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Markov Categories, Causal Theories, and the
Do-calculus*®

Yimu Yin Jiji Zhang

Abstract. We give a category-theoretic treatment of causal models that formalizes the syntax
for causal reasoning over a directed acyclic graph (DAG) by associating a free Markov category
with the DAG in a canonical way. This framework enables us to define and study important
concepts in causal reasoning from an abstract and “purely causal” point of view, such as causal
independence/separation, causal conditionals, and decomposition of intervention effects. Our
results regarding these concepts abstract away from the details of the commonly adopted causal
models such as (recursive) structural equation models or causal Bayesian networks. They are
therefore more widely applicable and in a way conceptually clearer. Our results are also inti-
mately related to Judea Pearl’s celebrated do-calculus, and yield a syntactic version of a core
part of the calculus that is inherited in all causal models. In particular, it induces a simpler and
specialized version of Pearl’s do-calculus in the context of causal Bayesian networks, which we
show is as strong as the full version.

1 Introduction

Causal models based on directed acyclic graphs (DAGs), such as recursive struc-
tural equation models ([3, 4]) and causal Bayesian networks ([13, 11]), have been
vigorously studied and widely applied as powerful tools for causal reasoning. How-
ever, from a logical point of view, the syntax underlying such causal models is usu-
ally left implicit or even obscure in the literature. This lacuna is fixed in recent
category-theoretic work on the subject ([1, 6]), where the distinction between syn-
tax and semantics is made clear in the style of F.W. Lawvere’s functorial semantics
([7]). Specifically, the syntax is provided by a monoidal category of a certain kind
induced by a DAG, and a distinguished class of morphisms therein can be viewed
as syntactic causal effects, which may then be interpreted in various ways. Causal
Bayesian networks, for example, interpret a causal effect of this kind with a stochastic
matrix that represents probability distributions over the outcome-variables resulting
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from interventions on the treatment-variables. In this light, a causal Bayesian net-
work is a functor—a structure-preserving mapping—ifrom the syntax category to a
category whose morphisms are stochastic matrices. As another example (and a de-
generate case of causal Bayesian networks), deterministic structural equation models
interpret a causal effect of this kind as a function that represents how the values of
the outcome-variables depend on those of the treatment-variables. Thus, a (recursive)
deterministic structural equation model may be viewed as a functor from the syntax
category to a category whose morphisms are functions.

In this paper we build on this category-theoretic framework and study some im-
portant concepts in DAG-based causal reasoning from a syntactic and more abstract
perspective. In particular, we work with the categories defined in [1], called causal
theories, with an extra constraint to make them Markov categories in the sense of [2].
We study the morphisms in that category that correspond to what we call syntactic
causal effects, using the graphical language of string diagrams as vehicles for our ar-
guments. One of our main results concerns the decomposition or disintegration of
causal effect morphisms, or in the terminology of [2], the existence of a conditional
for a causal effect morphism. Roughly, this refers to the property that the causal effect
of x on y and z can be decomposed into the causal effect of « on y followed by that
of z and y on z. We derive a condition that is sufficient and necessary for decom-
posability in a causal theory. Interestingly, the condition is precisely the condition
in a specialized version of the second rule of Judea Pearl’s do-calculus ([11]). This
agreement is of course not a coincidence and has, we submit, several instructive im-
plications. The other rules of the do-calculus have more straightforward counterparts
in terms of causal effect morphisms, and the upshot is a generic do-calculus at the
syntactic level.

This generic calculus, we argue, captures the “causal core” of reasoning about
interventions, and is automatically inherited in all causal models, including but not
limited to the popular probabilistic ones. In particular, it induces a simpler and spe-
cialized version of Pearl’s do-calculus in the context of causal Bayesian networks.
Importantly, we show that given the probability calculus, the simpler and specialized
version entails the full version of the do-calculus, corroborating our contention that the
generic do-calculus corresponds to the purely causal component of the well-known
probabilistic do-calculus.

The rest of the paper is organized as follows. In Section 2, we introduce the
basics of category theory and the intuitive language of string diagrams, leading to the
notion of a Markov category. In Section 3, we define causal theories as an abstraction
of causal Bayesian networks and as free Markov categories, and highlight a class of
morphisms constructed in [1], which we call “causal effect morphisms”. Section 4
presents some results about causal effect morphisms, which yield a more abstract and
syntactic counterpart to Pearl’s do-calculus. We show in Section 5 that the syntactic
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do-calculus entails a simpler and specialized version of probabilistic do-calculus, and
that, despite its simplicity, the specialized version is actually as strong as the full
version.

2 Markov Categories

For the sake of space and readability, we will only describe the notions of cate-
gory theory that are essential for understanding this paper, and introduce the axioms
for a Markov category using the language of string diagrams. For readers interested in
learning more about category theory and string diagrams, we recommend the canon-
ical treatises [8] and [12], among other excellent textbooks and surveys.

A category C consists of two types of entities: objects A, B, C, ... and arrows
f> g, h, ..., subject to the following three rules:

* For each arrow f there are given two objects dom(f) and cod(f), called the
domain and the codomain of f. We usually write f : A — B to indicate that
A =dom(f) and B = cod(f).

* Given two arrows f : A — Band g : B — C, that is, cod(f) = dom(g),
there is a third arrow g o f : A — C, called the composition of f and g.

* For each object A there is an arrow 14 : A — A, called the identity or unit
arrow of A.

In addition, the obvious unitality and associativity laws hold for compositions: for all
fitA—B,g:B—C,andh:C — D,

lgof=f fola=/f (hog)of=ho(gof)

An arrow in category theory is also called a morphism or a map. Here is a more
formal definition:

Definition 2.1. Let C be a quadruple (Cp, C1,dom, cod), where Cj is referred to as
a class of objects, Cy is referred to as a class of morphisms, and dom : C; — Cy,
cod : C; — Cy are functions. A morphism f in C; isusually writtenas f : A — B
with dom(f) = A and cod(f) = B. For each pair of objects A, B in Cy, the class of
all morphisms f with dom(f) = A and cod(f) = B is denoted by hom¢ (A, B).

Let Co = {(f,9) € C1 x C; | cod(f) = dom(g)}. We say that C is a category
if it also comes with a morphism 14 : A — A for every A € Cy, called the identity
morphism of A, and a function o : Co — Cy, called composition, subject to the
associativity and unitality laws given above.

Often we just write € C and let the context determine whether « is an object
or a morphism.

A paradigmatic example of a category is the category Set, containing sets as
objects and functions as morphisms. In this category, the composition of morphisms
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is just the composition of functions and for each object A, the identity morphism is
just the identity function.

It is helpful to think of a morphism as an abstract function, or a box with input
wires and output wires, as in the graphical language of string diagrams. The four
rudiments of a category are depicted in such a graphical language as follows:

C
B 9]
A A B
A
hi 4
object A morphism identity 1 4 "
fiA— B composition
gof

2.1)

Note that string diagrams are parsed in the lower-left to upper-right order.

Remark 2.2. A string diagram is a topological graph in which every edge is labelled
with an object and every vertex with a morphism. ([12]) Object labels such as A, B
are usually omitted except when they are needed for clarity or emphasis. A labelled
vertex is also called a node, and is often drawn as a box such as for readability.
Just as in the usual symbolic formalism, a morphism f may be represented by many
string diagrams.

Categories may serve as objects in a “higher” category, and the morphisms be-
tween categories are known as functors:

Definition 2.3. Let C, D be categories and F' a pair of mappings Fp : Co — Dy,
Iy : C; — Dy. Then F'is a functor, written as F' : C — D, if the following three
conditions, corresponding to the three conditions for a category, are satisfied:

* F preserves domains and codomains, that is, F1(f : A — B) is a morphism
Fy(A) — Fy(B) for all morphisms f € Cj.

* F preserves compositions, that is, Fy(g o f) = Fi(g) o Fi(f) for all composi-
tionsgo f € Cy.

* I preserves identities, that is, F1(14) = 15, (4) for all objects A € Co.

Compositions of functors may be defined using composition of mappings. Then
it is routine to check that categories and functors form a “higher” category.

We now introduce more structures needed for our purpose. Start with the (strict)
monoidal structure:

Definition 2.4. A strict monoidal category is a category C equipped with a functor
® : C x C—C, called the monoidal product, and a distinguished object I, called
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the monoidal unit (of the monoidal product), that satisfy associativity and unitality:
(A®B)C=A® (Ba(C), ITeA=A=AxI (2.2)

Many commonly encountered monoidal categories are actually not strict because
equation (2.2) holds only “up to isomorphism”. For example, the category Set has an
obvious monoidal product, which is just the Cartesian product (of sets and of func-
tions). The monoidal unit is any singleton set, but unitality is a matter of isomorphism
rather than strict identity. The formal definition of a (possibly non-strict) monoidal
category is rather more complex and requires the notion of a natural transformation,
which we omit to keep things simple. The monoidal categories we will focus on in
this paper are strict.!

Since the monoidal product is a functor, it applies to both objects and morphisms
in the category. Thus the graphical syntax in (2.1) is extended for monoidal categories

as follows:
B| D
Al C

A| B
monoidal . . .
monoidal unit . monoidal
product (empty diagram) morphism roduct
of objects Py clag [ A — ®j B; P .
of morphisms
(2.3)

Notation 2.5. We denote by A™ the monoidal product of n copies of an object A itself;
this includes the empty product A? = I. When an object of the form A; ® ... ® A, is
introduced in the discussion, the indices are in general meant to indicate the ordering
in which the monoidal product is taken.

For the present purpose, the monoidal structure is especially useful because it can
be used to express causal processes or mechanisms that run in parallel, as is visualized
in (2.3), whereas composition is used to express those that run in sequence.

A symmetric monoidal category is a monoidal category with natural isomor-
phisms o4 : A ® B = B ® A that satisfy certain coherence conditions (the details
do not matter for the present purpose). Graphically, a symmetry isomorphism is de-

picted as a crossing:
B % A
A B (2.4)

symmetry o 4p

By S. Mac Lane’s coherence theorem ([8, Theorem XI 3.11), every monoidal category is monoidally
equivalent to a strict monoidal category. So there is a sense in which we can treat monoidal categories
as if they are all strict (even though they are not). See [12] for more on how this is justified.
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Finally, we can define a Markov category, following the lead of [2].

Definition 2.6. A Markov category is a symmetric monoidal category such that for
each object A in C there are distinguished morphisms §4 : A — A ® A, called the
duplicate on A, and €4 : A — 1, called the discard on A, that satisfy the following:

Y Y] Y

coassociativity counitality

(5A®1A)O(5A = (1A®5A) 004 (1A®6A) 0dg=14= (€A®1A)05n
cocommutativity
044004 =104

(2.5)

S P U B

dagB = (la®opa®1p)o (64 ®dB) €ARB = €A ® €p

- T (2.7)

epof=c¢€a

Notation 2.7. Recall that our convention is to draw a string diagram in the lower-left
to upper-right direction. So, above, the duplicate 64 : A — A ® A is depicted as an
upward fork LrJ and the discard €4 : A — I an upward dead-end T

Thus a Markov category is endowed with both a symmetric monoidal structure
and additional duplicate morphisms and discard morphisms that satisfy (2.5)-(2.7).
For our purpose, duplicate morphisms are needed mainly to express the same input
entering several causal processes, and discard morphisms are needed to express ig-
noring or marginalizing over some outcomes of a causal process. The equations in
(2.5) are axioms for the so-called cocommutative monoidal comonoid, and the equa-
tions in (2.6) express the condition that duplicates and discards respect the monoidal
product. All these axioms are fairly intuitive. The equation in (2.7) says roughly that
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discarding the output of a morphism is identical to discarding the input in the first
place. This condition is not explicitly imposed in [1] but is actually needed for a main
result therein (more on this later).

For categories with additional structures, the notion of a functor can be strength-
ened accordingly. For example, a (strong) Markov functor between two Markov cat-
egories is a functor that preserves the relevant structures (see [2, Definition 10.14] for
details.)

3 Causal Theories and Effect Morphisms

In this section we describe the central object of study in this paper, a syntax
category for DAG-based causal models defined in [1], called a causal theory. The
framework is an abstraction of causal Bayesian networks, so we first review the latter
in 3.1, and then introduce causal theories as free Markov categories in 3.2. In 3.3 we
highlight a class of morphisms constructed in [1], which we refer to as causal effect
morphisms. Our main results are concerned with these morphisms.

3.1 Causal Bayesian networks

A directed graph is a quadruple G = (V| A, s,t), where V, A are sets and s :
A — V,t: A — V are functions. Elements in V are called vertices of G and
those in A are directed edges or arrows of G. For a € A, s(a) is the source of a and
t(a) the target of a. G is finite if both V and A are. Itis simple if, forall a, a’ € A, we
have a = o’ whenever s(a) = s(a’) and t(a) = t(a’). We consider only finite simple
graphs in this paper. A sequence of distinct arrows a1, . .., a, € A(G) is a directed
path, starting from s(a1) and ending at t(a,,), if s(aj+1) = t(a;) for 1 < i < n.
It is a cycle if, in addition, s(a1) = t(a,). G is acyclic if it contains no cycle. For
x,y € V(G), z is called a parent of y and y a child of x if for some a € A(G),
s(a) =z and t(a) = y.

A Bayesian network (BN) over a set of (categorical) random variables V con-
sists of a triple (G, P,v), where G is a directed acyclic graph (DAG), P is a joint
probability law of V, and v : V(G) — V is a bijection between the vertices of G
and the random variables. Following common practice, we will leave the bijection v
implicit and simply identify V' (G) with V, and call G a DAG over V. The defining
condition of a BN is that G and P satisfy a Markov condition, which requires that P
can be factorized according to G as follows:

P(V) =[] P(X|pag(X)), (3.1)

Xev

where pa.(X) denotes the set of parents of X in G. When G is sufficiently sparse,
the factorization enables efficient computations of various probabilities entailed by
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the joint probability law, which makes the BN useful for probabilistic reasoning. ([9])

The DAG in a BN usually lends itself to a causal interpretation, as a representa-
tion of the qualitative causal structure. With this causal reading, the BN framework
can be extended to handle reasoning about effects of interventions. ([13, 11]) Specif-
ically, a causal Bayesian network (CBN) over V does not represent just one joint
probability law, but a number of interventional probability distributions. The stan-
dard setup is that for every subset T C V and every possible value configuration
t for T, there is a probability distribution resulting from an (exogenous) interven-
tion that forces T to take value t. Such an interventional distribution, denoted as
P(V|do(T = t)) using Pearl’s ([11]) do-operator, is assumed to be equal to a trun-
cated factorization:

[Txevir P(X|pag(X)) for values of V consistent with T = ¢,

0 for values of V inconsistent with T = t.
(3.2)

As aspecial case, when T = (), we obtain the factorization (3.1) of the pre-intervention

distribution. Equation (3.2) can be viewed as the defining axiom for the CBN, some-

times referred to as the intervention principle. ([17])

Note two key ideas in this formulation of a CBN: (1) foreach X € V, P(X | pag
(X)) encodes a modular causal process or mechanism (when pas(X) = (), P(X) is
taken to encode an exogenous mechanism for X'), and the whole causal system is
composed of these causal modules; (2) an intervention breaks the modules for its
target variables but does not affect the other modules (hence the truncated factoriza-
tion). Put this way, P(X|pa(X)) is a particular, probabilistic model of the causal
module; the causal theory, as a syntax category, will express the causal module more
abstractly, to which we now turn.

P(V|do(T = t)) = {

3.2 Causal theories as free Markov categories

We now follow [1] to define the causal theory induced by aDAG G = (V, A, s, 1),
a category denoted as Cau(G). The objects are given by words over V. A word over
V is a finite sequence of elements of V, and this also includes the empty word (). Let
W (V) be the set of words over V. Obviously W (V) is closed under concatenation:
ifv,w € W(V) then vw € W (V). So concatenation provides a monoidal product
on W (V), with the empty word ) as the unit.

Terminology 3.1. For convenience, elements of W (V') are also referred to as vari-
ables and those of length 1, that is, the vertices in V/, are called atomic variables.
To ease the notation, we will henceforth denote all variables with lower case letters.
Concatenation of two variables v, w is also written as v ® w.

An atomic variable v is a path ancestor of an atomic variable w if there is a
directed path in G from v to w, and is an ancestor of w if it is a path ancestor of w or
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is identical with w.

If no atomic variable occurs more than once in a variable v then v is singular; in
particular, () is singular. A singular variable is maximal if each atomic variable occurs
exactly once in it.

Letv = ®1§i§n vi, where each v; is atomic. Let vg = );cqvi for S C
{1,...,n}; set vy = 0. Write w C v, or w € v if w is atomic, and say that w is
a sub-variable of v if w is equal to some vg. Let w = vg and w’ = wvg,. Write
v/w =g, pys wNw = vsng, w N\ w = vg. g, and so on. We say that w, w’
are disjoint if no atomic variable occurs in both of them. Note that being disjoint is
not the same as w N w’ = (), unless v is singular.

The morphisms in Cau(G) are generated from two distinct classes of generators
(basic morphisms), in addition to the identity morphisms:

» The first class consists of duplicate and discard morphisms for each atomic
variable v

€ Oy
0+ v —"=vv,

As mentioned previously, duplicate morphisms are needed to express the same

variable entering multiple causal processes, and discard morphisms are needed

to express ignoring or marginalizing over some outcomes of a causal process.
* The second class is the heart of the matter and consists of a causal mechanism

for each atomic variable v

pa(v) ——v,

where pa(v) is a chosen singular variable that contains all the parents of v, and

is more accurately denoted by pa(v) if necessary. If pa(v) = () then this is

just ) — v, which shall be called a exogenous causal mechanism.

The causal theory Cau(G) is the free Markov category generated from these
two classes of morphisms (and the identity morphisms), by taking all compositions
and products as depicted in (2.1) and (2.3), subject only to the constraints in axioms
(2.5)-(2.7).

Note that ¢y = dp = 1p in any Markov category. Also write kg = 1.

A free category is a category generated from certain generators by well-defined
operations in a “no junk no noise” manner: “no junk” in the sense that only those
morphisms that can be so generated are in the category, and “no noise” in the sense
that no relations between morphisms hold unless they are required by the axioms. For
precise technical definitions and graphical constructions of free monoidal categories,
see [12]. A graphical construction of free Markov categories takes a little more work,
which can be found in [15]. For the present purposes, we need not enter the rather
technical details of the constructions, and we will simply use some lemmas from [15]
in some of our proofs.
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Remark 3.2. 1t may seem that the construction of Cau(G) depends on the choice of
the singular variables pa(v) for the causal mechanisms x,. But this is not so: two
distinct choices of pa(v) (and hence of x,) only differ by a permutation of atomic
variables in pa(v) and the resulting free Markov categories are isomorphic.

Following [1] (see also [6]), we take Cau(G) as an categorical embodiment of
the syntax for causal reasoning with G. It can then be interpreted in any Markov
category via strong Markov functors, yielding different kinds of causal models. For
example, a CBN based on G is a model of Cau(G) in the Markov category FinStoch,
the category containing stochastic matrices as morphisms ([1, 2, 6]), whereas a deter-
ministic structural equation model based on G is a model of Cau(G) in the Markov
category Set. We may also explore less studied causal models, such as possibilistic
ones, which are models of Cau(G) in the Markov category Rel, the morphisms in
which are relations between sets. ([1])

3.3 Causal effect morphisms

Recall the interventional probability distributions P(V|do(T)) in the context of
CBN, which is often referred to as the causal effect of T on V. ([14]) We now construct
a class of morphisms in a causal theory that is a syntactic counterpart to such causal
effects.

Notation 3.3. In any Markov category such as Cau(G), a morphism A — B is
called a multiplier on the monoidal product A = ), A; if it is generated from the
duplicates, discards, symmetries, and identities on the factors A;; so B must be a
monoidal product of copies of the factors A;. If A; # A; for i # j then the multi-
plier is unique, which is denoted by ¢4, 5. This is due to (2.5) or, more intuitively,
coherence of the graphical language for Markov categories (see [15]). For instance,
ifA=A1® Ay, ® Azand B = A% ® Ay ® A1 ® As then 14, p may be depicted as
AT A AgT’ where how the duplicates in the trident are arranged, how the edges at

the nodes are ordered, how the copies of the same object in the codomain are ordered,
and so on, can all be left unspecified.

Henceforth we work in Cau(G).

Terminology 3.4. By the construction in [15], a morphism in Cau(G) is an equiv-
alence class of string diagrams up to surgeries. Therefore, by a string diagram of a
morphism, we mean any diagram in the equivalence class in question.

Notation 3.5. Although, for our purpose, there is no need to distinguish between wv
and vw in Cau(G), for a technical reason (symmetries in free Markov categories
cannot be identities), we cannot work with the quotient of W (V') with respect to the
relation wv = vw on words. This is also the reason why the maneuver in Remark 3.2
is needed.
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To remedy this, we first choose a total ordering on V' and denote the correspond-
ing maximal singular variable by V = 1 ® ... ® n. All singular variables we shall
speak of are sub-variables of V. If v, w are singular variables then v U w is abbrevi-
ated as vw or wv, which denotes the unique sub-variable of V' that contains exactly
the atomic variables in v, w.

The results below depend on the chosen ordering only because taking monoidal
products of atomic variables does.

Definition 3.6. For singular variables ¢ and v, let G;_,, be the subgraph of GG that
consists of all the vertices in ¢ U v and all the directed paths that end in v but do not
travel toward t, that is, do not pass through or end in ¢ (starting in ¢ is allowed). Note
that, for every i € V(Gy—,), if i ¢ t then its parents in G are all in G¢_,,, as well and
if i € ¢ then it has no parents in G;_,,.

Construct a string diagram as follows. For each i € V(Gi,), let i be the
monoidal product of as many copies of ¢ as the number of children of ¢ in G;_,,. Let
I'; be a string diagram of

Lii®i ifeetno,

Lisyi ifiet~\w,
Liigi O ki 11 € v\t

L 7 O K ifig_fth;
note the extra copy of 7 in the codomain of ¢; ;5,. According to Notation 3.3, there
is no need to choose orderings for the codomains of the multipliers employed here.
For j € V(Gi—v), let 0; be the number of output wires of I'; and p; that of all the
input wires labelled by j of all the other I';. Observe that o; = p; +11if j € v and
0; = p; in all other cases. So we may connect the corresponding wires and fuse these
components I'; into a single string diagram, denoted by I'(, |, whose input wires are
labelled by ¢ and the output wires by v. The string diagram thus obtained may not be
unique up to isomorphisms, but the morphism it represents is, due to coherence of the
graphical language for Markov categories. This morphism is referred to as the causal
effect of t on v and is denoted by [v||t] : ¢ — v, or simply [v] when ¢ = (), which is
also called the exogenous effect on v.

This class of morphisms was called “causal conditionals” in [1, § 4]. We prefer
to call them “causal effects” here because of their eponymous counterparts in proba-
bilistic causal modeling mentioned earlier, but also because we will study a notion of
a conditional in the next section, and [v||¢t] may not be a conditional in that sense.

Example 3.7. For any atomic variable v, if pa(v) = ) then x,, is simply depicted as
l. The simplest causal effects are the ones of the form [v|| pa(v)], which is of course
just the causal mechanism x,. Below are some simple examples of the causal effect
[z||x] in Cau(G) for four different graphs with three vertices:
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Y
The graph GG 7/ \
T —2
Y
The subgraph G, , \,
T—2
z
The causal effect [z||x]
z Y

Note that in the second and third examples, z is not an ancestor of z in the causal
graph G, and the causal effect [z]|z] is accordingly “disconnected”: the morphism
factors through the monoidal unit (), which marks the lack of influence of z on .

4 The Existence of Conditionals and a Generic Do-calculus

With string diagrams, we can use topological notions to aid reasoning. Here are
some notions that will be used in some of the arguments below:

Definition 4.1. Let I" be a string diagram in a symmetric monoidal category C. De-
note the source of an edge e in I" by e(0) and the target by e(1). A directed path a ~ b
in " is a sequence p = (a = eg,€1,...,e,,b = exy1) of edges in I' such that, for
each i, e;(1) = e;41(0) and e; is not labeled by I; we also regard the source and target
of each e; as belonging to the directed path, and write p(0) = a(0) and p(1) = b(1).
A path is just a concatenation of finitely many directed paths. In particular, a splitter
path (respectively, a collider path) is a concatenation of two directed paths joined at
the starting nodes (respectively, at the ending nodes).

Two (not necessarily distinct) edges are connected in I if there is a path between
them. More generally, two sets A, B of edges are connected in I" if some a € A
is connected with some b € B, of particular interest is the case A = dom(I") and
B = cod().

In some proofs below, we shall need the theory on surgeries on string diagrams
developed in [15]. For Markov categories, there are four types of surgeries, corre-
sponding to the four diagrams in (2.5) and (2.7), which shall be accordingly referred
to as coassociativity surgery, counitality surgery, cocommutativity surgery, and dis-
card surgery, respectively. Only the following bit from that theory is needed here.

Recall Remark 2.2 and Terminology 3.4. Let I be a string diagram of a morphism
in Cau(G). A node x of I is decorative if either it is a dead-end (discard) or every
maximal directed path p in I with p(0) = z runs into a dead-end or, in case that x is
a duplicate, this is so for all such paths through one of the prongs. Denote the set of
decorative nodes of ' by Ar and its complement by Ap. Denote by Pr- the set of the
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directed paths that end in cod(I") and by St the set of splitter paths between edges in
cod(T).

Lemma 4.2. Suppose that T, Y are string diagrams of the same morphism in Cau(QG).
Then

« There is a bijection 7 : Ap — Ay compatible with the labels in T, Y.

* There is a bijection w : Pr — Py compatible with T, that is, T restricts to
a bijection between the nodes in Ar belonging to p € Pr and those in Ay
belonging to 7(p).

* There is a bijection 7 : Sp — Sy compatible with .

We continue to work in Cau(G). Here is a useful fact from [15] that will be
needed in the subsequent arguments:

Lemma 4.3. Let f : v —> w be a morphism between singular variables. Then there
is a morphism g : v/v' — w for some sub-variable v' C v such that f = g ® €,
and, in all string diagrams of g, every atomic variable in v /v’ is connected with an
atomic variable in w via a directed path.

We now proceed to establish some results about causal effect morphisms in a
causal theory. A central result has to do with the existence of conditionals in a Markov
category, as is defined in [2].

Definition 4.4. Let f : Z7 — X ® Y be a morphism in a Markov category M.

* The marginal fx|z of f overY is the morphism =(lx®ey)of: 7 —
X.

* [ admits a conditional over X if there is a morphism fy|xz : X ® Z — Y

such that I

Iyixz

ﬁ _ (4.1)

The marginals of a causal effect morphism behave as expected.

Lemma 4.5. Let u, v, and w be singular variables with vNw = (). Then the marginal
of the causal effect [vw||u] over v is the causal effect [w||u| (and that over w is [v]|u]).

Proof. By induction on the cardinality of v, this is immediately reduced to the case
where v is an atomic variable. We examine how composing with €, changes the
component I';, and other subsequently impacted components I'; without changing the
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morphism represented (recall Definition 3.6). If I';, has more than one output wire
then, by counitality surgery, ¢,z 1S changed to ¢,z and I',, is thus changed without
impacting any other I';. If I';, has only one output wire then, by discard surgery, it
is reduced to Q) jepa(v) € where pa(v) is computed in Gy, In that case, for any
J € pa(v), we ask the same question that whether I'; has more than one output wire
or not, and proceed accordingly as before. Observe that, when there are no more
surgeries to be performed, the remaining components I';, including the modified ones,
are exactly those required to construct I'(,,,,. The lemma follows. 0

Note that this lemma relies on the axiom (2.7), or discard surgery, which is not
imposed in [1] as we do here. To see it, consider again the third graph in Example 3.7
and the marginal (1, ® €,) o [zy||2] of the causal effect [zy||z] over y, then we have:

A A

where the first equality is begotten by discard surgery and the second one by couni-
tality surgery. Without (2.7), the first equality would fail.

Related to this observation is a claim in [1, Proposition 4.2] that if v, w are
atomic variables and v is not an ancestor of w in G, then there exists no morphism
f v — win Cau(G) such that v and w are connected. Again, this is not quite right
without (2.7), as shown by the example in (4.2). Now that we have imposed (2.7),
this claim does hold, and is immediate from Lemma 4.3:

Proposition 4.6 ([1]). Let v, w be atomic variables. If there exists a morphism v —»
w in which v, w are connected then v is an ancestor of w. Conversely, if v is an
ancestor of w then they are connected by a directed path in I'y|,-

This fact signals that Cau(G) is “purely causal”, in that all connected morphisms
in the category go from causal ancestors to descendants. As a result, merely “associ-
ational” or “evidential” relations are not expressed by any morphism in the category.
(Recall the “no junk™ property of a free category.)

In some Markov categories such as FinStoch mentioned earlier, every morphism
of the form f : Z — X ® Y admits conditionals over both objects in the codomain
([2]), but this is not the case in Cau(G). Take, for instance, the simple graph =z — y
and consider the exogenous effect [2y] : ) — xy. If a conditional [xy],), : y — =
over y existed then we would have

(4.3)
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Since the duplicate ¢, does not occur on the left-hand side, by the first claim of
Lemma 4.2, its displayed occurrence on the right-hand side must be decorative, but
then x, y cannot be connected by a splitter path, violating the third claim of Lemma 4.2.
So the equality is not possible. On the other hand, [xy] obviously admits a conditional
over x, which is just [y||z] = &,.

This simple example actually illustrates a general fact: for pairwise disjoint sin-
gular variables in Cau(G), u, v, w, if [vw||u| admits a conditional over v, the condi-
tional must be [w||uv]. We will leave the proof of this fact to another occasion, since it
is a little involved and not directly relevant to the intended contributions of this paper.
For the present purpose, the directly relevant question is when [w||uv] is a conditional
of [w||uv], or in other words, when the following decomposition or disintegration of
a causal effect holds:

» \jnw]
[vw]|u] = (4.4)

! [v]]u]

Call the property expressed by (4.4) the decomposability of [vw||u] over v. We now
introduce some graphical conditions relevant to characterizing decomposability and
other significant concepts to be introduced presently:

Definition 4.7. Let ¢, j be two distinct vertices in G. A forward trek from i to j in G
is a directed path from ¢ to j. A backward trek from ¢ to j is a directed path from j to
1, or a disjoint union of two directed paths joined at a distinct starting vertex k (i.e.,
14 —k—- = 7).

Given X, Y C V(G), a proper forward (respectively, backward) trek from X to
Y is a forward (respectively, backward) trek from some ¢ € X to some j € Y that
does not contain any other vertex in X orin Y.

We say that

* X is forward-t-separated from Y by Z if every proper forward trek in G from
X to Y contains some k € Z;

* X is backward-t-separated from Y by Z if every proper backward trek in G
from X to Y contains some k € Z;

* X andY are t-separated by Z if X is both forward-¢-separated and backward-
t-separated from Y by Z.

Observe that t-separation is a symmetric relation, but forward-t-separation and
backward-t-separation are not. Also note that ¢-separation is a simpler condition than
the well-known d-separation ([9]); the former is concerned only with blocking treks,
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whereas the latter also has an explicit requirement for paths that contain colliders,
where two arrows point at the same vertex (i.e., ¢ — k < 7).

For the rest of this section, let u, v, and w be pairwise disjoint singular variables
in Cau(G).

Theorem 4.8. [vw||u| is decomposable over v if and only if v is backward-t-separated
from w by u.

Proof. For the “if” direction, suppose v is backward-t-separated from w by u, and
we show that the equality (4.4) holds. We examine the components I';, I'; for ¢ €
V(Gu=v), 7 € V(Guy—sw) and show that, together with d,, and d,, on the righthand
side of (4.4), they are exactly those needed to construct the string diagram L[, |-
There are the following cases.

* i ¢ uv. Then there is a directed path from i to some i’ € v in G that does not
pass through u. If ¢ also occurs in G, —, then either there is a directed path
from it to some j’ € w in G that does not pass through uwv, or it is contained in
w, both of which are prohibited by the backward-¢-separation of v from w by
u. So I'; is the same in I'p),) and I'jyjy)-

* i € uv. Let 4/, j' be any children of i in Gy, Gy, respectively. So i’ ¢ u
and j' ¢ wv. If i’ ¢ v then, by the case just considered, i’ does not occur in
G yv—sw at all; for the same reason, j' does not occur in G,,_,,. On the other
hand, if ¢ € v then it cannot be a child of 7 in Gyy—sw. So IT'; in F[WHU] is the
juxtaposition of the two I'; in I'fy), and I'[|jy,] joined by dy,.

* j ¢ wv. Then j is an ancestor of some j' € w in Gy, _,,» and hence cannot
occur in G,_,,, again due to the backward-t-separation of v from w by u. So
L' is the same in [,y and Ty 0]

This establishes (4.4).

For the “only if” direction, suppose that (4.4) holds. Let 7 be a proper backward
trek from a € v to b € w in G. Suppose for contradiction that 7 does not contain
any vertex in u. By the first claim of Lemma 4.2, r;, cannot occur in I', .. Thus, by
the other two claims of Lemma 4.2, m would translate into a directed path b ~» a in
I'{w|jvu)» Which is not possible, or a splitter path between a and b in I, that does
not pass through v in the direction of b and hence must pass through u, contradiction
again. O

Readers familiar with Pearl’s do-calculus ([10]) may have noticed the close affin-
ity between backward-t-separation and the condition for Rule 2 of the do-calculus.
Before we elaborate on the connection, let us introduce two more notions to fully
match the do-calculus. One of them (“‘conditional independence”™) is introduced in
[2] for all Markov categories.
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Definition 4.9. Let M be a Markov category.

e Let f: X ® Z — Y be a morphism in M. We say that X is conditionally
irrelevant to' Y given Z over [ if there is a morphism fy 7 : Z — Y such

that I
_ I fyiz 4.5)
[

e Let f: Z — X ®Y beamorphism in M. We say that X, Y are conditionally
independent given Z over f if

:

We consider a specialized version of conditional irrelevance: v is causally screen-
ed-off from w by u if

(4.6)

l |
wlloa]| = fwllu] (4.7)
[ [ I

It is easy to show that causal screening-off is captured precisely by forward-¢-separa-
tion.

Theorem 4.10. [w||vu] = €, ® [w]|u] if and only if v is forward-t-separated from w
by uinG.

Proof. For the “if” direction, since v is forward-t-separated from w by u, no¢ € v
can have children in G, and hence G,y 18 the union of GG,,_,,, and the trivial
graph with vertices in v. It then follows from the construction of causal effects in
Definition 3.6 that (4.7) holds.

For the “only if” direction, suppose that (4.7) holds. If there is a proper forward
trek from v to w in G that does not contain any vertex in u then, by Lemma 4.2, it
would translate into a directed path on the right-hand side of (4.7) connecting v and
w, which is not possible. O

Similarly, conditional independence over causal effects is captured precisely by
t-separation.

Theorem 4.11. We have that v, w are conditionally independent given u over [vw||u]
if and only if they are t-separated by v in G.

Proof. For the “if” direction, note that ¢-separation between v and w by w entails that,
on the one hand, v is backward-t-separated from w by u and hence, by Theorem 4.8,
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the equality (4.4) holds, and on the other hand, v is forward-¢-separated from w by u
and hence, by Theorem 4.10, the equality (4.7) holds. It then follows that

| \jwnvu] \(,[wuu] | |
wl]] = _ _ [l | el

I o]l vlju N—

(4.8)
So, by Lemma 4.5, v, w are conditionally independent given u over [vw||u].
For the “only if” direction, by Lemma 4.5 again, we may assume
L l l
wwllu] | = [wl[u] [ | [wl|u] (4.9)

=

Let 7 be a proper forward or backward trek from a € v to b € w. If m does not contain
any vertex in u then it would translate into a directed or splitter path v between a and
bin Ly Since a,b ¢ u, we see that kg, K, occur exactly once in I'[,y,, and
hence, by (4.9) and the first claim of Lemma 4.2, x, and hence a do not occur in
I'{w|lu)» Whereas x; and hence b do not occur in I', ). It follows from the other two
claims of Lemma 4.2 that ~ has to pass through u, contradiction. O

A merit of such theorems about the syntax category is that the sufficiency claims
in them are immediately transferred to all models.

Corollary 4.12. Let M be a Markov category and F : Cau(G) — M a strong
Markov functor. Then

1. Ifv and w are t-separated by w in G then, in M, F(v) and F (w) are condition-
ally independent given F (u) over F([vw||u]):

I * hd I

| |
Foll)] = vl ][ F(ow]u) (4.10)

2. If v is backward-t-separated from w by w in G then, in M, F([w|uv]) is a
conditional of F ([vw||u]):

o \j[wnuvn
F(owla)| = (.11)

! F([ol[u])




Yimu Yin, Jiji Zhang /Markov Categories, Causal Theories, and the Do-calculus 19

3. Ifv is forward-t-separated from w by w in G then, in M, F(v) is conditionally
irrelevant to F(w) given F(u) over F([w||uv]):

l I
Flufud] = ] [Fluld) (4.12)
I I |

On the other hand, the necessity claims do not hold in all models. For example,
the decomposition property (4.11) always holds in deterministic structural equation
models (as functors from Cau(G) to Set), regardless of backward-t-separation. The
necessity in question is necessity for validity (“true in all models™), rather than truth
in particular models.

5 The Causal Core of the Do-calculus

Corollary 4.12 is particularly interesting because its three clauses correspond to
the three rules in Pearl’s do-calculus, respectively. Suppose M = FinStoch, and F
sends each causal mechanism «, to a positive stochastic matrix, so that it gives rise
to a causal Bayesian network (CBN) model ([1]), in which the pre-intervention joint
probability distribution is positive (which is assumed by Pearl’s do-calculus). Let X
denote the set of random variables represented by the object u, Y by w, and Z by v.
Then equations (4.10)—~(4.12) can be reformulated as follows.>

Equation (4.10) is rendered as:

P(Y,Z|do(X)) = P(Y|do(X))P(Z|do(X)). (5.1)
Equation (4.11) is rendered as:

P(Y,Z|do(X)) = P(Z|do(X))P(Y|do(X), do(Z)). (5.2)
Equation (4.12) is rendered as:

P(Y|do(X), do(Z)) = P(Y|do(X)). (5.3)

In FinStoch, we can simply use nonzero natural numbers as the objects, and the morphisms are
stochastic matrices: a morphism n — m is a m X n stochastic matrix. A discard morphisme,, : n —
1is the 1 x n stochastic matrix in which each entry is 1, and a duplicate morphism 6, : n — n? is
the n? x n stochastic matrix in which (én)ii_l)"ﬂ = 1 (and other entries are zero). The composition
of morphisms is given by matrix multiplication, and the monoidal product is given by the Kronecker
product of matrices. ([1, 2]) As shown in [1], F([vc]), the image of the exogenous effect on ve in
FinStoch, is a stochastic matrix (in fact, a column vector) encoding a joint probability distribution over
the set of random variables (V') represented by v that satisfies the factorization in (3.1). His argument
can be generalized to show that F'([v||u]) is a stochastic matrix encoding the distributions over the
random variables represented by v given that those represented by w are intervened to take various
values, according to the intervention principle (3.2). Note that equations (5.1)-(5.3) are understood
as holding for all values of X,Y,Z, and so express equality between specific entries in the relevant
matrices.
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Note in addition that by the probability calculus and the assumed positivity, (5.1)
is equivalent to
P(Y|do(X),Z) = P(Y|do(X)),

and (5.2) is equivalent to
P(Y|do(X), do(Z)) = P(Y|do(X), Z),

because by the chain rule of the probability calculus, P(Y,Z|do(X)) = P(Z|do(X))
P(Y|do(X), Z).

The upshot is that Corollary 4.12, when applied to a CBN model based on G
(with a positive or regular pre-intervention distribution), entails the following rules.

Rule 1 (Insertion/deletion of observations): if Y and Z are ¢-separated by X in G, then
P(Y|do(X),Z) = P(Y|do(X)).

Rule 2 (Action/observation exchange): if Z is backward-t-separated from Y by X in
G, then
P(Y|do(X),do(Z)) = P(Y|do(X), Z).

Rule 3 (Insertion/deletion of actions): if Z is forward-t-separated from Y by X in G,
then
P(Y|do(X),do(Z)) = P(Y|do(X)).

Pearl’s do-calculus ([10]) consists of exactly three rules like these, but each rule
therein is more general than the corresponding rule above and is formulated in terms
of the more complicated d-separation criterion and various modifications of G. The
extra generality in Pearl’s version is that the consequent equation in each rule has an
extra set of variables W to be conditioned upon on both sides of the equation. For
example, the consequent equation in the first rule of Pearl’s do-calculus is

P(Y|do(X), Z, W) = P(Y|do(X), W),

and similarly for the other two rules. It is a simple exercise to check that each of the
rules above is exactly equivalent to the corresponding rule in Pearl’s calculus when
W is taken to be empty.

So Corollary 4.12, when applied to a CBN model, yields a specialized version of
Pearl’s do-calculus. However, although each rule in the specialized version is a spe-
cial case of the corresponding rule in the full version, taken together they are actually
as strong as the full version. To see this, it suffices to show that we can recover the
intervention principle (3.2) from the specialized rules, or to be more exact, from Rule
2 and Rule 3 above, since Rule 1 is entailed by the conjunction of Rule 2 and Rule
3 (just as in the full version, see [5]). Since the full version is entailed by the inter-
vention principle (plus the probability calculus), it is also entailed by the specialized
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version (plus the probability calculus) if the intervention principle is entailed by the
specialized version (plus the probability calculus).

We now sketch a fairly simple argument to that effect. It helps to first consider
the pre-intervention case, where we need to show that Rule 2 and Rule 3 entail that
the pre-intervention probability distribution factorizes as in (3.1). This is equivalent
to deriving the local Markov condition from Rule 2 and Rule 3, the condition that
every variable is probabilistically independent of its non-descendants conditional on
its parents. ([13]) The derivation is straightforward. For any random variable V' € V
in the CBN, by Rule 2, we have

P(Vldo(pa(V))) = P(V|pa(V)),

and
P(Vl|do(nd(V))) = P(V|nd(V)),

where pa(V') and nd(V') denote the set of V’s parents in G and the set of V’s non-
descendants in G (i.e., those variables of which V' is not an ancestor), respectively.
This is so because pa(V) is trivially backward-t-separated from V' by the empty set
(for there is no proper backward trek from pa(V’) to V), and so is nd(V'), which
contains pa(V) as a subset. Then by Rule 3, we have

P(Vl]do(nd(V))) = P(V|do(pa(V'))),

simply because every forward trek to V' contains a parent of V. It follows that for
each V,
P(V|nd(V)) = P(V|pa(V)).

So the factorization required by the intervention principle holds in the pre-intervention
case. This argument easily generalizes to any post-intervention probability distribu-
tion P(V|do(T)); that is, we can derive in the same fashion from Rule 2 and Rule 3
that for every V,

P(V|nd*(V),do(T)) = P(V|pa"(V), do(T)),

where pa*(V') and nd* (V') denote the set of V’s parents and the set of V’s non-
descendants, respectively, in the subgraph of GG in which all arrows into variables
in T are deleted. From this follows the factorization of P(V|do(T)) required by the
intervention principle (3.2).

Therefore, the full do-calculus can in principle be derived from the specialized
do-calculus together with the probability calculus. This fact reveals an equivalent
formulation of the do-calculus for CBN models that is simpler than the standard for-
mulation. More importantly, this simpler formulation reflects the “causal core” of the
do-calculus, for it is an instance of the generic do-calculus given in Corollary 4.12,
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and the generic do-calculus is derived from results in a syntax category that is, so to
speak, purely causal (because there is no morphism in that category to match non-
causal or evidential relations between variables. More precisely, the causal core of
the do-calculus is given by the rule for causal decomposition ((4.11), rendered as (5.2)
in a CBN model) and the rule for causal screening-off ((4.12), rendered as (5.3) in a
CBN model). These are derived without any consideration of the non-causal features
of the models. The standard do-calculus for the CBN models can be seen as derived
from a conjunction of these two rules on the one hand, which are purely causal, and
the probability calculus on the other hand, which is non-causal.

6 Conclusion

Following the pioneering work of [1], we studied the causal effect morphisms
in a causal DAG-induced free Markov category in some depth, and established suffi-
cient and necessary graphical conditions for some conceptually important properties
of such morphisms, including especially decomposition and screening-off. Our re-
sults yield a generic do-calculus that is more general and abstract than the standard
do-calculus in the context of causal Bayesian networks. Not only is the generic do-
calculus more widely applicable, it is also conceptually illuminating in that it reveals
the purely causal component of the do-calculus. When applied to causal Bayesian
networks, it also results in a simpler but equivalent formulation of the probabilistic
do-calculus.

Since the simpler do-calculus uses trek-separation rather than the more convo-
luted d-separation, it is probably easier to explain and understand. Moreover, the
simpler do-calculus may also be readily extendable to other causal graphical models
derived from DAG models. For example, in [16], Pearl’s do-calculus is extended to
the so-called partial ancestral graphs (PAGs), which are used to represent Markov
equivalence classes of DAG models. The extension is intended to capture the ap-
plicability of a do-calculus rule in all DAGs in the equivalence class represented by
a PAG, but due to the complex graphical conditions in Pearl’s do-calculus, it only
accommodates some but not all such cases of unanimous applicability. We suspect
that an extension of the simpler do-calculus highlighted in this paper would be more
straightforward and complete.
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