thatW ′ = {s ∈W | F ⊨ α(x, x)[s, s]}
and R′ = R ∩ (W ′ × W ′), then we say that F′ is the relativized reduct of F with
respect to α(x, x) and s.

For relativization and relativized reducts, we have the following theorem:

Theorem 3 (Relativization theorem). Given two frames F, F′, a first­order formula
α(x, x), a list of worlds s (corresponding to x). If F′ is the relativized reduct of F
with respect to α(x, x) and s, then for all first­order formula γ(y) and list of worlds
t (corresponding to y) in F′,

F ⊨ (γ(y))α(x,x)x [s, t] iff F′ ⊨ γ(y)[t].
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3 Undecidability of Modal Definability: The Stable Class Technique

In this section, we recall the technique used in [4] to show the undecidability
of modal definability of first­order sentences. The basic idea is to use the so­called
stable class of frames. Balbiani and Tinchev ([4]) showed that if a class of frames
C is stable, then the validity problem of first­order sentences in C is reducible to the
modal definability problem with respect to C. Once the validity problem of first­
order sentences in C is undecidable, the modal definability problem with respect to C
is undecidable.

3.1 The stable class technique

Now we give the relevant definitions in [4].

Definition 7 (Modal definability). Given a class of frames C, a first­order sentence
α is modally definable with respect to C if there is a modal formula φ such that for
all frames F ∈ C, F ⊨ α iff F ⊩ φ.

For other extended modal languages, the definition is similar.

Definition 8 (Stable class). A class of frames C is stable if there is a first­order
formula α(x, x) and a first­order sentence β such that the following two conditions
hold (we say that (α(x, x), β) is a witness of the stability of C):

1. for all frames F = (W,R) ∈ C, for all s ∈ W , if a frame F′ is the relativized
reduct of F with respect to α(x, x) and s, then F′ ∈ C; that is to say, C is closed
under taking relativized reducts;

2. for all frames F0 ∈ C, there exist F,F′ ∈ C and a list of worlds s ∈ F such that
F0 is the relativized reduct of F with respect to α(x, x) and s, F ⊨ β, F′ ⊭ β

and F ⪯LM
F′.

The definition above is defined for the language of modal logic, and it can be adapted
to other extended modal languages by revising the index of ⪯.

Now we briefly recall the proof of Balbiani and Tinchev’s reduction theorem:

Theorem 4 (Theorem 1 in [4]). If a class of frames C is stable, then the validity
problem of first­order sentences in C is reducible to the modal definability problem
with respect to C.

Proof. See [4, Theorem 1]. Here we repeat it for the sake of checking the details of
the proof.

Suppose C is stable and (α(x, x), β) witnesses the stability of C. Let γ be a
sentence and δ := ∃x(∃xα(x, x) ∧ ¬(γ)α(x,x)x ) ∧ β, then it can be shown that C ⊨ γ
iff δ is modally definable with respect to C.
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⇒: Assume C ⊨ γ. If δ is not modally definable with respect to C, then there
is a frame F = (W,R) ∈ C such that F ⊨ δ (otherwise ⊥ defines δ with respect to
C). Then there is a list s ∈ W such that F ⊨ ∃xα(x, x) ∧ ¬(γ)α(x,x)x [s], so we can
consider the relativized reduct F′ of F with respect to α(x, x) and s. By condition
1 of stable class, since C is stable, from F ∈ C we get F′ ∈ C. However, F′ is the
relativized reduct of F with respect to α(x, x) and s, by Theorem 3, F ⊨ (γ)

α(x,x)
x [s]

iff F′ ⊨ γ.Since F ⊭ (γ)
α(x,x)
x [s], we have F′ ⊭ γ, which contradicts C ⊨ γ and

F′ ∈ C.
⇐: Assume that δ is modally definable with respect to C. Suppose φ modally

defines δ with respect to C. If C ⊭ γ, then there is a frame F0 ∈ C such that F0 ⊭ γ.
Since C is stable witnessed by (α(x, x), β), there are frames F = (W,R), F′ ∈ C

and a list of worlds s ∈ W such that F0 is the relativized reduct of F with respect to
α(x, x) and s, F ⊨ β, F′ ⊭ β and F ⪯LM

F′. Since F′ ⊭ β, F′ ⊭ δ as well. Since
φ modally defines δ with respect to C, we have F′ ⊮ φ. By F ⪯LM

F′, we have
F ⊮ φ. Since F ∈ C and φ modally defines δ with respect to C, we have F ⊭ δ.
By F ⊨ β, we have F ⊭ ∃x(∃xα(x, x) ∧ ¬(γ)α(x,x)x ). Since F0 is the relativized
reduct of F with respect to α(x, x) and s, by Theorem 3, F ⊨ (γ)

α(x,x)
x [s] iff F0 ⊨ γ.

By F0 ⊭ γ, we have F ⊨ ¬(γ)α(x,x)x [s]. Moreover, F ⊨ ∃xα(x, x)[s]. Therefore,
F ⊨ ∃x(∃xα(x, x) ∧ ¬(γ)α(x,x)x ), a contradiction. □

It is easy to see that the only two places that uses the properties of the modal
language are the following:

• The modal language contains a formula like⊥ such that it is valid on no Kripke
frames in C;

• The relation F ⪯LM
F′ that F′ validates more (or the same) modal formulas

than F.

Therefore, when considering an extended modal language L, once it contains ⊥ and
we consider the relation F ⪯L F′ instead of F ⪯LM

F′ when defining the stable class
and proving the theorem, we can obtain the definition of L­stable class by replacing
F ⪯LM

F′ with F ⪯L F′, and obtain the analogue of the theorem above by the
following theorem:

Theorem 5. If a class of frames C is L­stable, then the validity problem of first­order
sentences in C is reducible to the L­definability problem with respect to C.

3.2 Example of showing undecidability of modal definability within certain
frame class

We can give the following example that modal definability problem is undecid­
able in the class of serial frames, i.e. the frames satisfying ∀x∃yRxy, by showing that
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the class of serial frames is stable. To the author’s knowledge, this result is original.

Theorem 6. The class CSer of serial frames is stable. Therefore, the modal defin­
ability problem in CSer is undecidable.

Proof. For the validity problem of Th(CSer), since the first­order theory of lattice
is a finite extension of Th(CSer), the undecidability of Th(CSer) follows from the
undecidability of the first­order theory of lattice [17]. Therefore, it suffices to show
that CSer is stable.

Now define α(x) := ∃yRyx, β := ¬∀xRxx, then we can show that conditions
1 and 2 hold for CSer witnessed by (α(x), β):

• For condition 1, take any frame F = (W,R) ∈ CSer, F is serial. Consider a
frame F′ = (W ′, R′) which is the relativized reduct of F with respect to α(x),
then it is easy to see thatW ′ ̸= ∅, since for a serial frame F = (W,R),R ̸= ∅,
so there exists a w ∈ W such that w has an R­predecessor. We can show that
R′ is a serial relation on W ′: suppose otherwise, w has R­successors but no
R′­successors, then the worlds in the set R[w] = {v ∈ W | Rwv} are all
deleted when taking the relativized reduct, so those vs have no R­predecessor,
a contradiction to Rwv.

• For condition 2, for any serial frame F0 = (W0, R0) ∈ CSer, we can construct
F and F′ as follows:

F := (W,R), whereW =W0 ∪ {s, t}, R = R0 ∪ ({s, t} ×W0);
F′ := (W ′, R′), whereW ′ = {r}, R′ = {(r, r)};

It is easy to see that F and F′ are serial. Since in F, the worlds with immediate
predecessors are exactly the ones in W0, so F0 is the relativized reduct of F
with respect to ∃yRyx.
It is easy to see that F ⊨ ¬∀xRxx, F′ ⊭ ¬∀xRxx.
Finally, define f : F → F′ such that every world is mapped to r, it is easy to
see that f is a surjective bounded morphic morphism, so F ⪯LM

F′.

Therefore, CSer is stable. □

4 Undecidability Results

In this section, we will make use of the stable class technique to show that certain
L­definability problems with respect to certain frame classes C are undecidable by
showing that C is L­stable and that the validity problem of first­order sentences in C
is undecidable.

Theorem 7. The class C of all Kripke frames is LT ­, LU ­, LH ­, LH(@)­stable.
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Proof. Define α(x, x) := Rx1x, β := ∃x∃y(x ̸= y ∧ ¬∃zRzx ∧ ¬∃zRzy), then
we can show that for LT ­, LU ­, LH ­, LH(@)­stability, conditions 1 and 2 hold for C
witnessed by (α(x, x), β):

• For condition 1, since the class of all Kripke frames is closed under taking
subframes, this condition is automatically satisfied;

• For condition 2, for any Kripke frame F0 = (W0, R0) ∈ C, we can construct F
and F′ as follows:

F′ := (W ′, R′), whereW ′ =W0 ∪ {s}, R′ = R0 ∪ ({s} ×W0);
We take an isomorphic copy F′′ of F′, and define F := F′ ⊎ F′′, where the
isomorphic copy of s in the F′′ part is denoted as s′;
It is trivial that F and F′ ∈ C.
Since in F, the worlds who has s as an immediate predecessor are exactly the
ones in the original copy (i.e., F′ part)W0, so F0 is the relativized reduct of F
with respect to Rx1x and s.
It is easy to see that F ⊨ ∃x∃y(x ̸= y ∧ ¬∃zRzx ∧ ¬∃zRzy), F′ ⊭ ∃x∃y(x ̸=
y ∧ ¬∃zRzx ∧ ¬∃zRzy), since in F there are two worlds without immediate
predecessor, but in F′ there is only one world without immediate predecessor.
Finally, define f : F→ F′ such that both the F′ part and the F′′ part are mapped
to F′ in an isomorphic way. Then it is easy to check that f is a surjective tense
bounded morphic morphism, a surjective bounded morphic morphism, F′ is a
generated subframe of F, so F ⪯L F′ for L ∈ {LT ,LU ,LH ,LH(@)}.

Therefore, C is LT ­, LU ­, LH ­, LH(@)­stable. □

Corollary 1. The L­definability problem in C is undecidable for L ∈ {LT ,LU ,
LH ,LH(@)}.

Proof. By Theorem 5 and Theorem 7, it suffices to show that the validity problem
of first­order sentences in C is undecidable, which is already shown in [4, Corollary
1]. □

Theorem 8. The class CRef of all reflexive Kripke frames is LT ­, LU ­, LH ­, LH(@)­
stable.

Proof. Define α(x, x) := Rx1x∧¬x1 = x, β := ∃x∃y(x ̸= y∧¬∃z(Rzx∧¬z =
x)∧¬∃z(Rzy∧¬z = y)), then we can show that forLT ­,LU ­,LH ­,LH(@)­stability,
conditions 1 and 2 hold for CRef witnessed by (α(x, x), β):

• For condition 1, since the class of all reflexive Kripke frames is closed under
taking subframes, this condition is automatically satisfied;

• For condition 2, for anyKripke frameF0 = (W0, R0) ∈ CRef , we can construct
F and F′ as follows:
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F′ := (W ′, R′), whereW ′ =W0 ∪ {s}, R′ = R0 ∪ {(s, s)} ∪ ({s} ×W0);
We take an isomorphic copy F′′ of F′, and define F := F′ ⊎ F′′, where the
isomorphic copy of s in the F′′ part is denoted as s′;
It is trivial that F and F′ ∈ CRef .
Since in F, the worlds who has s as a strict immediate predecessor are exactly
the ones in the original copy (i.e., F′ part)W0, so F0 is the relativized reduct of
F with respect to Rx1x ∧ ¬x1 = x and s.
It is easy to see that F ⊨ ∃x∃y(x ≠ y∧¬∃z(Rzx∧¬z = x)∧¬∃z(Rzy∧¬z =
y)), F′ ⊭ ∃x∃y(x ̸= y ∧ ¬∃z(Rzx ∧ ¬z = x) ∧ ¬∃z(Rzy ∧ ¬z = y)), since
in F there are two worlds without strict immediate predecessor, but in F′ there
is only one world without strict immediate predecessor.
Finally, define f : F→ F′ such that both the F′ part and the F′′ part are mapped
to F′ in an isomorphic way. Then it is easy to check that f is a surjective tense
bounded morphic morphism, a surjective bounded morphic morphism, F′ is a
generated subframe of F, so F ⪯L F′ for L ∈ {LT ,LU ,LH ,LH(@)}.

Therefore, CRef is LT ­, LU ­, LH ­, LH(@)­stable. □

Corollary 2. The L­definability problem in CRef is undecidable for L ∈ {LT ,LU ,
LH ,LH(@)}.

Proof. By Theorem 5 and Theorem 8, it suffices to show that the validity problem of
first­order sentences in CRef is undecidable, which is already shown in [4, Corollary
3]. □

Theorem 9. The class CTra of all transitive Kripke frames, CRef,Tra of all reflexive
and transitive Kripke frames, CPoset of all partial orders are LT ­, LU ­, LH ­, LH(@)­
stable.

Proof. We define the same α(x, x) and β as in Theorem 8. Then we can show that
(α(x, x), β) witnesses the LT ­, LU ­, LH ­, LH(@)­stability of CTra, CRef,Tra and
CPoset:

• For condition 1, these three classes are all closed under taking subframes, so
this condition is automatically satisfied;

• For condition 2, for any Kripke frame F0 = (W0, R0) in one of the three
classes, we can use the same construction of F and F′ as in Theorem 8. Then
it is the case that F0 is the relativized reduct of F with respect to α(x, x) and
s, F ⊨ β, F′ ⊭ β, F ⪯L F′ for L ∈ {LT ,LU ,LH ,LH(@)}. It is easy to check
that if F0 ∈ C, then F and F′ ∈ C holds for C ∈ {CTra,CRef,Tra,CPoset}.

Therefore, CTra,CRef,Tra,CPoset are L­stable for L ∈ {LT ,LU ,LH ,LH(@)}. □
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Corollary 3. The LT ­, LU ­, LH ­, LH(@)­definability problems in CTra, CRef,Tra,

CPoset are undecidable.

Proof. By Theorem 5 and Theorem 9, it suffices to show that the validity problems
of first­order sentences in CTra,CRef,Tra,CPoset are undecidable, which is already
shown in [4, Corollary 3, 5]. □

Theorem 10. The class CSym of all symmetric Kripke frames is LT ­, LU ­, LH ­,
LH(@)­stable.

Proof. Define α(x, x) := Rx1x, β := ¬∃x∀y(x = y ∨ Rxy), then we can show
that for LT ­, LU ­, LH ­, LH(@)­stability, conditions 1 and 2 hold for CSym witnessed
by (α(x, x), β):

• For condition 1, since the class of all symmetric Kripke frames is closed under
taking subframes, this condition is automatically satisfied;

• For condition 2, for any Kripke frame F0 = (W0, R0) ∈ CSym, we can con­
struct F and F′ as follows:

F′ := (W ′, R′), whereW ′ =W0 ∪{s}, R′ = R0 ∪ ({s}×W0)∪ (W0×
{s});
We take an isomorphic copy F′′ of F′, and define F := F′ ⊎ F′′, where the
isomorphic copy of s in the F′′ part is denoted as s′;
It is trivial that F and F′ ∈ CSym.
Since in F, the worlds who has s as an immediate predecessor are exactly the
ones in the original copy (i.e., F′ part)W0, so F0 is the relativized reduct of F
with respect to Rx1x and s.
It is easy to see that F ⊨ ¬∃x∀y(x = y ∨ Rxy), F′ ⊭ ¬∃x∀y(x = y ∨ Rxy),
since in F′, any non s point is an R′­successor of s, while in F, each point is
not connected with a point in the other isomorphic copy.
Finally, define f : F→ F′ such that both the F′ part and the F′′ part are mapped
to F′ in an isomorphic way. Then it is easy to check that f is a surjective tense
bounded morphic morphism, a surjective bounded morphic morphism, F′ is a
generated subframe of F, so F ⪯L F′ for L ∈ {LT ,LU ,LH ,LH(@)}.

Therefore, CSym is LT , LU ­, LH ­, LH(@)­stable. □

Corollary 4. The LT ­, LU ­, LH ­, LH(@)­definability problem in CSym is undecid­
able.

Proof. By Theorem 5 and Theorem 10, it suffices to show that the validity prob­
lem of first­order sentences in CSym is undecidable, which is already shown in [4,
Corollary 3]. □
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Theorem 11. The class CRef,Sym of all reflexive and symmetric Kripke frames is
LT ­, LU ­, LH ­, LH(@)­stable.

Proof. Define α(x, x) := Rx1x ∧ ¬x1 = x, β := ¬∃x∀yRxy, then we can show
that for LT ­, LU ­, LH ­, LH(@)­stability, conditions 1 and 2 hold for CRef,Sym wit­
nessed by (α(x, x), β):

• For condition 1, since the class of all reflexive symmetric Kripke frames is
closed under taking subframes, this condition is automatically satisfied;

• For condition 2, for any Kripke frame F0 = (W0, R0) ∈ CRef,Sym, we can
construct F and F′ as follows:

F′ := (W ′, R′), whereW ′ =W0 ∪{s}, R′ = R0 ∪ ({s}×W0)∪ (W0×
{s}) ∪ {(s, s)};
We take an isomorphic copy F′′ of F′, and define F := F′ ⊎ F′′, where the
isomorphic copy of s in the F′′ part is denoted as s′;
It is trivial that F and F′ ∈ CRef,Sym.
Since in F, the worlds who has s as a strict immediate predecessor are exactly
the ones in the original copy (i.e., F′ part)W0, so F0 is the relativized reduct of
F with respect to Rx1x ∧ ¬x1 = x and s.
It is easy to see that F ⊨ ¬∃x∀yRxy, F′ ⊭ ¬∃x∀yRxy, since any point is an
R′­successor of s in F′, while in F, points in different isomorphic copies are
not connected.
Finally, define f : F→ F′ such that both the F′ part and the F′′ part are mapped
to F′ in an isomorphic way. Then it is easy to check that f is a surjective tense
bounded morphic morphism, a surjective bounded morphic morphism, F′ is a
generated subframe of F, so F ⪯L F′ for L ∈ {LT ,LU ,LH ,LH(@)}.

Therefore, CRef,Sym is LT ­, LU ­, LH ­, LH(@)­stable. □

Corollary 5. The LT ­, LU ­, LH ­, LH(@)­definability problem in CRef,Sym is unde­
cidable.

Proof. By Theorem 5 and Theorem 11, it suffices to show that the validity problem
of first­order sentences in CRef,Sym is undecidable, which is already shown in [4,
Corollary 3]. □

5 Conclusions and Further Directions

In this paper, we use the stable class technique in [4] to show that certain extended
modal definability in certain frame classes are undecidable. Here we use a frame
construction of F and F′ from F0 which satisfies that F′ is a tense bounded morphic
image, a bounded morphic image, a generated subframe of F at the same time, so we
can treat LT ,LU ,LH ,LH(@) uniformly.
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As we know, the more expressive the extended modal language is, the less kinds
of frame constructions its validities are preserved under. Therefore, if we consider
the hybrid language LH(E) which has both the nominals and the universal modality,
its validity is only preserved under taking ultrafilter morphic images (e.g., see [6]),
which makes it harder to construct F and F′. While for very expressive hybrid lan­
guage like LH(E) extended with the downarrow binder, each first­order formula is
LH(E,↓)­definable. Therefore, it is an interesting question that for which position L
of the extended modal language hierarchy, the L­definability problem for first­order
sentences becomes decidable.
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扩展模态语言中模态可定义性的不可判定性结果

赵之光

摘 要

在本文中，我们使用 Balbiani和 Tinchev的稳定类方法证明在加全称模态词
的模态语言 LU、时态语言 LT、混合语言 LH，LH(@)中，Chagrova定理成立，即
一阶公式相对于特定框架类的模态/时态/混合可定义性问题是不可判定的。
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