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The Complexity of Nilradicals and Jacobson
Radicals in Computable Rings*

Xun Wang

Abstract. This paper expands upon the work by Downey et al. (2007), who proved that there
are computable commutative rings with identity where the nilradical is Σ0

1-complete, and the
Jacobson radical is Π0

2-complete, respectively. We simplify the proof, showing that there is a
computable commutative ring with identity where the nilradical isΣ0

1-complete and meanwhile
the Jacobson radical is Π0

2-complete. Moreover, we show that for any c.e. set A there exists a
computable commutative ring with identity where the nilradical is Turing equivalent to A, and
for any Π0

2 set B there exists a computable commutative ring with identity where the Jacobson
radical is Turing equivalent to B.

1 Introduction

One of the most important questions to be studied in computable ring theory
is the complexity of certain ideals. In this article we analyze two special ideals in
computable rings. We mainly use computability theory to formulate and answer these
complexity questions. Computability theory provides us hierarchies by which we can
classify the complexity of certain mathematical objects, and techniques as well as
methods by which to gauge them.

In particular, recently there has been a growing interest in the complexity of radi-
cals in computable rings in terms of the arithmetical hierarchy. For example, Downey
et al. ([4]) classified the complexity of the nilradical and Jacobson radical in commu-
tative computable rings with identity, proving that the former is Σ0

1-complete, while
the latter is Π0

2-complete. Conidis ([2]) classified the complexity of the prime radical
and Levitzki radical in computable noncommutative rings with identity, proving that
the former is Π1

1-complete, while the latter is Π0
2-complete. In this paper, we expand

upon the work by Downey et al. ([4]) and study the nilradical and Jacobson radical.
This paper focuses on commutative rings with identity. Throughout the rest of

this paper, by a ring we mean a commutative ring with identity. We collect here the
important facts of commutative algebra that we will need. For general references on
commutative algebra and ring theory, see [1, 5, 8].
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Definition 1. A computable ring is a computable subset R ⊆ N equipped with two
computable binary operations + and · onR, together with two elements 0, 1 ∈ R such
that (R, 0, 1,+, ·) is a ring.

Throughout this paper, we use R to denote both the domain of the ring, as well as the
tuple (R, 0, 1,+, ·).

Definition 2. An ideal I of a ring R is a subset of R, which is an additive subgroup
and is such that RI ⊆ I (i.e., x ∈ R and y ∈ I imply xy ∈ I).

We say an ideal I in R is maximal, if I /= R and there is no ideal I ′ such that
I ⊂ I ′ ⊂ R. We say an ideal I in R is prime, if I /= R and for any a, b ∈ R, ab ∈ I

implies a ∈ I or b ∈ I .

Definition 3. An element x ∈ R is nilpotent if xn = 0 for some n > 0.

A nilpotent element is a zero-divisor (unless R = 0), but not conversely in general.

Definition 4. The nilradical of R is the set of all nilpotent elements in R.

For convenience, let Nil(R) denote the nilradical of R.

Definition 5. The Jacobson radical ofR is the intersection of all the maximal ideals
of R.

For convenience, let Jac(R) denote the Jacobson radical of R.
It is easy to verify the following propositions:

Proposition 1. Nil(R) is an ideal of R.

Proposition 2. Jac(R) is an ideal of R.

Now we introduce two special rings, the quotient ring and fraction field. Given
a ring R and an ideal I of R, for any r ∈ R, we call the set, r + I = {r + i : i ∈ I},
a coset of I in R. And let R/I = {r + I : r ∈ R}.

Definition 6. Let R be a ring and I be an ideal of R. We define the addition and
multiplication on R/I as follows:

(1) (a+ I) + (b+ I) = (a+ b) + I

(2) (a+ I) · (b+ I) = (a · b) + I

Note thatR/I with the addition and multiplication is a ring. We callR/I the quotient
ring.

Definition 7. Let R be any nonzero ring in which the product of any two nonzero
elements is nonzero. For a, b ∈ R with b /= 0, the fraction a

b denotes the equivalence
class of pairs (a, b), where (a, b) is equivalent to (c, d) iff ad = bc. The fraction field
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of R is defined as the set of all such fractions a
b . And we define the addition and

multiplication on the fraction field as follows:

(1) a
b +

c
d = ad+bc

bd

(2) a
b ·

c
d = ac

bd

Note that the fraction field of R with the addition and multiplication is a ring.1

Definition 8. A unit in R is an element x ∈ R which “divides 1”, i.e., an element x
such that xy = 1 for some y ∈ R.

The concept of unit will be used in the following characterization of the Jacobson
radical.

Definition 9. A ring homomorphism is a mapping f of a ring A into a ring B such
that for all x, y ∈ A,

(1) f(x+ y) = f(x) + f(y)

(2) f(xy) = f(x)f(y)

Moreover, if f is a bijective homomorphism, then f is called an isomorphism between
A and B, and rings A and B are called isomorphic.

We say a set arithmetical if to define the set we are only allowed to quantify over
number variables, but not set variables. The analytic hierarchy lies above the arith-
metical hierarchy. We say a set analytic if to define the set we are allowed to quantify
over both number variables as well as set variables. Analytic sets are more compli-
cated than arithmetical sets. From the computability-theoretic perspective, quantify-
ing over sets can potentially lead to terribly complex objects.

By Definition 4, we have that:
Nil(R) = {a ∈ R : ∃n(an = 0)},

Obviously the nilradical is arithmetical. But the Jacobson radical is analytic since
Definition 5 involves quantifying over maximal ideals of the ring, i.e., over subsets
of the ring. However, it is a standard result in commutative algebra that:

Jac(R) = {a ∈ R : ab+ 1 is a unit for all b ∈ R}
= {a ∈ R : ∀b∃c((ab+ 1)c = 1)}

It follows that the Jacobson radical is also arithmetical, which means that we describe
the Jacobson radical in a easier way than Definition 5. However, there is only one
existential quantification on top of the operations in the definition of the nilradical.
Further we could ask whether this characterization of the Jacobson radical is optimal
in its quantifier complexity. For example, is it possible that there is a one quantifier

1The fraction field is not only a ring, but also a field. But here we do not need any results of field
theory.
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description of the Jacobson radical using only existential quantification like the defi-
nition of the nilradical, or using only universal quantification? Or, is it possible that
there is an ∃∀-description of the Jacobson radical?

Downey et al. ([4]) have showed that the simplest characterization of the nilrad-
ical is just the standard definition, while the simplest characterization of the Jacobson
radical is the ∀∃-description above, by showing that the former is Σ0

1-complete while
the latter is Π0

2-complete. Arithmetical hierarchies and completeness are formally
introduced in the next section. But intuitively, Γ -completeness means that:

(1) The complexity is Γ .
(2) Moreover, the complexity is maximal among Γ -sets, i.e., every Γ -set can be

reduced to a Γ -complete-set.

This paper is a continuation of [4] in which the authors construct two different
rings to show the complexity of the nilradical and Jacobson radical, respectively. Our
goal here is to simplify the proof by constructing a ring where the nilradical is Σ0

1-
complete and meanwhile the Jacobson radical is Π0

2-complete. Moreover, we show
that for any c.e. set A there exists a computable ring where the nilradical is Turing
equivalent to A, and for any Π0

2 set B there exists a computable ring where the Ja-
cobson radical is Turing equivalent to B.

2 Preliminaries

In this section we give the reader basic background information about com-
putability theory. For a general reference on computability theory, see [9].

We call a function f : Nn → N computable if there is a Turing machine that
outputs the value f(x̄) ∈ N on input x̄ ∈ Nn. Given a set A ⊆ Nn, let CA denote its
characteristic function. We call a setA ⊆ Nn computable if there is a Turing machine
that outputs CA(x̄) ∈ {0, 1} on input x̄ ∈ Nn. We call a set A ⊆ N computably
enumerable, or c.e., if A = ∅ or A = ran(f) for some computable function f .

We may also relativize notions of computability. For any setsA,B ⊆ N, we say
that A is computable relative to B (written A ≤T B), if there is a Turing machine
such that when given access to the function CB , it outputs CA(x) on input x ∈ N.
For any sets A,B ⊆ N, we say that A is Turing equivalent to B (written A ≡T B),
if A ≤T B and B ≤T A. The Turing degree of A, or simply degree of A, is the
equivalence class deg(A) = {B : B ≡T A}. Moreover, we write deg(A) ≤ deg(B)

to mean that A∗ ≤T B
∗ for some (any) A∗ ∈ deg(A) and some (any) B∗ ∈ deg(B).

Before introducing arithmetical hierarchies which will play a role below, we
first give an example of how degrees can be used to describe the complexity of ide-
als. Consider this question: given a computable ringR and an element a inR but not
in Nil(R), how hard is it to find (or construct) a prime ideal P of R such that x /∈ P ?
It is not sure that we could find a computable one. Naturally, we ask the following
questions. Should any such prime ideal P be computable? Must there exist a such



40 Studies in Logic, Vol. 15, No. 3 (2022)

prime ideal P which is computable? If the answer is negative, how high in the hier-
archies of noncomputability must we need in order to observe such prime ideals? To
answer these questions, we first introduce some related concepts.

Definition 10. We use 2<N to denote the set of all finite sequences of 0 and 1, par-
tially ordered by the substring relation ⊆.

Definition 11. (1) A tree is a subset T of 2<N such that for all σ ∈ T , if τ ∈ 2<N

and τ ⊆ σ, then τ ∈ T .
(2) An infinite path or branch of a tree T is a function f : N → {0, 1} such that for
each n ∈ N we have that:

<f(0), f(1), · · · , f(n)> ∈ T.

Proposition 3 (Weak König’s Lemma). Every infinite tree has an infinite path.

Weak König’s Lemma is not “computably” true, in the sense that:

Proposition 4. There exists a computable tree T with no computable infinite path.

To characterize the degrees which compute solutions to Weak König’s Lemma,
we introduce the following concept.

Definition 12. Given A,B ∈ N, we say A is PA over B if every B-computable
infinite tree has an A-computable infinite path. We say that a set A is of PA degree if
A is PA over computable sets.

The following theorem relates PA degree to the complexity of prime ideals in
computable rings.

Theorem 5 (Friedman et al., [6, 7]). There exists a computable ringR such that every
prime ideal P of R is of PA degree.

Theorem 5 shows that you need to look at least PA degree in order to ensure
that you can find a prime ideal, partly answering our question about the complexity
hierarchy that we need in order to find a prime ideal such that the prime ideal does
not contain a particular element.

Next we complete the answer by proving that to find such a prime ideal, we need
at most PA degree, showing that PA degree exactly captures the degree that you need
in order to find such a prime ideal.

Theorem 6. Suppose that R is a computable ring and x is an element of R not in the
nilradical. Then for everyA of PA degree, there exists a prime ideal P ofR such that
deg(P ) ≤ deg(A) and x /∈ P .2

2The proof borrows idea from [3].
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Proof. Let {ai : i ∈ N} be an enumeration of R. We define a sequence of finite
sets Xσ ⊂ R, σ ∈ 2<N. Let X∅ = {0R}. Suppose that Xσ has been defined. Let

|σ| = 4 · <i, j,m>+ k

where 0 ≤ k ≤ 3, |σ| is the length of σ, <i, j> = 1
2(i

2 + 2ij + j2 + 3i + j) and
<i, j,m> = <<i, j>,m>.3

• k = 0. If ai · aj ∈ Xσ, set Xσ0 = Xσ ∪ {ai} and Xσ1 = Xσ ∪ {aj}.
Otherwise, set Xσ0 = Xσ and Xσ1 = ∅.

• k = 1. Set Xσ0 = ∅. If ai, aj ∈ Xσ, set Xσ1 = Xσ ∪ {ai + aj}.
Otherwise, set Xσ1 = Xσ.

• k = 2. Set Xσ0 = ∅. If ai ∈ Xσ, set Xσ1 = Xσ ∪ {ai · aj}.
Otherwise, set Xσ1 = Xσ.

• k = 3. Set Xσ0 = ∅. If xm ∈ Xσ, set Xσ1 = ∅.
Otherwise, set Xσ1 = Xσ.

Let S = {σ : Xσ /= ∅} ⊆ 2<N. We have that S is a computable tree.
Now we show that for each m,n ∈ N, there exists σ ∈ S of length n such that

xm /∈ <Xσ> where <Xσ> is the ideal of R generated by Xσ. For n = 0, the claim
holds since xm /= 0 for all m ∈ N. For n ≡ 1, 2, 3 mod 4 and, obviously, if the
claim holds for n then it also holds for n + 1. Suppose that n ≡ 0 mod 4 and the
claim holds for n. Next we show that it also holds for n+ 1. Let σ ∈ S be of length
n = 4 · <i, j,m> such that xm /∈ <Xσ> for allm ∈ N. If ai · aj /∈ Xσ, then the claim
holds since Xσ0 = Xσ. If ai · aj ∈ Xσ, we show that <Xσ0> = <Xσ ∪ {ai}> and
<Xσ1> = <Xσ ∪ {aj}> do not both generate elements xm0 , xm1 ∈ R. Assume for the
sake of a contradiction that:

xm0 = c+ rai, xm1 = d+ saj ,

where r, s ∈ R and c, d are finite linear combinations of elements ofXσ with coeffi-
cients from R. Then,

xm0+m1 = cd+ csaj + drai + rsaiaj ,

and so xm0+m1 ∈ <Xσ>.4 So we have a contradiction. Thus, xm /∈ <Xσ0> for all
m ∈ N, or xm /∈ <Xσ1> for allm ∈ N. Therefore the claim holds for n+ 1.

We have that S is infinite. Let A ⊆ N be of PA degree. Then there exists an A-
computable infinite path σ′ in S. Let P = Xσ′ . Then P ≤T A. By the construction
of S, we have that P is a prime ideal of R and x /∈ P . □

3Just note that <i, j,m> is a bijection between N3 and N. It does not matter what is <i, j,m>.
4This relies on thatR is a commutative ring. Note again that this paper only talks about commutative

rings with identity.
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Now we turn to arithmetical hierarchy, which will be used to classify the com-
plexity hierarchy of the nilradical and Jacobson radical. We form the hierarchy of sets
by alternating quantifiers.

Definition 13. Let natural numbersm,n ≥ 1.
(1) A set A ⊆ Nm is Σ0

n (written A ∈ Σ0
n) if there exists a computable relation

R ⊆ Nm+n such that for each x1, · · · , xm ∈ N, we have that:

(x1, · · · , xm) ∈ A⇔ ∃y1∀y2∃y3 · · ·Qyn[(x1, · · · , xm, y1, · · · , yn) ∈ R],

where Q is ∃ if n is odd, and ∀ if n is even.
(2) A set A ⊆ Nm is Π0

n (written A ∈ Π0
n) if there exists a computable relationR ⊆

Nm+n such that for each x1, · · · , xm ∈ N, we have that:

(x1, · · · , xm) ∈ A⇔ ∀y1∃y2∀y3 · · ·Qyn[(x1, · · · , xm, y1, · · · , yn) ∈ R],

where Q is ∀ if n is odd, and ∃ if n is even.

Proposition 7. A ⊆ N is computably enumerable (c.e.) iff A is Σ0
1.

Definition 14. A is many-one reducible (m-reducible) to B (written A ≤m B) if
there is a computable function f such that f(A) ⊆ B and f(A) ⊆ B, i.e., x ∈ A iff
f(x) ∈ B.

Althoughm-reducibility is the first and most natural reducibility, it is too restrictive.
The reducibility ≤T we referred early is a more general concept, and we have that if
A ≤m B, then A ≤T B.

Definition 15. (1) A set A is Σ0
n-complete, if A ∈ Σ0

n and B ≤m A for each set
B ∈ Σ0

n.
(2) A set A is Π0

n-complete, if A ∈ Π0
n and B ≤m A for each set B ∈ Π0

n.

In this paper, we are most interested in c.e. sets and Π0
2 sets. Here we introduce

a Π0
2-complete set.
Let {φe}e∈N be a standard listing of the partial computable functions. Then for

every e ∈ N, the eth c.e. set is defined to be:

We = domφe = {x : ∃y(φe(x) = y)}.

Proposition 8 (Soare, [9]). The set Inf = {k ∈ N : Wk is infinite} is Π0
2-complete.

Then, to show that a given setA isΠ0
2-complete, it suffices to find a computable

function f such that for all k ∈ N, k ∈ Inf iff f(k) ∈ A. Likewise, to show that A
is Σ0

1-complete, it suffices to find a computable function f and a Σ0
1-complete set B

such that k ∈ B iff f(k) ∈ A.
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3 The Nilradical and Jacobson Radical

Proposition 9 (Downey et al., [4]). If R is a computable ring, then Nil(R) is Σ0
1.

Proof. We have that:

Nil(R) = {a ∈ R : ∃n(an = 0)},

{(a, n) : an = 0} is computable, so Nil(R) is Σ0
1. □

Proposition 10 (Downey et al., [4]). If R is a computable ring, then Jac(R) is Π0
2.

Proof. We have that:

Jac(R) = {a ∈ R : ∀b∃c((ab+ 1)c = 1)},

{(a, b, c) : (ab+ 1)c = 1} is computable, so Jac(R) is Π0
2. □

In [4], the complexity of the two radicals in computable rings was studied. In
particular, the following computability-theoretic results were established:

Theorem 11 (Downey et al., [4]). There exists a computable ringR such that Nil(R)
is Σ0

1-complete.

Theorem 12 (Downey et al., [4]). There exists a computable ringR′ such that Jac(R′)
is Π0

2-complete.

Theorem 11 shows that ∃-description is optimal for the nilradical in its quantifier
complexity, and Theorem 12 shows that ∀∃-description is optimal for the Jacobson
radical. However, in [4], the ring R constructed for Theorem 11 and the ring R′ for
Theorem 12 are totally different. We next simplify the proofs of these two theorems by
constructing one computable ring where the nilradical isΣ0

1-complete and meanwhile
the Jacobson radical isΠ0

2-complete. Before proving the result, we first introduce two
methods of building computable rings by taking subrings and quotient rings, which
are very helpful for our proofs.5

We first consider subrings. Suppose thatA is an infinite computable ring andS is
an infinite c.e. subring ofA. We may view S as a computable ringR in the following
way. Note that S is a c.e. subset of A, then there exists a computable bijection f :

N → S. Let R be the tuple (N, 0, 1,+, ·) where 0R = f−1(0A) and 1R = f−1(1A),
a +R b = f−1(f(a) +A f(b)) and a ·R b = f−1(f(a) ·A f(b)). Note that R is a
computable ring and f is a computable isomorphism betweenR and S, in a sense we
could view S as a computable ring.

We now consider quotient rings. Suppose that A is a computable ring and I
is a computable ideal of A. We may realize the quotient ring A/I as a computable

5The methods are given by [4].
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ring R in the following way. Let R be the set of minimal elements (with respect to
the ordering on N) of cosets of I in A. Then R is computable. Define a function
h : A → R by letting h(a) be the unique element of R such that a − h(a) ∈ I . We
have that h is computable. Let the tuple (R, 0, 1,+, ·) be such that 0R = h(0A) and
1R = h(1A), a+R b = h(a+A b) and a ·R b = h(a ·A b). Note thatR is a computable
ring and h is a computable surjective homomorphism with kernel I , in a sense we
could view A/I as a computable ring.

Combining the two methods, here we give a newmethod of building computable
ring:

Lemma 1. Suppose that S is an infinite c.e. ring and J is a computable set such
that S ∩ J is an ideal of S. Then there exist a computable ring R and a computable
surjective homomorphism h : S → R with kernel S ∩ J , in a sense we could view
S/(S ∩ J) as a computable ring.

Proof. S is an infinite c.e. ring, so we may realize S as a computable ring as de-
scribed before. There exists a computable bijection f : N → S. Let S′ = (N, 0, 1,
+, ·) where 0S′ = f−1(0S) and 1S′ = f−1(1S), a +S′ b = f−1(f(a) +S f(b)) and
a ·S′ b = f−1(f(a) ·S f(b)). We have that S′ is a computable ring and f : S′ → S is
a computable isomorphism. Let I = f−1(S ∩ J). We have that S ∩ J is an ideal of
S. It is easy to see that I is an ideal of S′. I is computable, since

a ∈ I ⇔ f(a) ∈ S ∩ J ⇔ f(a) ∈ J.

Let R be the set of minimal elements (with respect to the ordering on N) of cosets of
I in S′. Note that R is computable. Define a computable function h : S → R by
letting h(s) be the unique element of R such that f−1(s) − h(s) ∈ I . Let the ring
(R, 0, 1,+, ·) be such that 0R = h(0S) and 1R = h(1S), a+R b = h(f(a) +S f(b))

and a ·R b = h(f(a) ·S f(b)). We have that R is a computable ring and h is a
computable surjective homomorphism with kernel S ∩ J . □

Proposition 13. Suppose that S/I is a quotient ring and R is a ring. Suppose that
h : S → R is a surjective homomorphism with kernel I .6 Then: a + I ∈ Nil(S/I)
iff h(a) ∈ Nil(R).

Proof. By definition of the nilradical, we have that:

Nil(S/I) = {a+ I ∈ S/I : ∃n[an ∈ I]},

and
Nil(R) = {a ∈ R : ∃n[an = 0]}.

Then,

6Indeed, even if h is not surjective, the proposition still holds.
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a+ I ∈ Nil(S/I) ⇔ ∃n[an ∈ I]

⇔ ∃n[h(an) = 0] (since the kernel of f is I)
⇔ ∃n[(h(a))n = 0]

⇔ h(a) ∈ Nil(R) □

Proposition 14. Suppose that S/I is a quotient ring and R is a ring. Suppose that
h : S → R is a surjective homomorphism with kernel I . Then: a + I ∈ Jac(S/I) iff
h(a) ∈ Jac(R).

Proof. By a standard result in commutative algebra, we have that:

Jac(S/I) = {a+ I ∈ S/I : (∀b ∈ S)(∃c ∈ S)[(ab+ 1)c = 1]},

and
Jac(R) = {a ∈ R : (∀b ∈ R)(∃c ∈ R)[(ab+ 1)c = 1]}.

Then,

a+ I ∈ Jac(S/I) ⇔ (∀b ∈ S)(∃c ∈ S)[(ab+ 1)c = 1]

⇔ (∀b ∈ S)(∃c ∈ S)[(h(a)h(b) + 1)h(c) = 1]

⇔ (∀b′ ∈ R)(∃c′ ∈ R)[(h(a)b′ + 1)c′ = 1] (by surjection)
⇔ h(a) ∈ Jac(R) □

Theorem 15. There exists a computable ring R such that Nil(R) is Σ0
1-complete and

Jac(R) is Π0
2-complete.

Proof. Fix a Σ0
1-complete c.e. set A. We have that Inf = {k ∈ N : Wk is infinite}

is Π0
2-complete. Next we build a computable ring R such that A ≤m Nil(R) and

Inf ≤m Jac(R) by using the method in Lemma 1.
Let α : N → A be a computable function such that A = ran(α). Let F be the

fraction field of Z[x, y] = Z[x1, x2, . . . , y1, y2, . . . ]. For each n ∈ N, let Z[x, y]n be
the subring ofZ[x, y] consisting of all those elements p such that for each yi occurring
in p we have that i < n. Also, let Z[x, y]∞ = Z[x, y]. Let

M = {1 +
n∑

i=1

xipi : n ∈ N, pi ∈ Z[x, y]|Wi| for all 1 ≤ i ≤ n}.

ThenM is a subset of Z[x, y]. And, for all f, g ∈M , we have that f · g ∈M . Let

S =M−1Z[x, y] = { g
m

: g ∈ Z[x, y],m ∈M} ⊆ F.

We have that S is c.e. Let I be the ideal of S generated by {xn+1
α(n) · y0 : n ∈ N}.

We first show that k ∈ A⇔ xky0 + I ∈ Nil(S/I).

(1) If k ∈ A, say k = α(n), then xn+1
k yn+1

0 ∈ I , so xky0 + I ∈ Nil(S/I).
(2) If k /∈ A, then xky0 + I /∈ Nil(S/I) because xnky

n
0 /∈ I for each n ∈ N.



46 Studies in Logic, Vol. 15, No. 3 (2022)

We now show that k ∈ Inf ⇔ xk + I ∈ Jac(S/I).

(1) Suppose that k ∈ Inf, i.e.,Wk is infinite. Let g
m ∈ S with g ∈ Z[x, y] andm ∈

M. Since k ∈ Inf, m
xkg+m ∈ S. Note that (xk · g

m +1) m
xkg+m = 1, so xk + I ∈

Jac(S/I).
(2) Now suppose that k /∈ Inf, i.e., Wk is finite. Fix l > |Wk|. We claim that

(xk + I)(yl + I) + (1 + I) is not a unit in S/I . Assume for the sake of a
contradiction that (xk + I)(yl + I) + (1 + I) is a unit in S/I . Then there exist
n ∈ N, pi ∈ Z[x, y]|Wi| and g ∈ Z[x, y] such that:

(xkyl + 1) · g

1 + Σn
i=1xipi

= 1 + i, i ∈ I ,

which gives

(xkyl + 1) · g = 1 + Σn
i=1xipi + i · (1 + Σn

i=1xipi), i ∈ I.

Let σ : Z[x, y] → Z[x, y] be the homomorphism induced by fixing xk and yl,
and sending all other xi and yj to 0. Then we have that:

(xkyl + 1) · σ(g) = 1 + xkσ(pk) + σ(i) · (1 + xkσ(pk)).

We have that σ(i) = 0, since i is divisible by y0. Then,

(xkyl + 1) · σ(g) = 1 + xkσ(pk).

We have that σ(g) /= 0, since the right-hand side is not 0. Thus the left-hand
side has positive yl-degree. However, the right-hand side has yl-degree 0 be-
cause yl /∈ pk. So we have a contradiction. Thus (xk + I)(yl + I) + (1 + I)

is not a unit in S/I .

Let P be the ideal of Z[x, y] generated by

{xn+1
α(n) · y0 : n ∈ N}.

Note that a polynomial f ∈ Z[x, y] is in P iff every nonzero monomial summand of f
has a factor xm+1

i y0 such that there exists n ≤ mwith α(n) = i. So P is computable.
Let

J = { g

1 + g′
: g ∈ P, g′ ∈ Z[x, y]\N} ⊆ F.

Note that J is computable. We have that I = S ∩ J . Then as described in Lemma 1,
we could realize S/I as a computable ring R and let h : S → R be the computable
surjective homomorphism with kernel I .

Define f1 : N → R by letting f1(k) = h(xky0) for all k ∈ N. Since h is
computable, f1 is computable. And we have that:
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k ∈ A ⇔ xky0 + I ∈ Nil(S/I) (from above)
⇔ h(xky0) ∈ Nil(R) (by Proposition 13)
⇔ f1(k) ∈ Nil(R)

It follows that A ≤m Nil(R). Thus Nil(R) is Σ0
1-complete.

Define f2 : N → R by letting f2(k) = h(xk) for all k ∈ N. Since h is com-
putable, f2 is computable. And we have that:

k ∈ Inf ⇔ xk + I ∈ Jac(S/I) (from above)
⇔ h(xk) ∈ Jac(R) (by Proposition 14)
⇔ f2(k) ∈ Jac(R)

It follows that Inf ≤m Jac(R). Thus Jac(R) is Π0
2-complete. □

Moreover, fromTheorem 11 and Theorem 12we immediately have the following
corollaries:

Corollary 1. For any Σ0
1-complete (c.e.-complete) set A, there exists a computable

ring R such that Nil(R) ≡T A.

Corollary 2. For any Π0
2-complete set A, there exists a computable ring R such that

Jac(R) ≡T A.

Next we prove more general results about the nilradical and Jacobson radical in
computable rings. Let us start with the nilradical.

Theorem 16. For any c.e. set A, there is a computable ring R such that Nil(R)
≡T A.7

Proof. Let α be a computatble function with range A. Let I be the ideal of Z[x]
generated by

{xn+1
α(n) : n ∈ N}.

Then f ∈ Z[x] is in I iff every nonzero monomial summand of f has a factor xmi
such that there exists n < m with α(n) = i. We have that I is a computable ideal.
Then we could realize Z[x]/I as a computable ring R and let h : Z[x] → R be the
computable homomorphsim with kernel I as described before. Define l : N → R by
letting l(k) = h(xk) for all k ∈ N. Since l is a homomorphism with kernel I , we
have that l(k) = h(xk) ∈ Nil(R) iff xnk ∈ I for some n ∈ N. Thus,

(1) If k ∈ A, say k = α(n), then xn+1
k ∈ I , so l(k) ∈ Nil(R).

(2) If k /∈ A, then l(k) /∈ Nil(R) since xnk /∈ I for all n ∈ N.

Thus, A ≤T Nil(R).
And, Nil(R) = {f ∈ R : ∃n(fn = 0R)} = {f ∈ R : ∃n(fn ∈ I)} = {f ∈

R: every nonzero monomial summand of f has a factor xi such that i ∈ A}. So
Nil(R) ≤T A. □

7The proof borrows idea from [3].
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Now we turn to the Jacobson radical.

Theorem 17. For anyΠ0
2 setA, there is a computable ringR such that Jac(R) ≡T A.

Proof. A isΠ0
2, so there is a computable relationP such that x ∈ A⇔ ∀y∃zP (x, y,

z). By s-m-n Theorem8, define an injective computable function f by

φf(x)(u) =

{
0, if (∀y ≤ u)(∃z)P (x, y, z);
↑, otherwise;

If x ∈ A, thenWf(x) = N, so f(x) ∈ Inf; If x /∈ A, thenWf(x) is finite, so f(x) /∈
Inf. Thus, x ∈ A iff f(x) ∈ Inf. And note that f is computable.

Let F be the fraction field of Z[x, y] = Z[x1, x2, . . . , y1, y2, . . . ]. For each
n ∈ N, let Z[x, y]n be the subring of Z[x, y] consisting of all those elements p such
that for all yi occurring in p we have that i ≤ n. Also, let Z[x, y]∞ = Z[x, y]. Let

M = {1 +
n∑

i=1

xipi : n ∈ N, pi ∈ Z[x, y]|Wf(i)| for all 1 ≤ i ≤ n}.

ThenM is a subset of Z[x, y]. And, for all f, g ∈M , we have that f · g ∈M . Let

S =M−1Z[x, y] = { g
m

: g ∈ Z[x, y],m ∈M} ⊆ F.

Note that S is c.e..
We first claim that k ∈ A⇔ xk ∈ Jac(S).

(1) Suppose that k ∈ A so that Wf(k) is infinite. Let g
m ∈ S and fix pi ∈

Z[x, y]|Wf(i)| such thatm = 1 + Σn
i=1xipi. We have that:

xk ·
g

m
+ 1 =

xkg +m

m
=
xkg + 1 + Σn

i=1xipi
m

,

and since xkg + 1 + Σn
i=1xipi ∈M , it follows that:

m

xkg + 1 + Σn
i=1xipi

∈ S.

So xk · g
m + 1 is a unit in S. Thus, xk ∈ Jac(S).

(2) Now suppose that k /∈ A so thatWf(k) is finite. Fix l > |Wf(k)|. We claim that
xkyl+1 is not a unit in S. Assume for the sake of a contradiction that xkyl+1

is a unit in S. Then there exists pi ∈ Z[x, y]|Wf(i)| such that:

1

xkyl + 1
=

g

1 + Σn
i=1xipi

,

8Please refer to [9].
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which gives
1 + Σn

i=1xipi = g · (xkyl + 1).

Let σ : Z[x, y] → Z[x, y] be the homomorphism induced by fixing xk and yl,
and sending all other xi and yj to 0. It follows that:

1 + xk · σ(pk) = σ(g) · (xkyl + 1).

Since the left-hand side /= 0, σ(g) /= 0, so the right-hand side has positive
yl-degree. But the left-hand side has yl-degree 0 because pk ∈ Z[x, y]|Wf(k)|.
So we have a contradiction. Thus xkyl + 1 is not a unit in S. Therefore xk /∈
Jac(S).

Let I be the ideal of S generated by {xi : i ∈ A}. We claim that I = Jac(S).

(1) Suppose that f
1+Σn

i=1xipi
∈ I , where f ∈ Z[x, y] and pi ∈ Z[x, y]|Wf(i)|.

Then every nonzero monomial summand of f has a factor xj , j ∈ A. Let
g

1+Σn′
i=1xip′i

∈ S, where g ∈ Z[x, y] and p′i ∈ Z[x, y]|Wf(i)|. We have that:

f

1 + Σn
i=1xipi

· g

1 + Σn′
i=1xip

′
i

+ 1 =
fg + (1 + Σn

i=1xipi)(1 + Σn′
i=1xip

′
i)

(1 + Σn
i=1xipi)(1 + Σn′

i=1xip
′
i)

.

Note that fg + (1 + Σn
i=1xipi)(1 + Σn′

i=1xip
′
i) ∈M , so

(1 + Σn
i=1xipi)(1 + Σn′

i=1xip
′
i)

fg + (1 + Σn
i=1xipi)(1 + Σn′

i=1xip
′
i)

∈ S.

Thus f
1+Σn

i=1xipi
· g

1+Σn′
i=1xip′i

+1 is a unit in S. Therefore, f
1+Σn

i=1xipi
∈ Jac(S).

(2) Now suppose that f
1+Σn

i=1xipi
/∈ I , where f ∈ Z[x, y] and pi ∈ Z[x, y]|Wf(i)|.

Then f has a monomial summand d such that d could not be divisible by any
xi for i ∈ A. Let B = {i ∈ N : d is divisible by xi}. Then A ∩ B = ∅. Let
C = {j ∈ N : d is divisible by yj}. Let l′ = max{|Wf(i)| : i ∈ B}+1. Then
for each i ∈ B, l′ > |Wf(i)|. We claim that f

1+Σn
i=1xipi

· yl′ + 1 is not a unit
in S. Assume for the sake of a contradiction that f

1+Σn
i=1xipi

· yl′ + 1 is a unit.
Then there exist n′ ∈ N, p′i ∈ Z[x, y]|Wf(i)| and g ∈ Z[x, y] such that:

1
f

1+Σn
i=1xipi

· yl′ + 1
=

g

1 + Σn′
i=1xip

′
i

,

which gives

(1 + Σn
i=1xipi)(1 + Σn′

i=1xip
′
i) = g · (fyl′ +  1 + Σn

i=1xipi).

Let τ : Z[x, y] → Z[x, y] be the homomorphism induced by fixing xi and yj
for each i ∈ B, each j ∈ C and j = l′, and sending all other xi′ and yj′ to 0. It
follows that:

(1 + Σi∈Bxiτ(pi))(1 + Σi∈Bxiτ(p
′
i)) = τ(g) · (τ(f)yl′ + 1+Σi∈Bxiτ(pi)).



50 Studies in Logic, Vol. 15, No. 3 (2022)

τ(g) /= 0 because the left-right hand is not zero. τ(f) /= 0 because d is a
nonzero monomial summand of τ(f) and τ(d) = d. Since for each i ∈ B,
l′ > |Wf(i)|, so yl′ does not occur in Σi∈Bxiτ(pi). Thus the right-hand side
has positive yl′-degree. But the left-hand side has yl′-degree 0, since yl′ does
not occur in Σi∈Bxiτ(pi) or Σi∈Bxiτ(p

′
i). So we have a contradiction. Thus

f
1+Σn

i=1xipi
· yl′ + 1 is not a unit in S. That is, f

1+Σn
i=1xipi

/∈ Jac(S).

Next we built the desired computable ring R. S is an infinite c.e. subring of
F , so we may realize S as a computable ring as described before. There exists a
computable bijection h : N → S. Let R be the computable ring (N, 0, 1,+, ·) where
0R = h−1(0S) and 1R = h−1(1S), a +R b = h−1(h(a) +S h(b)) and a ·R b =

h−1(h(a) ·S h(b)). Note that h : R→ S is a computable isomorphism. We have that:

k ∈ A⇔ xk ∈ Jac(S) ⇔ h−1(xk) ∈ Jac(R).

It follows that A ≤T Jac(R). Moreover, we have that:

a ∈ Jac(R) ⇔ h(a) ∈ Jac(S)
⇔ h(a) ∈ I

⇔ every monomial summand of the numerator of h(a) has
a factor xi with i ∈ A

It follows that Jac(R) ≤T A. Therefore, A ≡T Jac(R). □
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可计算环上幂零根与 Jacobson根的计算复杂度

王勋

摘 要

Downey等人（2007）证明了：存在一个可计算的有单位元素的交换环，其幂
零根是 Σ0

1-完全集；存在另一个可计算的有单位元素的交换环，其 Jacobson根是
Π0

2-完全集。本文进一步证明了：存在一个可计算的有单位元素的交换环，其幂零
根是 Σ0

1-完全集且其 Jacobson根是 Π0
2-完全集。此外，对于任意 c.e.集 A，都存在

一个可计算的有单位元素的交换环使其幂零根与 A图灵等价；对于任意 Π0
2集 B，

都存在一个可计算的有单位元素的交换环使其 Jacobson根与 B 图灵等价。
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